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A note for the crack problem of functionally graded materials
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Abstract. Employing the power-type function of material properties, a crack lying
between the functionally graded materials (FGMs) and homogeneous substrate is
studied by an asymptotic analysis from that of bimaterials, J-integral and the
numerical calculations. The present results show that when the curve of the
material property is concave, i.e. the power (m) of function of material property is
great than 1, the stress distribution near the crack-tip is the same as that of
homogeneous materials, which is in agreement with previous findings. However,
if the curve of the material property is convex corresponding to 0< m <1, our
results show that the stress distribution is strongly affected by m and it can be
obtained asymptotically from that of bimaterials.

1. Introduction

The functionally graded materials (FGMs) have attracted much attention for
their potential applications in many fields of industries, from aerospace to
automobile, to microelectronics etc. Some experiments have showed that there are
no distinct layers at a scale of millimeter in FGMs, yet layers exist below this
scale if examining with a powerfully distinguishable tool (Watanabe R. and
Kawasaki A., 1992; Jung, Churl, et al, 1997). Thus, FGMs can be characterized by
spatially varying microstructures that produce continuously changing mechanical
properties at the macroscopic level. Based on a model of exponential type function
of material properties, Erdogan and coworkers (1983, 1993, 1994, 1996) studied
some basic crack problems of FGMs. Among the contributions in this regard are
those by Gu, Asaro (1990) and Jin et al. (1994, 1996). By adopting the power-law
type function of material properties, G. C. Sih (1981) studied the crack problem as
well. It seems that the results concerning the effect of material gradient to the
singularity as well as to the angular distribution of stress field near the crack-tip is
different from adopting the different function form of material properties. For
instance, Jin, et al. obtained that the angular distributions of stresses were the
same as that of homogeneous materials, yet G. C. Sih thought they were affected
by the material gradient. Consequently, a further research is still needed to clarify
this issue. In the present study, based on the multilayered model of FGMs, we
correlate the crack problem of bimaterials with that of FGMs and present an
asymptotic stress field near the crack-tip in FGMs. Moreover, the analyses from J-
integral and numerical calculations are also carried out for illustrating the stress
distributions of FGMs in question.
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2. The analysis from the conservation of J-integral

The problem considered in the present study is an interfacial crack between
FGM coatings and homogeneous substrate. The gradient of FGM coatings is
assumed to be in one dimension normal to the crack direction as shown in figure
1. In previous studies, it was shown that the influence of the variation of Poisson’s
ratio on stress intensity factors (SIFs) is rather insignificant (G.C. Sih, 1981) and
therefore v may be assumed to be constant throughout the medium. As a result,
inhomogeneity of FGMs may prevail by assuming the shear modulus u to be a
function of coordinate:

H) = phy + (g — )(i—)"' m>0 (1)

where 1 and uy represent the material properties at locations y = 0 and y = H,
respectively, and m is a parameter concerning the material gradient. The value of
m should be greater than zero and otherwise, if m < 0, there exists a discontinuous
plane at y=0, which is not compatible with the characteristics of FGMs.

Assume that the strain component being £~r”, based on the elastic
constitution relationship and equation (1), the stress component is derived to be
o~ and r*, and thereby the density of strain energy @ ~r™***and r?*.
According to the works of Jin, Noda (1994) and Gu, Asaro (1990), J-integral of
the present problem is independent of path. It is therefore deduced that @ ~ ™'
and thus the order of stress component is (m-1)/2 as well as the traditional singular
order of —1/2. Hence, if 0<m<1, i.e. the curve of material properties is convex, the
stress distributions will be different from those of homogeneous materials and
have multi-singularities. ’

r m+i

3. Asymptotic analysis from the results of bimaterials

In the following, the asymptotic analysis is performed by correlating the
problem with that of bimaterials. According to the results of bimaterial interfacial
crack originally obtained by Williams (1959), the oscillatory factor & which was

defined to be a parameter uniquely related to the material properties, was given
by:

P S @)
2w i, +
where «; =3-4v, for plane strain, «, = I—V.’ for plane stress, the subscribe
+v,

i=1,2 refers to materials 1 and 2, respectively. Since FGMs is generally
approximated by the multihomogeneous-layered materials as shown in figure 1,
the results of crack of bimaterial can be regarded as an asymptotic solution of
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FGMs. An important feature of FGMs different from bimaterials is that the
oscillatory factor ¢ is correlated to the thickness of the divided homogeneous layer
h, which is decided by material gradient or the distinguishable size of observation.
By replacing the shear modulus z; with the average value of a layer near the

J:ﬂdy Huy —Ho
crack-tip and g with 4 in formula (2), i.e. y, = 5 = Y, + 1 ( )
m

M, = Uy, €1n asymptotic results of FGMs is approached as:

e AL

£=5—ln m+l =5—lnG (3)
/4 ,uo(l +K) + #H /uo ( )m T
m+1

Concerning the above ¢, two cases are dlscussed as follows. i) If m is big
enough, the value of ¢ is tending to zero (G =1) owing to W/H < 1, and the
asymptotic solution will be the same as that of homogeneous materials. This is in
agreement with those by adopting the exponential type of material property (Chen
and Erdogan, 1996; Jin and Noda, 1994; Gu and Asaro, 1990). ii) If m is small
enough so that (W/H)" tends to a limited value, & will be nonzero (G1) and the
stress distributions will be similar to those of bimaterials, which are influenced by
the factor & As a result, by substituting ¢ of formula (3) into the results of
bimaterials (Williams, 1959), the asymptotic stress distributions near the crack-tip
of FGM are obtained as follows:

K % 4 l G
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where K, =4\/§’G ?(gK, +321—K,,), K, =4\/§G*2(—;——-K, +3K,), K; and
/3 T

Ky are the stress intensify factor of mode I and /I, respectively, in conventional
meaning. And “+” is used for -7<6 < 0 and “-” for 0 <@ < 7, respectively. It is
1 1 Hakt Ho
2 oK+ Hy
FGMs/substrate in question degenerates into the bimaterial, so are the results of
the stress distributions in formulae (4-6). In this sense, the stress distributions in
FGMs/substrate are related to the material gradient and they are between those of
homogeneous materials and bimaterials when the value of m decrease from a large
value (>1) to zero. Concerning the influence of the oscillatory factor £ on the

stress distributions in bimaterials, it is suggested to consult in some relevant
papers (Rice, 1988; Yang and Shih, 1994).

noted that if m—0, £ will tend to and from formula (1), the

4. Numerical analysis using finite element method

We also perform the numerical analysis to study the variation of SIFs with the
material gradient. The FGMs/substrate sample studied is the Ti-Al matrix mixed
with ZrO, grains versus the Ti-Al alloy. The values of elastic constants for the
substrate (Ep) and the ZrO, ceramic (Ey) are taken to be 105 GPa and 165 GPa
respectively, and elastic parameter of FGMs is adopted as formula (1). In addition,
the Poisson’s ratio v is assumed to be 0.3 throughout the medium. The crack
length is 5 mm, the tensile load is 60 N and #/H = 0.1. The gradient coefficient m
is selected to be 0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 5.0,10.0, 20.0 respectively for
studying its role in influencing SIFs. The numerical analysis is performed using
the commercial code ANSYS. Figure 2 shows the calculated variations of SIFs
with the parameter m together with those of homogeneous materials (substrate) for
comparison. It can be seen that for the FGMSs/substrate sample, an inflexion point
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appears at m = 1 and that when m > 1, the SIFs of both modes / and II approach to
their respective SIFs of the homogenous materials with increasing m, suggesting
that the stress field of the FGMs/substrate is similar to that of the homogenous
materials. Carefully examining figure 2, an important finding is that when
0 < m <I, there are sharp increase of Ky with decreasing m, implying that the
stress distribution is quite different from that of homogenous materials. The
numerical results are in agreement with the above findings from J-integral and
asymptotic analysis of bimaterials. Besides, the above numerical results also
suggest that when m = 1, that is, the material properties change linearly, the SIF
has minimum value, which is similar to the finding upon thermal load (Noda,
1997).

S. Conclusion

By adopting the power type function of material properties, J-integral and
asymptotic analysis reveal that the stress distributions are determined by the
parameter m of material gradient. That is, if the material property curve is convex
corresponding to 0 < m < 1, the gradient cannot be omitted near the crack-tip and
the stress distribution can be obtained asymptotically from that of bimaterials. On
the contrary, when the material property curve is concave corresponding to m > 1,
the material gradient is small near the crack-tip and the stress distributions are the
same as those of homogeneous materials, which is in good agreement with the
results from adopting the exponential function with concave curve of the material
properties. Besides, the numerical results also give a support to the above findings.
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Fig.1 Schematic diagram of FGMs / substrate.
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Fig.2 The variations of K, and Ky; with the power m of material property for the functionally graded materials
(FGMs) and the homogeneous materials (HM).



