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Abstract---In this paper, the plane-stress interface crack-tip fields between pressure-sensitive dilatant
material and linear elastic material are investigated. Applying the stress—strain relation for the pressure-
sensitive dilatant material. we have obtained an exact asymptotic solution of plane-stress tip fields for
two types of cracks, one of which is along the interface and another is perpendicular to the interface
between the linear elastic material and pressure-sensitive dilatant material. The obtained fields satisfy
the condition of the continuity of tractions at the interface and the traction-free conditions on the
crack faces. For the first type of crack, the eigenvalue s is irrelevant to the pressure sensitivity par-
ameter p and is equal to —1/(n + 1), which is the eigenvalue of the HRR fields for homogeneous media
without pressure sensitivity. While in the second type of crack, both s and g increase simultaneously
when # is fixed, but s tends to zero if g is approaching to gy, ¢ 1998 Elsevier Science Ltd. All rights
reserved
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1. INTRODUCTION

RECENTLY, THE researches on the mechanical behavior of some materials that exhibit pressure-
sensitive dilatancy have attracted much attention, because these materials cannot be described
by the classical plasticity theories which neglect the effect of hydrostatic pressure. The examples
of these materials may include toughened structural polymers and ceramics. The results reported
by Spitzig and Richmond[1], Carapellucci and Yee[2], Sue and Yee[3] and Chen and Morel [4]
have confirmed that pressure-sensitive yielding has a strong effect on the plastic deformation
and fracture behavior of the materials studied.

With regards to engineering materials, many researches have focused their attention on the
interfaces because defects may occur easily in the interfacial regions and cause damage to the
materials. Williams [5] was the first who analyzed a two-dimensional elastic problem of a crack
lying along the interface between two dissimilar isotropic media by using eigenfunction method.
Later, Cheepanov[6], Erdogan[7]. Rice and Sih[8,9] and Malyshev and Salganik [10] presented
the similar problem by utilizing different methods. Recently Hutchinson es al. [11], Rice [12],
Shih and Asaro [13] and Zywicz and Parks [14] have summarized and developed those early
research results.

Shih and Asaro[13, 15, 16] originally investigated the solutions for an interface crack in elas-
tic-plastic materials. A solution for the elastic—-perfectly plastic, small-scale yielding interfacial
crack-tip fields in bimaterials has been reported by Zywicz and Parks[17]. Wang[18] presented
an exact asymptotic field analysis for a crack which lies along the interface of an elastic—plastic
medium and a linear elastic medium. The problem of a plane strain crack lying along an inter-
face between a rigid substrate and elastic-plastic dilatant medium has been studied by Yuan(19].

In this paper, we studied the plane-stress interface crack-tip fields between pressure-sensitive
dilatant material and linear elastic material. Based on a simple pressure-sensitive vyield criterion
mtroduced by Drucker and Prager [20] and modified by Li and Pan[21]. we obtain an exact
asymptotic solution of plane-stress tip field for two types of cracks, one of which is along the
interface between a linear elastic material and pressure-sensitive dilatant material and another is
perpendicular to the interface.

tAuthor to whom all correspondence should be addressed.
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2. BASIC EQUATIONS

Figure 1 shows an interfacial crack between medium 2 that is a linear clastic material in the
lower half plane and medium 1 that is a pressure-sensitive dilatant material in the upper half
plane.

For the sake of simplicity. it is assumed that both materials have the same elastic modulus
and Poisson’s ratio, i.e. £;=E,=FE, vi=v,=v.

For the plane stress. the stress—strain relations for the elastic material 2 can be expressed as

I+v 1 —2v

b =" Gk 0jj- (1)

The simple pressure-sensitive yielding criterion given by Li and Pan[21] can be adopted for
material | as

Tye = Te + UOy = l//(afj) (2a)

e 2 o .
Te = (8;55i1/2) 7. Sif = 0;j — Om0ij, Opy = 044 /3 (2b)

where y(a;) represents the yield surface in stress space, 1, is generalized effective shear stress. u
is a pressure sensitive factor. When g = 0. it means that the effect of hydrostatic pressure is neg-
lected.

In this analysis, it is assumed that the elastic--plastic behavior for material | in shear can be

expressed as
"
7 T T
otg(1) o
Yo To T

where t and 7y are, respectively, the shear stress and shear strain, 7y and y, are the reference
shear stress and reference strain, # is the strain hardening exponent, o is a material constant.

In the asymptotic analysis for near-crack-tip field, the elastic strains are much smaller in
comparison with the plastic strains and, therefore, can be neglected. In this sense, we have the

constitutive equation
P i \
& tye Sij R
4:a(i) (A%Jrﬁ()ij). (4)
70 Yo e 37

For the case of plane stress we have

Now the general form of strain—stress relations given in eq. (4) can be specified, in polar

coordinates, by stating
¢ 1 (1 \' (06, — o
oy gc e
—=-oa| = —+ u) (6a)
oo 3 ( Ty ) ( 21,

Material |
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3

Fig. 1. An interfacial crack I between a linear elastic material and a pressure-sensitive dilatant material.
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Tge = % = “*‘,i(‘f,..- + 050 — Gn0py + 305) T + g(%- + 0uo).
The stress components in polar coordinate are expressed by stress function ¢(r, 8) as
lag 13°¢ 9% a (1 a(p) )
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S PRI S TR ar\raf
Then the equations of equilibrium can be automatically satisfied.
The relations of displacement—strain are
ou, 10wy u, 1 ( lou, Oduy up
p— tp=-—-—>+— o=z ———+—-—— ). 8
" or bo r o + r b 2\ r a8 + ar r (8)

The strain compatibility equation 1s

192(reny) l 3¢, ldeg, 2 8%(rem) .
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In order to ensure the tractions to be continuous on the interface. we assume that the stress
field in the whole tip zone has the same singularity for both materials. Let

p(r-0) = Krt2 F(8). (10

Substituting eq. (10) into eq. (7), we can obtain

0 = KI'F(}U‘(()) (1 1)
G0)=F' + Q2+ 9)F (12a)
Goo(t) = (2 + s)(1 + 5)F (12b)
G = —(1 +5)F". (12¢)
The corresponding strains are then

b = ik"ijl"éi,‘ ( lg)

N I ., (26, —6m
By = t}—rgc( 7 -+ ;t) (14a)

1, (260 — 5,
i = 5 Ty (-——1'%--—— + u) (14b)
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1 .
&t = 5 Tge = (l4c)

for = %(%ge)"( - 9—31—_;@ + u) (14d)
where
7, = ;} = \%(&f,_ + &2 = Gy + 36317
Tge = %’—% = "\%—3*-(5,2., + &2y — Bbug + 355)" 7 + %l(&rr + Gon).
The strain compatibility eq. (9) can be represented as
(dd(;z — ns) [f'ée ( 2 (22:6 =) F) + n] + 3(ns + 1)(s + l)a% (%’;e «i‘)
+astns + 1)%;6[(2 90 ;2 NF-F u} = 0. (15)
For the linear elastic material 2, we have the equation
F" 4+ [(s+ 2> + $1F" + s2(s + 2)°F = 0. (16)
The general solution for this equation is
F = B, cos(s0) + B, sin(s6l) + B; cos(s + 2)0 + By sin(s + 2)0. (17)
The traction-free conditions on the crack faces require
Golp=sn = Croljmsrn =0 (18)
which means
F(n)= F'(n) = F(—n) = F'(-n) = 0. (19)
The continuity of tractions on the interface requires the following:
Gon(0) = Gop(07) G,0(0™) = G,5(07). (20)
From eq. (20) we obtain
FOO")=F@O7) F'(0")=F'(07). (21
Ignoring the rigid displacements, we obtain from eq. (8) the displacements in material 1:
ug = 3K g5 (0) (22)
iy = & /(1 + ns) iy = (28,0 — ii,)/ns. (23)

As pointed out by Shih and Asaro[13] for a bimaterial, the material with a lower hardening
capacity responds at the interface as if it is bonded to a rigid substance, and so we have

=ty =0at 0 =07 (24)



which can be written in term of the stresses as

step-size control. Equation (15) can be integrated from 8 = 0

Plane-stress asymptotic fields

257')‘ - 5'()” + zﬂio

26, — 6o’ F2ute” —6(ns + oy =0at 0 =07,

3. SOLUTIONS OF ASYMPTOTIC FIELDS

Combining the nonlinear eq. (15) and the boundary conditions of eqs (19) and (25), the
eigenvalue s and eigenfunction F within the region of 0 <0 <= can be found for the pressure-
sensitive material 1 by using the shooting method. The initial value of F(0 ") is taken as unity
for easy handling. After s reaches —1/(1 + n) and a value of F'(0") is given, F"(0") and F"(0")
can be obtained from eq. (25), by using the fourth-order Runge-Kutta method with automatic

+
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to @ = n. The results at 0 = n

generally cannot fully satisfy the boundary conditions. Subsequently adjust s and the initial
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Fig. 2. f-variation of the stresses 6, in the whole region and the displacements i in the plastic region

near the tip of interface crack I (n =
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value F'(07) by step and repeat the process until the conditions of eq. (19) are satisfied within
the limited error.

After the F(0* ) and F'(0 ") used for the pressure-sensitive material are obtained, the coeffi-
cients B, By, B; and B, given in eq. (17) for the elastic region can be determined by employing
egs (19) and (21).

In order to ensure the existence of solution, when dealing with all the values chosen for the
strain hardening exponent », u must satisfy the following inequality relation:

I —1/3>0 (26)
which means

H<Hiim+ Htim = V3.
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Fig. 3. @-variation of the stresses &; in the whole region and the displacements # in the upper region
near the crack tip in homogenous material (# = 3).
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A mixed parameter M? is defined as that proposed by Shih[22], i.e.

M- %Ig" [77:}0(0)}
n

‘EI'U(O)

It is easy to see that M?=1 for mode [ while MP =0 for mode II.

Figures 2-7 show the f-variations of the stresses ¢;(0) and the displacements ;. For
comparison sake, we give the results for the case of bimaterial and also the case of the hom-
ogenous pressure-sensitive material both subjected to mode 1 loading. All the stresses are nor-
malized by taking the ((Gge))max Of plastic region equal to unity. Figures 2 and 3 demonstrate
the results of typical high-hardening material when » = 3 associated with u = 0.2894, 0.8 and
1.7. Table 1 lists the value of MP for the bimaterials. We cannot find any solution that is
based on the HRR-type formulation for p < 0.2894. Figures 4 and 5 and Table 2 give the
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results of the typical low-hardening material of » = 10 for u = 0.0, 0.8 and 1.6. In order to
take a better view of the problem, the results of very low-hardening materials of n = 20 are
also shown in Figs 6 and 7 and Table 3. In all cases, it is found that s can be evaluated as
~1/(n + 1), which is equal to the eigenvalue of the HRR fields for homogenous media which
have no pressure sensitivity.

3.1. Comparison between the solutions of the bimaterial and the homogenous material

From the Figs 2, 4 and 6 illustrated for bimaterials, we can see that the radial stress &, has
a radical change at the two sides of the interface. The stress 6,. in the region of -1 <0 <0 is
always positive. The situation changes in the cases of Figs 3, 5 and 7 shown for the homogenous
material. The shear stress 6,9 of the bimaterial is positive in the elastic region nearby the inter-
face, but negative when approaching the crack face. The shear stress 6,9 of the homogenous ma-
terial has antisymmetric distribution in the two regions. The circumferential stress &gy of
homogenous material has a peak value at 8 = 0 and two valleys nearby () = + 120°. However,
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Fig. 6. f-variation of the stresses 6, in the whole region and the displacements & in the plastic region
near the tip of interface crack I (n = 20).

for the bimaterial it has one peak (tension) in the elastic region of the material 2 and one valley
(compression) in the material 1.

3.2. The effect of varying p on the asymptotic fields

It can be obviously seen from Figs 2--7 that the pressure-sensitive dilatant parameter g has
a strong eflect on the distribution of the stresses along circumferential direction 6.

We can also see from Figs 2, 4 and 6 that within the region of 0° < 6 < 120° there exists a
maximum value of the radial stress d,,. When # is fixed, x4 has only a weak effect on the value
of (G )max- When n = 10 and 20, the stress 6, varies sharply near a certain angle 8, in the
region of the pressure-sensitive material. This angle of 6, gradually approaches to n as u
increases. If n = 3, the radial stress &,, near the crack face drops steeply when u is close to win,.
It can also be seen that the largest value of g4 in compression increases while its smallest value
in tension decreases or changes slightly as u increases. For the shear stress 4,4, its maximum
value decreases and its minimum value increases within the region 0 <6 <7 as p increases.
However, the general trend changes inversely within the region —n <6 <0.
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near crack tip in homogeneous material (n = 20).
3.3. Mixities of crack-tip fields

The numerical results given in Tables 1-3 show that the mixities do not approach I even
for a low-hardening material where n = 20, since the stress fields near the crack tip are generally
mixed by g4y and g,y as can be seen from Figs 2, 4 and 6. This characteristic behavior of the
plane-stress condition is quite different from that of the corresponding plane-strain results
reported by Yuan [19]. The leading-order fields of the opening crack model are dominated
by the mode 1 stress in Yuan’s report and only his second-order solutions contain substantial
mode II components, but the mode-mixity of the second-order fields is strongly affected by the

Table 1. The mixities of crack [ (n = 3)

it MP
0.2894 0.00137909
0.80 0.41895918

1.70

0.40999660
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Table 2. The mixities of crack I (n = 10)

H MP

0.00 0.74425483
0.80 0.74992528
1.60 0.79380369

Table 3. The mixities of crack 1 (n = 20)

I mP

0.00 0.81074398
0.70 0.82389305
1.60 0.88102336

pressure sensitivity. The asymptotic plane-strain solutions for an interface crack between a rigid
substrate and an elastoplastic power-law medium under /> deformation theory have been given
by Wang[18]. His numerical results have the same trend as that of Yuan and the solutions are
near to mode I for both n = 3 and 10. The different features can be explained by the diminish-
ing of the transversal stress components (0., ... 6.y) and the relaxing of triaxial stress restraint
under the plane-stress condition. Then, in order to satisfy the restriction condition of eq. (24)
for displacements at the interface, the shearing stress o,y must participate and play an important
role. This shearing reaction becomes tenuous when strain hardening effect lowers to n = 20, as
seen in Table 3.

4. SOLUTION FOR CRACK PERPENDICULAR TO INTERFACE

Figure 8 shows another type of crack called crack II. This crack lies only in material 1 and
its tip touches perpendicularly the interface between materials 1 and 2. The external load is also
taken to be remote uniform tension. Because of the symmetry of geometry and loading we can
write for the material 2 the following equation:

T e

Material |

Material 2

Material 1

e

Fig. 8. The crack II that lies in medium | with its tip perpendicularly touching the interface of a linear
elastic material and a pressure-sensitive dilatant material.

Table 4. The values s varying with respect to u and n for the case of crack 11

n=2 n=73 no= 6 n =10 n =20 #n = 100
w = 0.00 —0.21053223 —0.16391430 -0.10260719 ~0.07027791 —0.04027163 ~(.00945560
= 0.20 —0.18201820 —0.14220083 —0.09017938 ~0.06270429 —0.03684977 -0.00914212
=040 —0.14819661 -0.11604172 -0.07447176 —0.05257957 ~0.03179594 —0.00853145
#= (.60 —0.10498205 —0.08220359 —0.05326322 —0.03818212 -~0.02384565 —0.00716635
wo= 0.80 -0.03864432 —0.02998909 ~0.01948567 —0.01417060 —0.00920895 --0.00330598

17 i -0.00000260 —0.00000199 —0.00000128 —~0.00000114 -0.00000076 ~(.00000025
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F = B cos(s8) + B cos(s + 2)6. (27)
We have the restrictions on displacements along the interface
U= Uy=0ath=(n/2)". (28)
This conditions can be expressed in terms of stresses: then they become

26, — Ouy + 2ute = 0

25, — Gu’ + 2t — 6(ns + D,y =0 at 0 = (n/2)". (29)

Using the same method as stated above we obtain the solution for this case. The eigenvalue
s for various n and u are listed in Table 4. The numerical results show that the eigenvalue s is
not equal to —1/(n + 1), but increases as yu increases under fixed value of #. pyp, is irrelevant to
n and is equal to 0.86614. The eigenvalue s is vanishing at uj;,,. When p > 4, the displacement
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up at 0 = n can be greater than zero. Then it means the crack faces may contact with each
other, so this case is ruled out for consideration.

Figures 9-11 show the results for the cases with typical values of »n and p. From these
figures we can see that a large value of y results in smaller stresses 6; and only a small jump
ocecurs in the radial stress &,, at the interface. For all the values of n, the radial stress ¢, and
the shear stress &,9 near the interface of plastic region are nearly equal to zero.

5. CONCLUSIONS

1. For the two types of cracks. crack I which is lying along the interface and crack 1l which is
perpendicular to the interface between a linear elastic material and a pressure-sensitive dila-
tant material, we obtain exact asymptotic solutions of plane-stress tip fields which satisfy the
continuity of tractions on the interface and the traction-free conditions on the crack faces.
The interface strongly affects the stresses within certain region, especially for the radial stress
near the interface, where there is a big jump on both sides.
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Fig. 11. 0-variation of the stresses 6, and the displacements #; near the tip of crack I (n = 20).

2. For the crack I, the eigenvalue s is irrelevant to the pressure sensitivity factor u and is equal
to —1/(n + 1) which is also the eigenvalue of the HRR fields in homogenous media without
pressure sensitivity. The stress fields near crack tip are generally mixed by mode I and mode
I. This characteristic behavior of plane-stress condition is quite different from that of the
corresponding plane strain results reported by Yuan([19].

3. For the crack 11, s 1s greater than —1/(» + 1) and increases as u increases under fixed value
of n. s approaches to zero when y is close to a certain value called i,
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