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Abstract : The problem o a Griffith crack in an unbounded orthotropic functionally graded
material subjected to antipole shear inpact was studied. The shear moduli in two directions
o the functionally graded material were assumed to vary proportionately as definite
gradient. By usingintegral transforms and dual integral equations, theloca dynamic stress
field was obtained. The results d dynamic stress intensity factor show that increasing shear
moduli’ s gradient & FGM or increasing the shear modulus in direction perpendicular to
crack surface can restrain the magnitude o dynamic stress intensity factor.
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I ntroduction

In recent years, great attentions have been paid to the research of Functionaly Graded
Materials (FGM) . From the viewpoints of gpplied mechanics, FGM are nornhomogeneous
solids. The non-homogeneity of FGM has a great influence on their mechanical behavior,
especialy when the components made of FGM involve some flaws. There has been a considerable
bulk of studies concentrated on this influence!® *'. However, most of the studies are mainly
concentrated on static problems. Reports on dynamic fracture mechanics of FGM are very fewt.
Infact, the components made of FGM would be inevitably subjected to time dependent |oadings.
Therefore , the knowledge of the dynamic fractural behavior of this kind of components is essential
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to achieving an in-depth understanding of the failure mechanisms of FGM.

On the other hand, up to now, most of the existing solutions to crack problems related to
FGM usually assume that the materia is isotropic elastic. However, the nature of the techniques
used in processing the FGM are seldom isotropic. For example, processing by a plasma spray
technique usually leads to a lamellar structure and processing by electron beam physical vapor
depasition generally lead to a highly columnar structure’® . Thus, it is necessary to consider the
anisotropic character of the FGM. Recently, Ozturk and Erdogan studied the mode | static crack
problem in an inhomogeneous orthotropic medi um®. The model in their paper was an
exponential form. The singular integral equation technique was used in their study.

In this paper, we studied the problem of a finite crack in an orthotropic FGM subjected to
antipole shear impact by applying the method of integral transforms and dua i:iegral equations.
The main objective is to obtain the local dynamic stress field and to investigate the effects of
material non- homogeneity and orthotropy on the dynamic stress intensity factor.

1 Material Property Model

Due to the mathematical complexity, seme simplifications are necessary for the tractable
analysis of nor- homaijenzous materials under impact loadings. However , because of the difficulty
in solving oruinary cirferential equations, the models have been proposed and extensively used to
describe the viriation of the shear modulus, such asp (y) = Hoexpy y)™ Fandp (y) = Mo +
c|l vy | )% can not be goplied to the problems of dynamic response. After deep-going
consideration, we find that the application of following model can solve the problem.

Consider an unbounded functionally graded

y

i 4 material as shown in Hg.1. The coordinates x and y

1oy m are assumed as the principal axes of orthotropy. The

] & - shear moduli M x and M y are assumed to be functions of
Te—ol 2 *  yonly, and vary proportionately as

He(y) = (Mol +a | y])2, (1)

Hu(y) = (Mol +0a ] y|)?

Hy(y) = (Mol +0a] y|)?
Fg.1 A crack in an orthotropic funct-
iondlygraded material subjected
to antipole shear impact

Hy(y) = (M)o(@+a] y|)2, 2

whered are constant (@ > 0). (M oand (M,)oare
the shear moduli at y = 0.

For present consideration, it is assumed that the
mass density of FGM is constant.

2 Formulation of the Problem

As shown in Fg. 1, assume a finite crack of
length 2 aiis situated in y = Oplane and subjected to antipole shear impact. Let the components of
the displacement in the x, y and z directions be labeled by ux, uy, and u,, respectively. For
antipole shear motion, uy and uy vanish everywhere and u, is afunction of x, yand t,i.e.,
ug = u =0, u = w(x,y,t), (3)

where t is time. The two nonvanishing stress componentst ,, andT |, are
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T IR P @
where the shear moduli M «, Uy are assumed to be expressed by Egs. (1) and (2) .
The equation of motion can be written as
Pw B Pw bW dw _ _p Pw
0 T HL(y) 0y2 T HK(y) By THK(y) o
wherel , (y) is the derivative of I, (y) andp is the mass density of the FGM.
Suppose that the material is initialy at rest. At time t = 0, an antipole shear stress of
magnitudeT o is suddenly applied to crack surfaces and maintained at the same constant value
theresfter. Hence, the boundary conditions are given as follows:
T,(x,0,t) =-ToH(1), 0<| x| <0;t>0, (6a)
w(x,0,t) =0, | x] = a; t>0, (6b)
where H(t) is the Heaviside unit step function. The initial conditions are zero.

(5

3 Derivation of Integral Equation

The standard L aplace transform on f (t) is

f"(p :I:f(t)e’ "dt, (7a)
whaose inversion is
F(1) = j;d’srf “(p)e™dp, (7h)

where Br denotes the Bromwich path of integration, which is a line on the right- hand side of the
P-plane and parallel to the imaginary axis. Applying Eq. (7a) to Eq. (5) yields the transformed
equation
Pw’ reY) Pw’ M_Yl ow’ _p_p_
¢ Ty 9y Ty dy T Ha(y"
Considering the symmetry , it suffices to consider only the first quadrant of the x-y plane Forward,
the Fourier cosine transform defined by

£(9) :J':f(x)oos(sx)dx, (9a)

(8)

F(x) = 1%[0 £°(s) cos(x) ds, (9b)
is gpplied to the space variable x. Let
w (X,y,p :T-IZJ-O U(s,y, p)oos(sx)ds, (10)

then the Eg. (8) can be transformed into
m(y oy Tudy oy LS Tyl Yisy.p =0 (1)
Substituting Egs. (1) and (2) into Eq. (11) , we obtain

Fuls.y.p , @ Ju(s.y.p [ _p_p_} .
o Tivay Oy S e rayd U(sy P =0, (12
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where S = s J(M) o (My)o. By defining

X =s(l+ay), Y= (1+ay)'?u. (13)

Eg. (12) can be rewritten as
&Y  1dy [;L IZ] _
a2 T xdx Lla2td YT

_ —pp®
b= e et 4

Eg. (14) is a modified Bessdl differential equation. From the solution of Eq. (14) and
considering the regularity condition at y — oo, the solution of Eq. (12) can be expressed as
U(s,y,p) = A(s,p (1+ay) Y2kl (1 +ay) sial | (16)
where K3 () is the modified Bessel function of the second kind.
Substituting Eq. (16) into Eq. (10) , we obtain

0, (14)

where

w(x,y,p = T][‘J'O A(s,p) (1 +Oly)'”%[ (1+ay) Oﬂ oos( x) ds. (17)
Substituting Eq. (17) into the Laplace transform of the stressesT , andT in Egs. (4) , we obtain

Tr(x,y.p) = Hy(y) fI:A(s,p){- O(;(1+0(3/)"°"2Ks[(1+0(y) &S] +

s(1 +0(y)'”2P§[(1 +0y) (ﬂ cos(sx) ds, (183)

T o(X,y,p) = - Hy(y) T%J':A(s,p) (1 +ay) Y2 x

kel (1 +ay) s/l sin(sx) sds. (18b)
In the Laplace transform domain, the conditions on the plane y = 0 becomes
T,(x,0,p) =-To p, 0< x< a, (19a)
w (x,0,p) =0, X 2 a. (19b)
From Egs. (17) , (18a) and the conditions Eq. (19) , a pair o dud integra equations are obtained as
IO B(s,p)oos(sx)ds = 0, X = a, (20Q)
o __Tug
IO B(s,p) O(s, poos(s9ds = 5/ v, 0= x<a, (20b)
where
B(s.p) = A(s,p) ke 570 | (20
a | S | S
ZKJG] i Sl@(u]
G(s,p = S : (22)
5|3

The dual integral Egs. (20) can be solved by applying the method of Copsonm , the solution of
Egs. (20) is found as follows
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T ga” ! .
B(s:P) = 510 0 6P € PI(s)E (23

where Jg is the zero-order Bessel function of the first kind. The function® “ € , p) is governed
by a Fredholm integral equation of the second kind,

1
@€ [ O €. PMEN P = £ (24)
The kernel function M€ , N, p) in Eq. (24) is
ME N .p) = J?njows[ dsag - 70(&)l(s)ds. (25)

The Fredholm integral Eq. (24) can be solved numerically.

4 Dynamic Stress Field Around the Crack Tip
Integrating B(s, p) in Eg. (23) by parts, it gives

_ Tga .
B(s,p) = 201,)0p s ® "(1,pJdi(sa) -

S d .z . vop *
Iozal(sé)oﬁ[z ® (E,p)IOE}. (26)

From Egs. (26) , (21) and Egs. (18) , we obtain
Toal,(y) @ (1 p)Jo°° @ +ay) "?4l (1L +ay) yal

L A TH P I ol /o "
Ji(sa)cos(sx)ds + (273)
. C Teal (V) © (1 (+ay) V[ (@ +ay) gal
Te(x,y,p = - My)o D _[0 KgLS/O(J X
Ji(sa)sn(sx)ds + (27b)

where Y = J(U)o (Uy)o.

Noting that the integrands are finite and continuous for any given values o s, the divergence
o the integrals at the crack tips must be due to behavior as s — o0. Carrying out the expansion for
large s and considering the following asymptotic behavior of Kz (x) and I@ (x) when x — oo,

Ke(x) = ’\g(e'x[1+ O['ﬂ] , (284a)
K (%) =- ’\/E(e'x[1+ o[‘ﬂ] : (28b)

we obtain the |ower-order terms of the stresses

Ta(x,y,p) = -VTWQ’—%*ﬂu+ay)':[o°°al(sa)exp(- S)ws(sdds + =
-VM;“D)Toa(1+Gy)I:Jl(8a)eXP(- Soos(sdds+ ,  (29%)
ity = - SO ) s en(- Ssn(sgds =
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- © Proa1 +0ay) mJl(Sa)eXp(' Sy)sn(sx)ds + . (29b)
My)o p 0

Define complex variable zg = x + iY y, we obtain
1 1
h/2l’18 Jm£1+|ysr61

The polar coordinates r; and0 ; are defined in Fig. 1.
Note that the integrals in Egs. (29a) and (29b) are

Re[f Tu(sdeplingdy | (319

I:Jl(sa) exp(izs)ds = - +0(r). (30)

| “(sa)ep(- ) oos(s) ds

J':Jl(sa)exp(- Sy) sn(sx) ds In{Ijh(sa)exp(ims)d% . (31b)

Then we obtain the local stress field

. K (p) e[ 1 ] o
T,(r81,p = JZT_rlR o9, +iy s, + 0(r) , (329)

. \ K*(g)e[ iy J o
To(riB1,p =- JZT_QR Jm + 0(ry). (32b)

The Laplace transform of the dynamic stress intensity factor K™ (p) in Eos. (32) is

I o fra®— R (33)
y/ 0 p

inwhich® " (1, p) isthe vaue o ® "€ , p) evauated at the crack tip corresponding to§ = 1.
The dynamic stress intensity factor in time domain can be obtained by

. Jﬁ_aj;. r—w e*dp. (34)

K™ (1) = .

(U y)O

5 Results and Discussion

The functional dependence of the stresses on r;and6 ; as shown in Egs. (32) reveds that the
local dynamic stresses near the crack tip in orthotropic functionally graded materials also possess
the inverse square root singularity in terms of r;and that the angular distribution in® ; is the same
as the case in orthotropic homogeneous materials'® . Eq. (34) shows that the expressional form of
the dynamic stress intensity factor for orthotropic functionally graded materials is different from

that for homogeneous materials. A coefficient /(M) o/ (M,)o is multiplied in this case for
orthotropic FGM. Thus, it is clear that the influence of the material orthotropy is significant.
By using the numerical L aplace transform inversion scheme described by Miller and Guy[9] ,
the dynamic stress intensity factor expressed by Eq. (33) can be evaluated. The influences of
norn-homogeneity parameter 0 a and orthotropic parameter Y on the normalized dynamic stress

intensity factor K (t)/T ¢ U a are shown in Fg.2, where (¢y)) 0 = J(My)o/P . It is observed

that al the curves reach a peak and then oscillating about the static values with decreasing
magnification. For definite values of Y , the values of the dynamic stress intensity factor are less
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for larger values of O a. For definite values of 0 a, the values of the dynamic stress intensity factor
are larger for larger values of Y . This means that the increase of the shear moduli’ s gradients in
FGM can aways reduce the magnitude of dynamic stress intensity factor no matter how the
orthotropy is . The increase of the shear modulus in direction perpendicular to crack surface is
beneficial to reducing the dynamic stress intensity factor in orthotropic FGM.
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Fig.2 The variations o K (t) at different non-homogeneity and orthotropy

6 Conclusion

In this paper, an orthotropic FGM with afinite crack under antipole shear impact is studied.
The theoretical analysis show that local stress field around the crack tip in an orthotropic FGM is
found to be similar to that in an orthotropic homogeneous material. The dynamic stress intensity
factor obtained in time domain show that the non-homogeneity and orthotropy of FGM has a
considerable influence on the fracture behavior of anisotropic FGM. The peak values of the
dynamic stress intensity factor decrease with the increasing shear moduli’ s gradient of FGM.
Increasing the shear modulus in direction perpendicular to crack surface can aso restrain the
magnitude of dynamic stress intensity factor.
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