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Abstract Based on 2D Janbu’s generalized procedure of slices (GPS), a new three-
dimensional slope stability analysis methed has been developed, in which all forces
acting on the discretized blocks in static equilibrium are taken into account in all three
directions. In this methed, the potential sliding mass is divided into rigid blocks and each
block is analyzed separately by using both geometric relations and static equilibrium
formulations. By introducing force boundary conditions, the stability problem is
determined statically. The proposed method can be applied to analyze the stability of
slopes with various types of potential sliding surfaces, complicated geological boundaries
and stratifications, water pressure, and earthquake leading. This method can also be
helpful in determining individual factor of safety and focal potential sliding direction for
each block. As an extension of 2D Janbu’'s method, the present method has both the
advantages and disadvantages of Janbu's generalized procedure of slices.
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1 Imtroduction

Most slope stability analyses were performed under 2D limit equilibrium framework
in geotechnical engineering. As indicated by Stark and Eid'", in the existing 2D methods,
the calculation of the factor of safety for a slope was carried out under assuming a
plane-strain condition, i.e. the failure surface of the slope was assumed infinitely wide.
Although 2D slope stability analysis for a slope was relatively conservative, the devel-
oped theories and numerical methods were still valuable. Fellenius’s method™, Bishop’s
method™, Janbu’s generalized procedure™), Morgenstern and Price’s method®)
Spencer’s method™®, and Sarma’s method”™'® seem to be more classical and popular

and have been further collected into a number of commercial codes.

However, most practical slope stability problems require further 3D stability analysis.

Copyright by Science in China Press 2005



172 Science in China Ser. E Engineering and Materials Science 2005 Vol .48 Supp. 171—183

As a matter of fact, a number of 3D methods have been developed and applied in practi-
cal engineering in the past decades. Baligh and Azzouz!'", Londe et al."? Hovland'®,
Chen and Chameau'", Leshchinsky et al.">'% Hungr et al. 17181 Zhang“gl, Lam and
Fredlund®”, Huang and Tsai”", Chen et al.”*® are among the researchers who pre-
sented 3D methods and the numerical results.

Most of the existing 3D methods were based on the assumption that the longitudinal
sections of the slip surface were circular, or the whole failure surface was approximately
regarded as an elliptic revolution!'”. Up to now, only a few methods can be applied to
analyze asymmetrical problems with arbitrary slip surfaces existing widely in practical
geotechnical engineering. Chen and Chameau! derived a method being considered as
an extension of Spencer’s method; Zhang' proposed a simpler method related
Spencer’s method; Leshchinsky et a),1>1e) presented a generalized method based on
variational principle; Lam and Fredlund’s method > was based on the assumption of the
function of inter-block force, and it was more suitable for symmetrical problem; Chen et
al.?*#! calculated the 3D factors of safety of slopes by using the upper bound theorem.

It is well known that the factor of safety F, calculated by 2D method is smaller than
F; obtained by 3D method, because F> is calculated for the most critical 2D section. By
examining Chen and Chameau’s""" assumptions and results, Hutchinson and Sarma'™!
pointed out that the ratio of F3/ F; may approach 1.0 but should never fall below 1.0.
Duncan™! reviewed the existing 3D works since the late 1960s by comparison of F3 and
F3.

Duncan'® classified the problems in the existing literature into three categories: 1)

slopes with curved plane, or containing corners; 2) slopes subjected to loads of limited
extent at the top; and 3) slopes in which the potential failure surfaces are constrained by
physical boundaries. Huang'?? summarized 3D works into another two categories: 1)
research on the so-called “end effect” or “ boundary effect” of 3D slopes; and 2) devel-
opment of a rigorous method for calculation of factors of safety for slopes.

Usually, the factor of safety of a potential failure slope can be regarded as a meas-
urement of the safety degree of the whole slope in macroscopic view. In addition, the
stability analysis should also include the following aspecis besides the calculation of the
whole factor of safety for the slope: 1) to find out local factor of safety for any part of a
slope; 2) to determune the sliding directions at any specified positions of a slope; and 3)
to give some advices for practical engineering design.  As ones know, most 3D stability
analyses are based on the limit equilibrium theory and certain discretization techniques.
Therefore there are three reasons for us to be able to achieve the objective above-men-
tioned by means of developing a more rigorous method: 1) since the whole failure mass
is discretized into blocks and the static equilibrium equations are built for each block,
the individual factor of safety for each block can be given definitely; 2) by combining
the geometric characteristics of slip surface, the sliding direction for each block can be
determined; and 3) once the above two studies have been compieted, the engineering
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design should be focused on coping with the most dangerous area with smaller factor of
safety than elsewhere of the slope.

Lam and Fredlund™ noticed the shortcoming of the 3D analysis about the sliding di-
rection in the existing methods, but their method still failed to find out the correct sliding
direction for slopes. Based on 2D Bishop’s method, Huang®!! presented a significant
work which is capable of predicting both local factor of safety and sliding direction.
However, Huang’s method can only be applied to a slope with circular slip surfaces. For
asymmetrical excavation unloading and geological conditions, as the author mentioned,
the method may give an overestimated factor of safety.

With all of the force and moment equilibrium equations being satisfied, 2D Janbu’s
procedure of slices (GPS) belongs to one of the rigorous methods, which may be applied
to various kinds of slip surfaces. It has also been adopted by a number of commercial
programs available widely. This paper presents a new 3D limit-equilibrivm method for
slope stability analysis, in which the factors of safety for each part of the failure mass
may be different and the local potential sliding direction is determined. As an extension
of 2D Janbu’s method, the presented 3D method can be applied to analyzing the stability
of slopes with various types of potential sliding surfaces, complicated geological
boundaries and stratifications, water pressure, seismic loading, as well as other external
Joadings.

2 Basic principle and 3D limit equilibrium analysis
2.1 Discretization and the forces on a single block

The discretization process is the
same as traditional 2D analysis in
which the potential failure mass is di-
vided into vertical rigid slices. The
only requirement in the proposed
method is that the projection of the
discretized blocks on horizontal x-y
plane should lie on m rows ( parallel to
the x-direction } and » columns ( par-
allel to the y-direction) in two perpen-
dicular directions. The normal vector
of the bottom surface of each block,
namely the slip surface, is represented
by that of a fitting plane with two dip

PIJ

angles &}/and ¢/, and the forces

acting on a single block are shown in
Fig. 1.

Fig. 1. Schematic diagram of the forces acting on a block.
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Nomenclature
i di rf: f the block
s number of rows to discretize the slope o) d_l p ang e of the botiom su' act: ot the Bloe
: (2.fy with respect to the y direction
n number of columns to discretize the slope g7 anglebetween S./ und S;ﬂ’
i the ith row g+ anglebetween S/ and Si/
\ the fth column o7 X-component of normal vector of the bottomn
| / * surface of the block (i)
. . +;  y-componeni of normal vector of the bottom
(ij) serial number of block , surface of the block (i)
" i - t of normal vector of the bottom
J . h (i Ly Z-componen
W weight of the block (i) . surface of the block (i)
P overburden force on the block (77} r. pore water pressure coefficient
vy normal compressive force on the bottom surface of K, seismic coefficients corresponding 1o the x
the biock (i) direction
5 shear force on the bottom surface of the block (if) & seismic coefficients corresponding to the y
*  with respect to the direction paralie! to the x-z plane * direction
§ii shear force on the bottom surface of the block (i) vertical height of the centroid of weight of
% with respect to the direction parallel to the y-zplane 4" the block (i,f) to the bottom plane
i . . . .; height of the thrust lin left side of
§%’ shear resistance on bottom surface of the bloclf £5)] hy ﬂf;gblo:k {f,;) rust line on the left side o
i real total shear force on bottom surface of the block Iy height of the thrust linc on the right side of
) " the block (i)
: L height of t i front side of
E.’ horizonial inter-block thrust force in the x direction ~ /” c1gnt 0 t}_le hrust line on the front side o
the block (i)
g horizontal inter-block thrust force in the y . height of the thrust line on the back side of
? direction *  theblock (i)
; th i block at the i . L
Er t rust force acting on the block at the right end of the Ax  width of block with respect to the x direction
ith row
;  thrust f ti the bi . N
E rust force acting on the block at the left end of the Ay  width of block with respect to the y direction
ith row
;  thrust f i 1 th d : .
E . rust force acting on the block at the back end of the C*  cohesion of bettom surface of the block (i,/)
jth colurnn
g thrust force acting on the block al the front end of .. friction angle of bottom surface of the block
*  the jth column ' i
. vertical inter- : inter -
H vertical inter Plock shear fo?"ce F)n the inter-block A area of bottom surface of the block (i)
plane perpendicular to the x direction
i i mnter- k sh fi inter- k v . o
HY vertical nter. P]oc shear force on the inter-bloc F*  factor of safety in the x dircction
plane perpendicular to the y direction
i i inter-block shear fi the inter-block i ) .
Fjad horizontal inter-block s car force an the nfer-bloc F factor of safety in the y direction
plane paraliel to the x-z direction
T;" ; horizontal inter-block shc_tar fprce on the inter-block P9 individual factor of safety of the block (i)
plane parallel to the y-z direction
di le of the bott rt LJ) wi
.+ dip angle of the bottom surface of the block (i) with F  the whole factor of safety for a slope

AL

respect to the x direction

Copytight by Science in China Press 2005




An extension of 2D Janbn’s gereralized procedore of slices for 3D slope stability analysis 1 178

2.2 Basic assumptions

As the deformation is not under consideraticn in the analysis process, some assump-
tions should be introduced to render the problem to be solved statically in all the existing
limit equilibrium methods. Lam and Fredlund™" summarized the knowns and unknowns
in their method and concluded that the number of assumptions need to be introduced is
8mxn if the slope is discretized into m rows and » columns. In this proposed method, the
moment equilibrium equation is built for every block. Thus the number of assumptions
must be larger than 8mxn. Table 1 shows the relevant knowns and unknowns in this
method.

Table | Summary of knowns and unknowns for solving 3D factors of safety by the proposed method

Knowns:

Force equilibrium equations in three directions - 3mn

Moment equilibrium equations around x and y axes 2mn
Mohr-Caulomb failure criteria for slip surfaces mn

Definitions of £ and F;” 2mn

Fi are equal for i = 1+m, j= I*-n mn-—n

F;J are equal for i = 1+=m, j= 1~-n mn—

Horizonta) thyust forces and vantical shear forces on the left and front boundaries 2m+2n

Sums of thrust forces in the x-direction and y-direction, respectively A

Subtotal of knowns 10mn+2m+2n
Unknowns:

Forces on slip surfaces ) ' 3mn

Points of action for forces on slip surfaces Zmn

Shear strengths on slip surfaces mn

Inter-block farces and forces on baundaries Imin+1)+3n(m+1)
Points of action for inter-block forces and forces on boundaries 3min+1)+3n(m+1)
F;‘.j and Fy'-’j 2mn

Subtotal for unknowns 21mn+6m46n
Assumprions need to be introduced 1 Lnnsdm+dn

Furthermore, in order to solve 3D analysis problems statically, the following assump-
tions are introduced in this method:

(1) the normal vector of bottom surface for each block is represented by that of a fit-
ting plane; all points of action for forces on bottom surface are at the geometric center
( subtotal: 3mn );

(2) the horizontal inter-block shear forces are neglected, namly 7/ =0 and T, ;’ =0
{subtotal: m{r+1)+n{m+1));

(3) the height for the thrust line (in vertical inter-block plane) is a third of the average
height of the inter-block quadrangle (subtotal: 3m(n+1)+3n(m+1));
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(4) forces on boundary are known.

The above assumptions have widely been used in 2D/3D stability analyses and some
have been tested by numerical method***, According to assumption (2), the moment
equilibrium equation around z-axis will be automatically satisfied.

2.3 Formulation of the proposed method

To ensure the descretized rigid blocks in equilibrium, the following equations should
be satisfied (see Fig. 1):

Sy -cosay! + (WM g Wy n K, oW + BT -E)T =0, 0
$; -cosay) +(N" g, - WH)-m) — K, -WH + B} B =0, @
Sy -sined) + ST -sinelf + (N 41, - W) n)

LW - P =, 3

+H —H "+ HY —H]

iy [0 1 N wis (i ] y
Ey+l}' _[ha] +5Aytandyzj]—'EyJ '[hbj —EAy'tanaysz

-—H;H'j %Ay__H;J --;—Ay-i- Ks_v .W"sf .h{i'«i =9, (CY]

_gi _(hi!f +1Ax'tana’;;j)+Ei'j .(h;‘.f —lﬁx'tanaiﬁJ
2 2

T | A | L
+H S A+ H A=K W =0, ()
According to limit equilibrium, the shear resistance on the bottom surface can be ex-

pressed as
S4 =CHAY + N tan g™, ©
where C7, @ and AY are cohesion, friction angle, and area of bottom surface of the

block (i, /). The factors of safety with respect to the x and y directions are defined like in
ref. [21]

. SY

Fii="1, (7
S

Sy

Fpl="L (8)
Sy
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Obviously the following relation is satisfied
i Li _ g i j
Fii.sh = FM.ghT, ©

Then the two compenents of shear force on bottom surface S,/ and S/ can be writ-

ten as
S;,zj - F%J -(Ci’fA"'j + N _tan(pi,j) , (10)
S;’gf — F%‘j -(Cf‘in‘j + N ,mn¢f|j) . (11
¥

From eq. (3), the normal force on the bottom surface can be obtained

1
ni

Z

N =—— (W + P" + AHY + AHY -85 sinad/ -8 sina}))—r, -WH, (12)

where AH?/ =HI™ -HY and AH)/=H" —H}’, and eq. (12) can be rewritten

as
. i . ij
L. . L . . ., SIN & sSmma
W + P+ AHM + AR =i W) — O | ey
N/ E B ¢!
= — . (13)
: i, f ; 4T
n‘l”f +tan ¢!'.j . sIn axz SlrlafyZ
z Fii Fif
x ¥

Substituting eq. (12) into egs. (10) and (11) and combining eq. (9), S,/ and S%/ arc
expressed as

1 n/CYAY +tang™ - (WH + PY 4+ AH 4 AHY U o W)

L )
xz Ff!j R i ‘N ij ? (14)
x i ;| sinay | sInar
n +tang" - Fl.}f + i
x ¥
1 AMCHAY trang W+ PR AHY 4 AH —nbd o W
§hl=— . 2 - = (15)
e T oo . g s ] ’
F, sina’!  sinar/

i i
n' +tang in'j F}f’j

Then, the shear resistance on bottom surface is obtained

i i) afid i i i ij LIy e W
S}j=nz CHAY +tang™ -(W™ + P+ AH Y +AH Y —n) or, W )' (16)
sinarl/ N siner/

i if
F, F|

n/ +tan g™/ -
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Here, the differences of the thrust forces in the x and y directions are denoted as

AE} = EMT B, (17
AE; =EJY —E. (18)
Fromegs. (1)and (2), AE/ and AE}’ are expressed as
i oy |cosahl Al [ singh’ Siﬂaiy'j
LI — QL) Xz _ X xZ ¥z
AE, _Sf [ Fid né’ { Fid + Fi
X x ¥
nird o . . .
+== W+ P AHY + AR - K W (19)
nh
o eosa” B [singd  singdd
AW =il | 5% Ty (S0 | TP
y f l: Fiopl Fi FH
ni’j s . . ;s .
+ (W + PV AR + AR - K W (20)
e

4

To obtain the factors of safety, the boundary conditions must be introduced. However,
the selection of suitable boundary condition is related to the understanding on the defini-
tion of factor of safety. Considering the effect of 3I» boundary, the physical interpreta-
tion for the factor of safety can be: the values of the factors of safety for the blocks on

the same row in the x direction (iL.e. F;” in the ith row ) are the same, but may be dif-
ferent from the other row in the x direction. The interpretation is also adopted for the
factors of safety in the same column in the y direction, namely, F;’j for the blocks in

the jth column are the same.

According to the above interpretation and assumption (4) in section 2.2, the forces
acting on the end blocks of each row/column should be known, i.e.

LAEY =E -, 2D
J .

where E, and E' are the thrust forces acting on the blocks at the right and left ends

of the ith row respectively. Hence the factor of safety with respect to the x direction is
determined by substituting eq. (19) into eq. (21):

i
E{S}’ [ - sinay! —cosa;ij]
j n’
Fl'= :

X . .

f,j 3 ]

. : n . . s i .. [ sina -

E -E +§Lij -[W"f + P+ AHY + AHY -8 — J]—}J;K” W
z ¥

.{22)
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Similarly, considering boundary conditions in the jth column, one can obtain

IAE) =E, —E,, (23)

i

in which E, and E; are the thrust forces acting on the blocks at the back and front
ends of the jth column.

The factor of safety with respect to the y direction can also be obtained:

R . o
Z|iS}’ -[%-sina‘;f —cosa;’fﬂ
y 1
Fyl= — — .(24)
- ; i n’ Ly pi ij i eig Sinag ij
Ey~E +X| == | WY+ PY + AH Y + AH/ - 8 —— | |- LK, -W"
i nz'.f Fx'u" i

The thrust forces E;’ and Ej’ can be calculated in-order according to egs. (19)
and (20):

if ij o o] nat
;o i i lcosa n sina;’ sina; W
E=E) +S;;J[—F_ 2 L. [ e J

+ 5 WY + P - AHY + A )= K, W (25)

R,

. if . .. . i
cosa) n)’ [sm @] |, sin o, ]
¥

E!"‘H] = E;’j +S}’j " I, By
FiJ O F

nedo o - . -
+—=— W™ + P+ AH ) + AH Y- K W (26)
3

z

Eqgs. (4), (5), (17) and (18) result in the vertical shear forces acting on the lateral sides
neglecting the small quantities with high order;

HY =[EY (W — b y+ AEY B+ K W BT é : (27)

HY =[E} (B W)Y+ AEY - + K, W -h;"f]-zg-. (28)

The factors of safety for each block with respect to the x and y directions have been
determined by now, and the acting forces can also be calculated accordingly. To give the
real factor of safety and the sliding direction of each block (i.e. the direction of the real

mobilized shear force S ;J ), one can combine the two components of the shear force on
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the bottom surface to get the real mobilized shear force S/

S = J(ST Y +(S5)? +2- 81 - 85 -sinaly -sinar! (29)
Then the real factor of safety of the block (i, /) is expressed by its definition

Fii=20_ (30)

The relationships between F*/, F'/ and F" can be obtained from the force trian-
p P ¥

gle formed by S/, S,/ and S}/ on the bottom surface of the block (i, ;) according

iz *
to the law of sine!*"

between S’/ and S§%/,

. The sliding direction of the block is determined by the angle 8%
and Y satisfies the following cxpression:
. i o
sin f" = -—F—— sin@"’, 31
F/

where 6" is the angle between § ;Z" and S;’Zj and can be determined by the geometric
characteristic of the bottom surface of the block.

In fact, when the factor of safety of each block is determined, the stability problem of
the slope should be focused on determination of the most dangerous position and the
sliding direction. However, the factor of safety for the failure mass as a whole can still
be given as conventional 2D and 3D analyses by the following definition:

xS}/
P

Trzsi 2
ij

3 Validity of the proposed method

Two examples are used to verify the validity of this method. The first example is from
Zha_ng“g] which is a symmetrical problem with the slip surface being regarded as an el-
liptic revolution (Figs. 2—4). The second example is an asymmetrical one, the slip sur-
face of which is featured with part of an ellipsoidal surface, but the lengths of the three
axes are different (Fig. 5, Fig. 6).

3.1 Example 1

Figs. 2—4 show the geometric characteristics of the failure mass (see refs. {19, 20,
22]). The calculated factors of safety using the present method are summarized in Table
2 for the slope under six conditions. The factor of safety and sliding direction of each
block will be presented in Part IT of this paper in detail. Results obtained by Zhang“gl are
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Fig. 2. Top surface of the slope in example 1. Fig. 3. Concave slip surface 1o example 1.
(36.6,27.4)
24.4 118.3
2 fd

1 " - 122

/ 1.~ 1> ) Water line
. _“me ¥ T 4 s Ty kY 61
Weak layer
1 | 1 1 l 1 1 0

427 366 305 244 183 122 61

Fig. 4. Longitudinal sections and geometric size of the slope.

Fig. 5. Ellipsoidal slip surface in exampte 2. Fig. 6. Longitudinal sections of the slope.

Table 2 Comparison of factors of safety for a slope under six conditions

Simple slope With a thin weak layer
Example 1 Regardless of Water pressure  With a pie-  Regardless of Water pressure  With a pie-
Waler pressure r,=025  zometric line water pressure 7. =025  zometric line
The proposed method 2.126 1.858 1.933 1.611 1.394 1.513
Zhang's method 2122 1.790 1.831 1.548 1.278 1.441
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also given in Table 2. The factor of safety of the simple slope calculated by the upper
bound theorem in ref. [22] is 2.262.

3.2 Example 2

Similar to example 1, the top surface of the slope used in example 2 is still a plane,
but the dip angle is 26.5°. The slip surface (half an ellipsoid) and the longitudinal sec-
tions of the slope are shown in Figs. 5 and 6. The ellipsoidal slip surface can be ex-
pressed as

2 2 2
x> y—y)  (2-%)
-+ + =1, (33)
a’ b* c’
in which yo = 9.6 m and zp = 31.22 m, a, & and ¢ the half-length of the ellipsoidal axes in
x, y and z directions respectively (here, @ = 300 m, & = 55.26 m and ¢ = 31.22 m).

The factor of safety calculated by this proposed method is 2.228 for the simple slope.
Provided with the ratio of water pressure r, = 0.25, the proposed method produces the
factor of safety 1.694. The calculated results of the factors of safety and sliding direc-
tions for a similar example with geometrical asymmetry are presented in Part II of this
paper also.

4 Concluding remarks

In conventional stability analysis by using limit equilibrium method, the factor of
safety for a slope is for the whole failure mass, assuming that each slice/block has the
same factor of safety value. In the present method, each block is subjected to the action
of forces from both horizontal and longitudinal directions. Hence, it is certain that the
block has two factors of safety with respect to two directions, and the real factor of
safety of the block is obtained by combining the two component factors of safety. The
sliding direction of each block can also be determined by using the geometric character-
istics. Thus the blocks of a slope may have different values of factors of safety and slid-
ing directions. This is reasonable and conceivable.

Different interpretations for the factor of safety may lead to different results for the

factor of safety. In the present method, one can consider the blocks in the same row as a
2D problem with force condition being provided in. the third dimension. Such a consid-
eration can sufficiently reflect the boundary effect and the geometric feature of slip sur-
face.
Acknowledgements The authors wish to thank all their colleagues in the Institute of Mechanics, CAS, for their
valuable discussion on various parts of the work described in the paper. This work was supported by the National
Natural Science Foundation of China (Grant No. 10372104), the Special Funds for the Major State Basic Research
Project (Grant No. 2002CB412706), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant
No. KICX2-SW-L.1-2), the Special Research Project for Landslide and Bank-collapse in The Three Gorges Reser-
voir Areas (Grant No. 4-5).

References

1. Stark, T. D, Eid, H. T., Performance of three-dimensional slope stability methods in practice, J. of Geotech-

Copyright by Science in China Press 2005



An extension of 2D Janbu’s generalized procedure of slices for 3D slope stability analysis | 183

12.

13.

14,

15.

17.

18.

19.

20.

21.

22,

23,

24.

25.

26.

nical and Gegenvironmental Engineering, 1998, 124(11): 1049— 1060.

Fellenius, W., Calculation of the stability of earth dams, Proceedings of the Second Congress of Large Dams,
1936, 4: 445 —463.

Bishop, A. W, The use of the ship carcle in the stability analysis of slopes, Geotechnique, 1955, 5(1): 7—17.
Janbu, N., Farth pressure and bearing capacity by generalized procedure of slices, Proceedings of the dth Int.
Conf. of Soil Mechanics, London, Butterworths Scientific Publications, 1957, 2: 207—212.

Janbu, N., Slope stability computations, in Embankment-Dam Engineering, New York: John Wiley and Sons,
1973, 47—84,

Morgenstesn, N. R., Price, V. E., The analysis of the stability of general slip surfaces, Geotechnigue, 1965, 15:
T9—93.

Spencer. E., A method of analysis of the stability of embankments assuming paralle] inter-shice forces, Geo-
technique, 1967: 17(1}: 11—24.

Spencer, E., Thrust line criterion in embankment stability, Geotechnique, 1973, 23(1): 85— 100.

Sarma, 8. K., Stability analysis of embankment and slopes, Geotechnique, 1973; 23(3): 423 —433,

Sarma, S. K., Stability analysis of embankment and slopes, J. of the Geotechnical Engineering Division, Pro-
ceeding of the American Society of Civil Engineers, 1979, 105(GT12): 1511—1522,

Baligh, M. M., Azzouz, A. 8., End effects on stability of cohesive slopes, J. of Geotechnical Engineering Di-
vision, Proceeding of the American Society of Civil Engineers, 1975, 101{(GT11); 1105—1117.

Londe, P, Vigier, G, Vormeringer, R., Stability of rock slopes, a three-dimensional study, Soil Mechanics and
Foundations Division, Proceeding of the American Society of Civil Engineers, 1969, 95(SM1): 235—262.
Hovland, H. I., Three-dimensional slope stability analysis method, J. of Geotechnical Engineering Division,
Proceeding of the American Society of Civil Engineers, 1976, 103(GT9): 571 —986.

Chen, R. H, Chameau, J. L., Three-dimensional Yimut equilibrium analysis of slope, Geotechnigue, 1982,
32(1): 31 —406.

Leshchinsky, D., Baker, R., Silver, M. L., Three-dimensional analysis of slope siability, Int. I. for Numerical
and Analytical Methods in Geomechanics, 1985, 9: 199—223.

Leshchinsky, D., Huang, C. C., Generalized three-dimensional slope-stability analysis, J. Geotechnical Engi-
neering, 1952, 118(11): 1748 —1764,

Hungr, ©., An extension of Bishop's simplified method of slope stability analysis to three dimensions, Geo-
lechnique, 1987, 37: 113—117.

Hungr, Q.. Salgado, F. M., Byrue, P. M., Evaluation of a three-dimensional method of slope stability analysis,
Can. Geotech, J,, 1988, 26: 679—686.

Zhang, X., Three-dimensional stability analysis of concave slopes in plane view, J. of Geotechnical Engineer-
ing, 1988, 114(6): 658 —0671.

Lam, L., Fredlund, D. G, A general limit equilibrivm medel for three-dimensional slope analysis, Canadian
Geotechnical uurnal, 1993, 30: 805 —919,

Huang, C. C., Tsai, C. C., New method for 312 and asymmetrical slope stability analysis, J. of Geotechnical
and Geoenvironmental Engineering, 2000, 126(10): 917 —927.

Chen, Z., Wang, X, Haberfield, C. et al., A three-dimensional slope stability analysis method using the upper
bound theotem, Part I: theory and methods, Int. J. Rock Mech. Min. Sci., 2001, 38: 369—378.

Chen, Z., Wang, J., Wang, Y. ¢f al.. A three-dimensional s]op.c stability analysis method using the upper bound
theorem, Pant I1: numerical approaches, applications and extensions, Tm. J. Rock Mech. Min. Sci., 2001, 38:
379—1397.

Hutchinson, I. N., Sarma, S. K., Discussion on “Three-dimensional limit equilibrium analysis of slopes”,
Geotechnique, 1985, 35(2): 215—216,

Duncan, J. M., State of the art: limit equilibrivm and finite-element analysis of slopes, J. Geotechnical Engi-
neering, 1996, 122(7): 577—556.

Fan, K., Fredlund, D, G, Wilson, G W., An interslice force function for limit equilibriom slope stability
anaiysis, Canadian Geotechnicat Journal, 1986, 23: 287 —296.

www.stichina.com



