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Abstract. It is of utmost importance to understand the spatlation behaviour of heterogeneous materials,
In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects
of microstructural heterogeneity on continuum damage evolution. The spailaton behavior of heterogeneity
material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of
Weibull madulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum
damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress,
severe stress fluctuation causes higher damage; while for high stress, causes lower damage.

1. INTRODUCTION

- Heterogeneous materials, like ceramics and rocks, are widely used in armor engineering. Spallation is a
typical failure process of these materials under impact loading. Therefore, it is of utmost importance to
understand the spallation behavior of heterogeneous materials,

Studies reveal that spallation is resulted from the nucleation, growth and coalescence of micro-
voids or micro-cracks in materials [1, 2]. Hence, spllation is a process involving coupled multiple time
and space scales. The diversity and coupling of physics at different scales present two fundamental
difficulties for spallation modeling and simulation [3-5]. More importantiy, the difficulties can be greatly
enhanced by the disordered heterogeneity on multiple scales.

Different quantitative/predictive models for spallation have been proposed based on experimental
" observations {3, 4, 6-8]. Some of them [3, 4, 8] tried to link the mesoscopic scale and macroscopic scale
by introducing microdamage nucleation and growth laws into continuum equations. However, the effects
of microstructural heterogeneity on spallation cannot be studied even with these multiscale models.

In this paper, a driven nonlinear threshoild model for damage evolution in heterogeneous materials
is presented. Tn addition, stress fluctuation caused by heterogeneous damage is considered. The damage
evolution in spallation is analyzed with the model. The effects of microstructural heterogeneity and
stress fluctuation on damage evolution in spallation process are investigated.

2. MODEL

We consider a macroscopic representative volume element {RVE) (at x) comprised of a great number
of interacting, nonlinear, mesoscopic unitséfithat is, a driven nonlinear threshold model [9]. The
heterogeneity of the mesoscopic units can be characterized by their broken threshold. The mesoscopic
units are assumed to be statistically identical, and their broken threshold o, follows a statistical
distribution function ¢@ (g, f, X). )

The RVE is subjected to nominal driving force og (2, x), which is adopted as macroscopic variable.
In the RVE, a mesoscopic unit will have probability to break as the real driving force (true stress)
& on it becomes higher than its threshold. When a unit breaks, it will be excluded from the distribution
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function. Hence, we introduce a time- dependent distribution function of intact units ¢ (., f,X) with
initial condmon

(b(JC!t:O:X):h(O_C)S (1)

where k (g} is normalized as

f h(o)do. = 1. )
[H]

In Eq.(Z), &, 15 non-dimensionalized and normalized by a parameter ¢*, the characteristic value
of o..
With function ¢ (o, ¢, x), the continuum damage of the RVE at time ¢ can be defined by

D, x)=1 —f @ (6e, ¢, X)dae.. (3)
0

Due to the heterogeneity, the true stress applied on the intact units in RVE flutuates. We assume
that the true stress follows a statistical distribution function & (a;¢, x). Hence, the probability that the
real driving force (true stress) applied on intact units is ecan be denoted by &(a; . x). Rough speaking,
function £ (; ¢, %) is determined by the nominal stress gy(¢, x) and continuum damage D(t, x)¢hithat is,

E(oit,x) = E(a; 00 (4, %), D (L, X)). (4
In addition, function & {(o; ¢, X} should be normalized as
o )
f (ot x)da =1, (5)
0
and the mean value of driving force on intact units follows
(e8]
go{t, X) .
X e = ——— 6
fo il ey oy ©

By assuming statistical independency between broken threshold o, and true stress o, the evolution of
distribution function @ (o; ¢, x) is suggested to follow an equation based on relaxation time model:

6@(0‘7;!,;{)_‘[ @loc,t,X),
a N oo

where 7 is the characteristic relaxation time of damage. In general. 7 is determined by the true driving
force and the threshold of mesoscopic units, 7 = (0, 7:).

Integrating Eq.(7) and substituting the definition of continuum damage (Eq.(3)) to the obtained
equation, we obtain the evolution equation of confinuum damage:

dD(f,x)zf= f @(p(actx) c—f f GD(O'C,I,X) £ (o1, )dodr (8)
—dt T(O’

{(ost,x)do, (7

Where f is the dynamic function of damage (DFD), the agent lmkmg mesoscopic microdamage
relaxation and macroscopic damage evolution.

Similar to {4], in order to establish a closed, complete formu]atlon Eq.(8) should be associated with
traditional, macroscopic equations of continuum, momentum, and energy, constitutive relationship and
Eq.(4). This is a formulation with intrinsic trans-scale closure. Eq (4) and Eq.(8) relate the macroscopic
and mesoscopic scales,

With the abovementioned formulation, we numerically investigated the process of spallation and
analyzed the effects of microstructural heterogeneity in térms of the dlsmbutlon of broken threshold
and the fluctuation of true stress on the propagation of damage.
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_ NUMERICAL ANALYSIS OF SPALLATION

onsider a problem of damage evolution owing to the normal impact of a flying plate of thickness L
ith velocity vy striking on a target plate, i.e. spallation. For simplicity, we assume that the impactor-

late system deforms in uniaxial strain. For the time-dependent damage process, an associated equations

f continuum, momentum and damage evolution should be formed [10].
Similar to Weibull's statistical sirength theory [11], we suppose that the initial distribution of

-i-threshold £ (g, follows Weibull distribution:

stic value ?FT

" where m is the Weibull modulus and ¢* the characteristic vaiue of a¢.

. ok m—1 kM
hiee) =m ETC—G—"?—— exp [— (GC e ) :| X (9
{a*} a*

The smaller Weibull modulus (#7).
and the material is more heterogeneous. On the other hand, larger
1in which the stress threshold is almost constant.

There are various ways to determine the characteristic relaxation time of damage 7[10]. For
the damage relaxation time is a fixed value 7p.

The fluctuation of true stress exerted on intact mesoscopic units can be dealt with different

appraoches. We assume the statistical distribution function of true stress £(o,t,x) as follows:

25 o+ o
L (o -a), as gy < 7 = Lt
0'22—1:_'0'1 " 2
- — a
{(e, T, X) 0 Aoy — 0), as Lo <g<oy’ (10)
g2 — 01 2
0, otherwise.
wherea = =305y 0y = H5Pa. fo= e and k= (o= 6)2/(D(,f—”D 2) is the stress

fluctuation parameter.

Due to the trans-scale nature of spallation, it is helpful to non-dimensionalize the variables in

the associated equations. The non-dimensionalization shows that some dimensionless numbers govern

the damage evolution process in the target plate [10]. In this paper, we will focus on the effects of
microstructural heterogeneity in terms of Weibull modulus m and stress fluctuation parameter k.

4. RESULTS AND DISCUSSIONS

4.1 Effects of Weibull modulus m on damage evolution

Fixing all other parameters. and set & = 0, we studied the effects of Weibull modulus # on the damage
evolution. Fig.1(a) and (b} show the effects of m on the maximum damage in target plate at two different
stresses. For low stress cases (Fig. 1(a)}, the increase of m leads to smaller damage. While for high stress
cases (Fig.1(b)), the maximum damage increases with m.

What causes the opposite effects of m on damage evolution? Actually, if D < 1 and loading time is
long enough, the damage will reach a saturated value at constant loading. The saturated damage P{a0)

can be expressed in terms of nominal stress:

P(og) = | — exp_[— (93 — 1)] . an

o-*

the saturated damage deceases with m; while forap Jo* > 2. the

Obviously, for oo/ < 2 (6" = 1),
his trend is consistent with what we obtained in numerical study.

saturated damage increases with m. T
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Fignre 1. Effects of m on the maximum damage. (a): low stress cases, (g)ma = 1.65 (b): high stress cases,
(G0)max = 2.23.

4.2 Effects of stress fluctuation parameter k£ on damage evolution

Fixing all other parameters, and set m = 5, we studied the effects of stress fluctuation parameter & on
the damage evolution. Fig.2(a) and (b) show the effects of & on the maximum damage in target plate at
two different stresses. For low stress cases (Fig.2(a)), the maximum damage increases with £. While for
high stress cases (Fig.2(b)}, the maximum damage decreases with 4.
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Figure 2. Effects of & on the maximum damage. (a): low stress cases, (Gg)max = 165 (b): high stress cases,
(F0)max = 2.23.

Why does & have opposite effects on.maximum damage in these two cases? The satorated damage
curve (Fig.3) may give us a clue. The figure shows that the curve is concave up for og = 1.65. Hence, for
oy = 1.65, larger fluctuation leads to a higher mean value of saturated damage. On the other hand, the
curve is concave down for for 69 = 2.23; and therefore, larger fluctuation resuits in a lower mean value
of saturated damage. Therefore, for low stress, severe stress fluctuation causes higher damage, while for
high stress, severe stress fluctuation causes lower damage.

5. SUMMARY

In this paper, a driven nonlinear threshold model with stress fluctuaiion is presented to study the
effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior
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‘Figure 3. Curve of saturated damage vs. nominal stress (m = 5).

i+of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units s
characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k.

At high stress, the maximum damage increases with m; while at low stress, the maximum damage
. decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high

* stress, causes lower damage.
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