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Summary. In order to capture shock waves and contact discontinuities in the field
and easy to program with parallel computation a new algorithm is developed to
solve the N-5 equations for simulation of R-M instability problems. The method
with group velocity contrel is used to suppress numerical oscillations, and an adap-
tive non-uniform mesh is used to get fine resolution. Numerical results for cylin-
drical shock-cylindrical interface interaction with a shock Mach number Ms=1.2
and Atwood number A=0.818, 0.961, 0.980 (the interior density of the interface/
outer density p1/p2 = 10,50, 100, respectively), and for the planar shock-spherical
interface interaction with Ms=1.2 and g /p2 = 14.28are presented. The effect of
Atwood number and multi-mode initial perturbation on the R-M instability are
studied. Multi-collisions of the reflected shock with the interface is a main reason of
nonlinear development of the interface instability and formation of the spike-bubble
structures In simulation with double mode perturbation vortex merging and second
instability are found. After second instability the small vortex structures near the
interface produced. It is important factor for turbulent mixing,

1 Introduction

Consider a material interface between two different media. As an incident
shock interacts with the material interface the interface becomes unstable
due to shock acceleration. The small disturbances at the interface start to
grow. This kind of instability is called as a Richtmyer-Meshkov instability (R-
M instability ). The R-M instability problems can be met in many important
practical applications, for example, the propagation of sound hoom in tur-
bulent atmosphere, the Inertial Confinement Fusion(ICF), and the explosion
of the supernova. The R-M instability is also a model problem for studying
the physical mechanism of fluid motion from instability to turbulence. Many
works have been done for studying R-M instability, but mainly for the case
of interaction between plane shock and plane interface with perturbation,
interaction between plane shock and cylindrical interface with single mode
perturbation. In order to get numerical results of the R-M instability with
high density ratio a new algorithm is developed in this paper, and it is used
to simulate cylindrical shock-cylindrical material interface interaction and
the planar shock-spherical interface interaction. The shock is going from the
heavy gas through the interface to the light gas. The flow structures of shock
refraction, reflection, interaction of the reflected shock with the material in-
terface, and effect of Atwood number and the initial perturbation modes on
R-M instability are investigated.
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2 Numerical Method

A sixth order traditional difference approximation with group velocity con-
trol{GVC) is used to simulate the physical problem. Consider the convection
term for x-direction in the N-S equations 8f/8z discretized with F; /A for
positive characteristics:
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The upper index (ki) shows that the scheme is kth order accurate, and it
is symmetrical for case of i=0 and upwind biased for case i=-+. The seheme
with h;i;r/gis SLW, and a parameter ¢ > 0 is infroduced to make the scheme
MXD. The function S8{u)} is used to control the group velocity{l] .

3 Numerical results of R-M instability

3.1 Interaction of Cylindrical Shock with Cylindrical Interface

Consider R-M instability produced by interaction of a cylindrical shock with
cylindrical material interface. The shock is going inward from the heavy gas
with density p: into the light gas with density ps . This problem is solved
“by using the two dimensional compressible N-S equations in the cylindrical
coordinate discretized with above presented method. The interface is tracked
with time according to the maximal gradient of scale function g: [gradg]lmaes.

General characteristics of R-M instability

When the interface is perturbed with small amplitude the interface becomes
unstable after collision of the incident shock with the interface. Now we
are going to discuss the general characteristics of R-M instability with in-
teraction between a cylindrical shock and a cylindrical maferial interface
based on initial single mode perturbation. Consider a case with Ms=1.2
JRe=50000,p; /',01 = 10. The initial cylindrical surface with perturbation is
defined as ry = 1 + eccos(ny),where o = 0.033 , n = 12 , and the length
scale is normalized with the radius of initial interface without perturbation.
Fig.1 shows the density contours at different times. We see that at t=0.10 the
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Fig. 1. Density and Pressure contours: a. Density contours at t=0.10; b. Density
contours at t=.0.29 ¢. Density contours at 1=3.30; d. Pressure contours at t=0.10.

discontinuity bifurcates into reflected rarefaction wave and refracted shock af-
ter collision with interface. The discontinuity bifurcation can be seen clearly
from Fig.1d for pressure contours at t=0.10. The perturbation starts to grow
linearly, and the interface starts to deform. Existence of perturbation on the
interface leads to non- parallelism of the pressure gradient [gradp] with the
density gradient [gradp| which produces the vorticity near the interface. Fur-
ther development nonlinear growth of perturbation leads to change the phase
of the perturbed surface(see Fig.1b). The transmitied shock reaches the cen-
ter and reflects. Collision of this reflected shock with the interface increases
nonlinear development of the perturbation. After multiple collision of the re-
flected shock with interface the spike-bubble structures are formed{Fig.1c}.
The spike is & portion of heavy gas penetrating into the light gas, and the
bubble is a light gas penetrating into the heavy gas. figl

Effect of Atwood number on R-M instability

The cases Ms=1.2Re=50000 with different Atwood number { A = [p; —
pz]/[p1 + pe]) are computed in arder to study the effect of density ratic on
R-M instability. The initial cylindrical surface with perturbation is defined
as above, The variation of pressure with the time at the cylinder center for
different Atwood mimber is given in Fig.2a-c. From it we can see that when
the transmitted shock approaches the center the center pressure increases,
and then reflected shock is formed. This reflected shock is going outward,
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Fig. 2. Variation of pressure at the cylinder center and perturbation amplitude with
different Atwood numbers (A: a. A=0.818;b. A=0.967; ¢. A=0.980; d: perturbation
amplitude}.

and the gas in central region starts to rarefy with pressure decreasing. This
outward going shock in light media will collide the interface behind which
the gas is heavy. After interaction an inward going reflected shock is formed.
The inward going shock will reach the center, then it reflects, and it collides
with the interface again.From Fig.2a we can see that there are four times of
this kind of collisions for the case A=0.818. After the collisions the pressure
at the center increases fast. For the case of A=0.967 and 0.980 there are
five six times of this kind of collisions respectively, but the pressure increases
much less than the case of A=0.818 (see Fig. 2a-c). It means that pressure
increase decays with Atwood number increasing. In Fig.2d the variation of
perturbation amplitude with the time for different Atwood number is given.
It can be seen that at first stage before the phase change of the interface
the perturbation amplitude decreases, after phase changing it is increases.
The perturbation amplitude with large Atwood number grows much faster
because of faster sound speed in the light gas. '

Effect of initial perturbation on R-M instability

The cases Ms=1.2, Re=50000, p;1/pa=10 with both single and double initial
perturbation modes at interface are computed. The initial perturbed interface
for single mode is as above. The double mode perturbed interface is given
as o = 1+ alcos(nye) + cos(nayp)] where ny = 12 ny = 60, a = 0.033 .
The vorticity contaurs with two different initial perturbation mode are given
in Fig.3. Comparing the results with different initial perturbation modes we
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Fig. 3. Vorticity contours with two initial mode perturbations at different time.
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Fig. 4. Density contours on section z=0 for different time (t=1.33, 5.13, 20.36).

see that at first stage the initial subharmonic is appended on the basic mode
perturbation, and vorticity is much increased . With nonlinear growth of
perturbation secondary instability occurs, and vortex merging can be seen
in Fig. 3a2. With further development of perturbation in Fig.3b2 we can see
that small vortex structures near the interface are formed. This is important
factor for turbulence development.

3.2 Interaction of Planar Shock with Spherical Interface

The numerical method presented above is used to solve the 3-D) compress-
ible N-8 equations in the Cartesian coordinate for simulating interaction of
a planar shock with spherical interface. The Mach number is and the density
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Fig. 5. Three Dimension numerical results.

ration is . Figure 4 shows density contours on section z=0 for different times
(¢=1.33, 5.13, 20.36). From Fig.4a it can be seen that as the shock sweeps
over the interface the shape of the interface at the upstream face changes due
to compression by the shock and the interfacial instability. From here also we
can see that first and second transmitted waves at the left are followed by
the interface and the reflect waves are going to the right. At the same time
due to the shock going from the heavy gas to the light gas, the gas inside the
interface has a higher wave speed, and the effect of the interfacial instabil-
ity, the incident shock is deformed. This phenomenon can be seen from the
pressure contours (there is not presented). From Fig.4b it can be seen that
after interaction due to interface instability the heavy air jet with conical
shear layer is formed, then this jet impinges on the downstream interface
and pierces it {see Fig. 4c). During the time of interaction the vorticity is
produced due to non-paralielism of the gradients for pressure and density.
Because the shock is incident from the right to the left and the light gas is
relatively easier to accelerate, clockwise vorticity is produced at the top and
anticlockwise vorticity is at the bottom of the interface. With further devel-
opment of flow siructure a vortex ring is formed. Fig.5 shows the constant
vorticity surface and vorticity contours on section 2=0 at t=15.0. This vortex
ring for the sphere-interface is more distinct than the case for the cylinder
interface. From numerical results we can also see that most of the vorticity in
the flow is concentrated in the vortex ring and along the conical shear layer
at the boundary of the heavy air jet. Obtained numerical results agree well
with experiment results [2].
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