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    Abstract     In the present paper, we propose an optimization approach to investigate the similarity criteria of complex flows. With
this approach, we may identify the dominant dimensionless variables governing complex flows场 numerical sensitivity analysis. Firstly,

we define the sensitivity factor and examine its dependence on the dimensionless variables. Then, we apply this approach to study the simi-
larity criteria of porous media flow in a presumed oil reservoir. The similarity principle obtained from the numerical sensitivity analysis is in
agreement with the theoretical law, thus demonstrating the feasibility of the proposed optimization approach. Further explanation is given

by analyzing the deviation of pressure distribution in a model from its prototype. In addition, we examine the effects of flow parameter

variation on the sensitivity factors and find that the dominant dimensionless variables may change from different sets of parameters.

    similarity, optimization, sensitivity analysis, complex flows, model.

    Physical modeling is one of the fundamental ap-
proaches to studying flow mechanisms. The physical

modeling is based on similarity theory.  Generally
speaking, a model is entirely similar to the prototype

if each of its corresponding dimensionless variables is
kept identical. However,  complex flows,  such as
multi-scale,  multi-phase and/or   multi-component
flows in industrial and environmental engineering,

tend to involve many parameters [1,21 associated with
physical,  chemical or even biological processes [31，
thus involving a number of dimensionless parameters.
Most importantly, it is impossible to keep all the

nondimensional parameters identical. For instance, it
is hard to simultaneously satisfy the similarity of both

settling and incipience of sediment when modeling the
sediment-laden water flow in nature. Ship motion

modeling requires no difference of both Froude and
Reynolds numbers between the model and the actual

motion,  which is not practical at all E43.Another
paradigm is the porous media flows, particularly the
complex ones in the second or the third developed oil
reservoirs, which involve the basic formation parame-

ters and the properties of the fluids, and all kinds of

processes between phases and interfaces [5,61‘Thus,
the dimensionless variables can be up to ten or even
more, and inconsistencies between these dimension-

less constraints often occur.

    Cheng and Tan [73 have pointed out that it is
practical to carry out partial modeling when strict
similarity of all dimensionless parameters is infeasible.

This means that the dominant dimensionless parame-

ters are modeled while the insignificant ones are re-

laxed. The distorted river model is the very case, in

which geometry similarity law is not kept [81.Now,
we are at the point of how to choose the dominant di-

mensionless parameters. The conventional approach is
based on the analysis of physical mechanisms of flows

as adopted by Taylor in dealing with the problem of

an intense explosionl9j.Also in this way, Chengil0j
successfully derived the similarity law of explosion
formation. Doan et al. Ell] developed equations for the
three-phase and non-isothermal flow in the vicinity of
a horizontal well, and obtained the scaling criteria for

designing laboratory experiments. Sedov(4j investi-
gated the theory of this approach and applied it in
classical mechanical problems. Another new way to

select dominant dimensionless parameters is based on

numerical sensitivity analysis. Based on multiphase,
multicomponent transport theory,  Mackinnon et
al. (31 presented a general mathematical model describ-
ing subsurface aerobic biotransformation of organic
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chemical species in a multiphase setting, and carried
out a series of numerical sensitivity studies to examine
the impact of the selected dimensionless groups on the
overall system  biotransformation  rates.  Peng et

al. [12] investigated the sensitivity of oil recovery to
the dimensionless variables. Nonetheless, the defini-

tion of the sensitivity factor is not reasonable in that

its dependence on the dimensionless variables is not

considered. In comparison, the conventional approach

needs in-depth understanding of the physical mecha-
nisms of flows in advance. The numerical one is more

universal in application, though it is far from perfect

at present and needs further improvement.

parameters, which we should pay particular attention

to. Therefore, different sets of the independent Irk

will definitely lead to different sensitivity factors. For

one set of independent ;rk of a flow system, we can

obtain a group of major dimensionless variables. Yet
for another set of independent Irk of the same system,

we may analogously obtain another group of major di-
mensionless variables. In other words, the dominant

dimensionless variables are dependent on Irk.

    For practical purpose,  relative variation is of
more physics. Therefore, it is better to redefine the

sensitivity factor as

犷--气

    In this paper, we will propose an optimization

approach to the principal similarity criterion by nu-

merical sensitivity analysis. The sensitivity factor of a

target function to a dimensionless variable is defined

The dependence of the sensitivity factor on the di-

mensionless variable itself and the necessity of using a
dimensionless mathematical model are discussed. We

also apply the proposed approach to a case of porous

media flow and explore the dependence of the sensi-

tivity factors on the dimensionless parameters them-
selves.

Sk a(二乏/二p, k) k二 1, 2,⋯，N.

Here,

tton to

Skmeasures the sensitivity of the target

  (3)
func-

variable二*for the case of Irk=二P,*，and f P=
f(二p, 1，二p, 2⋯，二p, N)，where二P,*indicates the val-
ue of Irk of the prototype.

1   Generalization of the optimization ap-

proach

      For

variables,

a complex system withN dimensionless

a target function f can be expressed as

  f=f( 7r1，X2，7r3,⋯，7rN),             (1)

where二*is the dimensionless variable(k=1, 2, 3,

’“，N).
    玩order to design a practical model of a complex

flow, it is crucial to manifest the important ones from
all of the dimensionless variables, which can be done

by investigating the sensitivity of the target function
with respect to each independent variable defined as

k= 1, 2,⋯，N. (2)

Then, we may say that the larger the sensitivity fac-

tor, the more important the dimensionless variable.
In this way, we may further determine the principal

similarity conditions by identifying the dimensionless

variables with larger sensitivity factors.

    Apparently,  the sensitivity factor is also the
function of all the dimensionless variables. That is to

say, the sensitivity factor is not constant unless the

target function varies linearly with the dimensionless

    Generally speaking, the target function cannot

be explicitly expressed as a simple formula for com-
plex flows. Therefore, it is not so straightforward to
obtain the sensitivity to get the derivatives of an ex-

plicit analytical function. Fortunately, we may solve

the equation system for complex flows with the aid of

numerical methods. However, we should emphasize
the necessity to adopt a dimensionless mathematical

model for numerical sensitivity analysis. Since there

may be more than one dimensionless variable depend-
ing on the same dimensional parameter, the sensitivi-
ty factor obtained by slightly deviating the dimension-

al parameter in a dimensional numerical model seems
to be nonsense. On the contrary, if we use a dimen-

sionless numerical model, the slight deviation of a di-
mensionless variable will lead to a meaningful sensi-
tivity factor, which exclusively reflects the effect of
this dimensionless variable on the target function. In

addition, when we calculate the derivative in Eq. (3)

via difference scheme,  Onk=7r m,*一7r,, k should be
small enough because the target function varies non-
linearly with srk.Here,  7rm,*stands for the value of
二*of the model. In the present paper, we set△二*/

7r p, k=1%.

2  Case studies:porous media flow in an oil
reservoir

Figure 1 illustratesa们 ideal two-dimensional oil

reservoir with two production wellsin it. The reser-
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voir is bounded by the impermeable walls BC and OA
and the pressure-specified boundaries OB and AC

Hence, the pressure distribution p(x，y, t)in the
reservoir is governed by
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Here,，一产                YuC

the porosity of

，where K is the permeability, 0 is

media, u is the viscosity of oil, and Ct
is the total compressibility;(x;，Y=)is the coordinate
of the wells; qi is the discharge of the wells, which is
positive for injection and negative for production; 8 is

the Dirac Delta function; po, p, and pi are constant.

Apparently, if K，0，u and。，are all constants, this
problem is linear and can be solved analytically. Both
the analytical solution and its apparent scaling law, as

seen in the next subsection, may facilitate to validate

the present mathematical model and to verify the fol-

lowing numerical results of similarity principle
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Fig. 1. Sketch of an ideal two-dimensional

production wells at (z1, y1) and (x2, y2).
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2. 1  Similarity law

      In order
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dimensionless
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parameters
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and time

    To completely duplicate the pressure distribution
over these two-dimensional oil reservoir indoors, we

must design a similar model with the two dimension-

less variables 7rm,1 and  7rm,2,  which are strictly equal

to the corresponding values of the prototype 7r,,, and
srp,2, where the subscripts m and p indicate variables
for the model and the prototype, respectively. How-

ever, if we know srp, 1 >> 7rp, 2 in advance, according to
the above analysis, 7r2 obviously exerts much less in-
fluence on the similarity of pressure distribution.

Then, we may relax or even disregard this less impor-

tant similar restriction of 7rm,2=7r,,2 and design an
approximately similar model, which is only subjected

to the major restriction of 7rm,1=7r p,1.In this way,
the pressure distribution will be approximately simu-

lated in the laboratory with negligible deviation from

the prototype. This is the very way to tackle the sim-
ilarity issue of complex flows, because there are so
many dimensionless variables for complex flows that
some of them cannot be kept identical between the
prototype and the model simultaneously. In this case,
the restriction to the less important dimensionless
variables should be relaxed or even neglected. Even if
all of the dimensionless parameters could be matched
simultaneously, there is still a problem of error con-
trol. The more sensitive the parameter is, the more
accurate it should be made in experiments. Anyway,
optimization for a selected target function is indis-
pensable. Numerical sensitivity analysis may be con-
siderably helpful to find out which criterion can be ne-
glected or what degree of its difference between the
prototype and the model is allowed to satisfy approxi-
mate similarity of the concerned target function. In
the following section, we will conduct this analysis
for the presumed two-dimensional reservoir by means
of numerical simulation.
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Then, the dimensionless pressure equation be- We apply the finite difference method to solve

(4)with forward-time central-space scheme,
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which  is  stable

(min(Ox，AY))2
      2X

  as  long  as  inequality  At镇

holds.A non-uniforml)) structured

time step is so set that the above inequality is matched.

mesh

五ned

system is adopted so that the grids are more re-

near the wells. In the area of}x一x=}/1x<
0.1, Ax /lx=0. 02, and if}y一y= I / l,, G 0.1, AY/ l,,=
0.02. Otherwise, Ox / lx=0. 1 and Ay/ l,,=0.1.The

    As already mentioned, Eq. (4)is linear if K,

0, ,u and c, are all constants. Then, by using the
variable-separation method and Duhamel principle,
we can easily access to its analytical solution, which
reads
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We have assumed a case (Case a in Table 1)for code
validation. Fig. 2 shows the pressure evolution of

both numerical and analytical results at different
points in the oil reservoir. It can be seen that the

agreement is very good except for those exactly at the
wells, which is attributed to the refinement of grids.

It can be anticipated that more refined grids will lead
to better agreements. Of course, there are some dis-

crepancies at the beginning stage due to the arbitrary

initial pressure field given. As the time elapses, the

effect of the arbitrary initial pressure gradually van-

ishes and the pressure field becomes steady. We have

compared the numerical steady pressure profiles along
different lines that are parallel to the axes with those
of analytical results as in Fig. 3.Again, the agree-
ments are satisfactory.

Table 1. Parameters for case studies
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2.  Comparison of the numerical pressure history (dots) with the corresponding analytical results (solid lines) at different points in
reservoir, which are identified by the coordinates in the parentheses. The two wells are at (15,25) and (35, 25), respectively.
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2.3

variab

  Sensitivity of pressure to the dimensionless
les

Now, design a small modelreservoir(

Table 1)
Table 1)，

strictly similar to the prototype(

Case

Case

b in

a to

that the pressure distribution; is more sensitive to the

production of well 1.Thus, by means of numerical

analysis, we can prove the conclusion of the similarity

theory in Section 2.1.

in which the production of well 1 is one or- 2.4  Error analysis of the partially similar model

der higher than well 2, implying 7r p, 1》7r p, 2·Let us
investigate

to the two

function is

sensitivity

written as

the sensitivity of the pressure distribution
dimensionless variables. Hence, the target

the pressure，  According to Eq. (3)，the

factors of the pressure at point (xz，y;)are

We may further
in another way

mentioned, the

of

explain the physical mechanism
sensitivity analysis. As already

numerator of Eq. (8)，

E

                      凡 ”

六公乡(P.,。
    件 护 2一 . , 一 1

一PP,。/pp, z; I，(9)

Sijk= (二m, k
        Z

Here

tion.

=1, 2,⋯，nS;.l=

一 7C p, k

1, 2,‘

)/二P,*
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and y-direc-
distribution

over the whole domain, we calculate the spatial aver-

age of St k，
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The numerator is simply the mean relative

    (8)
error of

pressure over

the prototype,

the whole space between the model and
and the denominator the relative devi-

ation of the dimensionless variables of the model from

the prototype. In the present calculation, we let this
relative deviation be 1%.From the sensitivity calcu-

lation for case b, we obtain s.,,=0.69,, s2=0.024.

Obviously, s1 is one order higher than s2, implying

represents the mean relative error of pressure between

the model and the prototype over the whole reservoir.

Apparently, if both 7rnm,1=7r p, l and 7r m, z=Trp,2 hold,
we have E=0.Now, keep one of these two dimen-
sionless variables unchanged between the model and

the prototype, but the other of the model is allowed

some deviation from the prototype. In this case, the
pressure field of the model will be different from the

prototype and the mean error E will be greater than
zero. Fig. 4 shows the variation of E with a sensitivi-

ty coefficient C as defined in the caption below the

figure. Clearly, the mean error is far more sensitive
to the first parameter 7r1 than to the second one Jr2,

implying the dominant effect of the well with much

larger oil production on the pressure distribution,
which demonstrates the theoretical conclusion in Sec-

tion 2.1 once again. In addition, it can be seen from

Fig. 4 (a) that二:can be as large as 2. 8 times of its
prototype' s value if 5%error of the target function is
acceptable.
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      In this way of numerical optimization, we can

not only single out the more important similarity cri-
teria, which should be totally identical between the

model and the prototype, but also display the accept-

able degree of the less influential parameters' deviation.

2.5  Influence of flow parameters on the sensitivities

    As we know, complex flows in practice involve

many parameters,  which may cover a large range
even for the same kind of flow system. Take again
the porous media oil flow as an example, the viscosity

of oil ranges from 1 to 10000 mPa·s and the perme-

ability may be as high as 1 D and as low as 1 mD. Ac-
cording to the previous analysis, the dominant param-

eters may be different from one case to another

    To demonstrate the effects of flow parameters on
the sensitivity factor, we have assumed eleven proto-

types of porous media flow with different parameters.
The dimensionless variables of the eleven cases are

listed in Table 2.All the cases are of the same total

compressibility, porosity, geometry, boundary condi-
tions, oil production, and dimensionless flow time,
and the ratio between the two dimensionless variables

is fixed(二1/7r2=10) as well. However, they are of
different permeability or oil viscosity and flow time

scale T(T一L2/ X).Case 1 in Table 2 is exactly
case a in Table 1，The permeability and oil viscosity
of it are 1 D and 2 mPa" s, respectively. From case 1

to case 11, the permeability decreases or equivalently
the oil viscosity increases. For instance, case 6 repre-

sents the permeation flow with permeability of 0.1D

and oil viscosity of 2 mPa " s (or equivalently with per-
meability of 1 D and oil viscosity of 20 mPa·s)，and
case 11 with permeability of 0.0001 D and oil viscosi-
ty of 2 mPa " s (or equivalently with permeability of 1 D
and oil viscosity of 20000 mPa" s).Case 11 can be consid-
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Performing analogous numerical analysis tocase

a,
the

we can obtain sensit ctors of the pressure to
two dimensionless les for theeleven cases

which are listed in Table 2 and plotted in Fig. 5.It is

shown that the sensitivity of the pressure distribution

is obviously influenced by the reservoir properties or
flow parameters(here referring to the permeability
and oil viscosity).Owing to the identical ratio of二I
and 7r2 between all cases, the dominance relationship

between the two dimensionless parameters is not
changed. However, the dominance degree of rrl over

X2 varies with their values. This can be apparently

seen in Fig. 6, which shows the dependence of the

ratio between the two sensitivity factors on the values
of the dimensionless variables.  From the physical
point of view, the degrees of relaxation of the in-
significant similarity criterion may differ from models

with different flow parameters. For the low perme-

ability and heavy oil reservoirs, s1/s2 is smaller. The
models are more subjected to the unimportant dimen-
sionless variable 7r2.In this case, the permeating dis-

charge is smaller, and the same deviation of oil pro-
duction will result in a larger pressure error. Or e-

quivalently, the modeled oil production will deviate
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more from the field under the same laboratory condi-
tions. In contrast, for the high permeability and light
oil reservoir, s1/s2 is greater. The model error is less
sensitive to the unimportant dimensionless variable

7r2.In this case, the permeating discharge is larger,

and the simulated oil production is more accurate.
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the two dimension-

凡

10                         loo    1000

most impossible. The way out is to identify the domi-
nant similarity criteria and design a partial similar
model. In the present paper, we have generalized an

optimization approach to finding the dominant dimen-
sionless variables of complex flows via numerical sen-
sitivity analysis. We have particularly given the pre-

cise definition of sensitivity factor with physical impli-
cation, and discussed the dependence of the sensitivi-
ty factor on the dimensionless variables themselves.

    By applying the proposed optimization approach
to a presumed porous media flow, we have found that
the similarity principle obtained from the numerical

sensitivity analysis conforms to the theoretical law. In
addition, the foregoing analyses show that the pro-

posed approach can not only single out the dominant
similarity criteria but also manifest the extent of re-

laxing some trivial dimensionless variables so long as
the approximate similarity of the target function is

concerned. The effect of the parameters on the sensi-
tivity factors demonstrates that the dominant dimen-
sionless variables may vary with the flow parameters.
Therefore, some of the dimensionless flow variables domi-

nant in one case may become negligible in another case.
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Fig. 6.  Dependence of the ratio between the two sensitivity fac-
tors on the dimensionless variables themselves.

    For more complex flows involving tens of flow
parameters, one parameter may be in the expressions
of more than one dimensionless variable. Hence, the

variation of this parameter will lead not only to the

change of the dominance degree of the dimensionless
variables, but also to the difference of the similarity

laws, which is more essential to physical modeling.
In other words, it is very possible that a group of
dominant dimensionless parameters turns to be anoth-

er group when some of the flow parameters change.

3  Conclusion

In reality, completely modeling complex flows

involving a number of dimensionless variables are al
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