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A Method to Generate New Exact Solutions from a Known Stationary Solution *
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By combining the Backlund transformations and the AKNS system[ Study in Appl. Math. 53 (1974) 249.] which
is a linear eigenvalue problem of the corresponding evolution equation, a method to find new exact solutions from
known .stationary solutions for nonlinear integrable equations is proposed. As an example, Korteweg de Vries
(KdV) equation is used to illustrate this method, and a class of new exact solutions of KdV equation is obtained.

PACS: 02.30.Jr, 02. 30. Hq

Recently, the dynamical behavior of complicated
systems is considered as one which stands at the fron-
tier of nonlinear dynamics. This problem is concerned
with not only the behavior of time evolution, but also
the structure of space, therefore, the research is very
difficult, Cross and Hohenberg! made a good review
on this problem and pointed out that there are four
ways to research it, i.e., (1) numerical simulation, (2)
qualitative analysis, (3) perturbation method and (4)
to find new exact solutions.

During the last three decades, construction of ex-
act solutions for a wide class of nonlinear integrable
systems has been developed rapidly. At present, there
are many methods to construct new exact solutions,
such as the inverse scattering method,?2 the Back-
lund transformations,®* the Painleve analysis,®> the
Lie group methods,® the direct algebraic method”
and tangent hyperbolic method,® the perturbation
theory.9—11

In this letter, a method to find new exact solutions
from known stationary solutions for nonlinear inte-
grable equations is proposed by associating the AKNS
system? and the Backlund transformations.

Firstly, we describe the frame of method. It is
known that many nonlinear integrable systems can
be derived from the AKNS system, which is a linear
eigenvalue problem and is defined by

¢1‘=M¢7 ¢t=N¢a (1)

where ¢ =

(¢ %)

problem to consider, ¢ and r are functions of = and t¢.
The equivalent form of Eq. (1) is

T _ n 4q _
(91,92)", M = (T _n),.N =

, m is any eigenvalue associated with

D1 =01+ q P, (2a)
¢2w = ’I‘¢1 —_ 7)¢2, (2b)
¢1t = A¢1 + B¢2, (20)
Gy =C&) — AD,. (2d)

From ., = 9., the following relations hold:

— A, +qC—-rB=0, (3a)
g — B, —2qA+2nB =0, (3b)
re — Cp — 2nC + 2rA = 0, (3¢)

where A, B, and C are functions of ¢, r, and 7.

Now, the stationary solutions of nonlinear inte-
grable equations are considered, namely, g and r are
only functions of . This implies that A, B, and C are
also only functions of z, so Eq. (3) can be rewritten as

—A,+¢C—-rB=0, (3a)

— B, —2qA+27B =0, (3b')

—Cy —2nC +2rA =0. (3"
From Egs. (2b), (2d), and (3¢’), we get

O’¢2z et 7'¢2t = %CI ¢2. (4)

By the method of characteristics, one may find the
solutions of Eq. (4) as follows:

@, = k1 C/2, (5)
ky =o(z) —t, (6)

where k; and k; are integration constants, o(z) =
— [(r/C)dz.

From Egs.(5) and (6), the general solution of
Eq.(4) is

&, = F(£)C/2, (7)

where ¢ = o(z) —t. Substituting Eq. (7) into Eq. (2b),
one may obtain the general solution of &,:

@ = —C'*[F'(¢) - AF(§)]. (8)
In order to determine the function F'(¢), substitut-
ing Eqgs. (7) and (8) into Eq. (2a), we find it satisfies

the following ordinary differential equation:

F"(€) - (A* + BC)F(¢) = 0. (9)
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From Egs. (3a’)—(3c’), one may easily find

cf_w(Az + BC) =0,

so a@ = A% 4+ BC is a constant. Generally, o is a func-
tion of n and integration constants. Therefore, the
solution of F(§) in Eq (9) may be the following two
cases:

F¢)=cé+cz, for a=0
F(¢) = cicosh[w(€ + ¢2)], for

(10a)

a #0,
(10b)

where ¢, and ¢, are any constants, w? = (w1 +iws)? =
a. Thus the solutions of $; and &, can be determined
by various forms of F(£).

It is shown'? that the Backlund transformations
of many nonlinear integrable equations have followmg
relation:

q=Q+W("7’F)’ ' (11)

where ¢ is a new solution of the nonlinear integrable
equations, W is a concrete function from the Backlund
transformation, and

121

r=g. (12)

Hence by a known solution ¢, one may obtain a new
solution from Eq. (11).

As an example, a class of new exact solutions of
Korteweg de Vries (KdV) equation is derived by this
method. We consider KdV equation:

q: + 6qq; + Gzzz = 0, (13)

its stationary solutions satisfy
3q2 + Qzz = ay, (14)

where a; is a constant. An equivalent form of Eq. (14)
is :

@ =P, Po=-3¢°+ay, (15)

which is a Hamilton system with Hamiltonian

H= %pz + q3 —a1q = h, (16)

7N

Fig.1. Phase potrait of the system (15), where P; is a
saddle and P is a center.

where h is integration constant. We only discuss the
case with a; > 0, because the other case is trivial.
At the moment, from the planar Hamiltonian system

theory, the system (15) admits a center p, (O, ai/ 3)

and a saddle point pg (0, —va/ 3), and its phase por-
tait is roughly given in Fig. 1.

When |h| < hg, where ho = (2a1/3)+/a1/3, there
are a family of periodic orbits surrounding p., whose
parametric expressions are

gn(z) =acn® (ym, k) -|-‘bsn2 (—'2(‘1_C)w, k) ,

2

(17)

where cn and sn are elliptic functions, and a =

24/a1/3cos(8/3), b = 24/a1/3cos[(47 + 6)/3], ¢ =

24/ay/3 cos[(27+8) /3], k? = (a—b)/(a—c) = sm{(27r+

8)/3]/ sin[(7 + 6)/3], 8 = arccos{h/[(2a1/3)+/a1/3]}.

Note that the subscript k in g5 (z) denotes a family, the

follows including op(z) are the same. When h = hy,

there is a homoclinic orbit connecting p,, whose para-
metric expression is

a0(z) = \/%T [2 _ 3th? (‘/76 (%)1/4 m):l . (18)

For KdV equation, in its AKNS system, r = —1,

A= —4n’-2n9—q,, C = 4n*+2q, B = —4n’q—2ng, —

zz —2q° (to see Ref. 12), so from o(z) = ~ [(r/C)dz,
we obtain, respectively,

dzx
on(e) = / 4n% + gn(z)

_ 2(a—c¢) 2
"~ (47?2 + 2a)(a —¢) (e, 5% k), (19)

and

s (a:):/ dz _ 1
’ 4% +q0(®)  v/6(a1/3)V/4(2n2 — \/ar/3)

- |In(tgwo + secypp) — Bln ﬂ“’—" ,
1 — Bsing (20)

where IT is the normal elliptic integral of the third

kind,
2(a —b) /2 V2(@—c)
ﬂ_[4,7_2+2a] »$=am 2 =)
6 1/4
(o = arcsin |th % (a?l) z ||, where am(-,-) is

a sine amplitude of elliptic functions. In addition, by
calculation the constant « is obtained:

o =A?+ BC = 16n° — 4n%a; + 2h.  (21)

According to certain boundary conditions of prob-
lem, the value of 5 can be selected, then « is deter-
mined. While for KdV equation, the function W(n, I')



No.5

LIU Zeng-rong et al. 315

in Eq. (11) is —2I", (Ref.12). Thus new solutions can
be constructed with different a.
By an easy calculation, one may find

1
- +47°® + 219 + ¢z |,
472 4 2q [§+co g MT

for a =0,

1
T = — @ cothlw(€ +co)l +4n° + 2mg + o),

for a # 0,

where ¢y is a constant, w is given Eq. (10).
Then, by Eq.(11), we find new solutions from
gn(z) and go(z), respectively:

for a =0,
qh(IE) —qh( ) [2n2 + qh(m)]z I:fh + ¢o +477
+ 2ngn(z) + q;t("’)] + m
[ty o],
S g —
o(2) = go(=) (272 + go(2)]? [&’ + o e
 2maa(e) + 4] + s
~0o(z )2 + 2ngp(z) + g4 () | ,
Gt (2)
for a # 0,

Gn(@) = qu(z) - — 2 > [w coth(wé + weo)

(272 + gn(z)]

+4n° + 2nqn(z) + gj ()] + 2,,2—_,_1,1h(m_)

[-w 20'2(.’1:)0801’12((06}; + wep)

+2ng,(z) + g1 (2)], (24)
~ - _ __& w COo w we
3o(z) = go(z) [2n2 _;3 qo(:c)]z[ th(wo + weo)

+4n° + 2ngo() + gh(x)] + 2_211%_(%)

[-w 2c;"J(:c)cschz(wfo + weo)
+2ngy(z) + ¢ ()], (25)
where

En=on(x)—t, & =oo(z)—t,

gr(z) =v/2(a — c)(b— a)sn ( V2a— ):c, k)
) Cn('a')dn("'),

gi(2) = (b - a)(a — ¢)[en?(-,-)dn’(-,") — sn®(-,-)dn’(-,")
— k?sn’ (-, )en? ()],

1
472 + 2a cn?(-,') + 2bsn2(-,")’
1

4n? +2¢/a1/3{2 ~ 3th*[(v/6/2)(a1/3)"/4a]}’

a(F$)")

oh(e) =
oo(z) =

dn(-,") is an elliptic function.
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