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Controlling Hyperchaos
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For a finite-dimensional dynamical system, whose governing equations may or may not be analytically
available, we show how to stabilize an unstable orbit in a neighborhood of a “fully”unstable fixed point
(i.e., a fixed point at which all eigenvalues of the Jacobian matrix have modulus greater than unity). Only
one of the unstable directions is to be stabilized via time-dependent adjustments of control parameters.
The parameter adjustments can be optimized.

PACS numbers: 05.45.Gg, 05.45.Pq
In many engineering and other practical problems, chaos
is undesirable and therefore needs to be controlled. The is-
sue of controlling chaos, however, had not been actively
studied until the year of 1990 when Ott, Grebogi, and
Yorke (OGY) gave a method for controlling chaos [1].
Experimental works on the feedback stabilization have
been carried out [2,3]. The method has been extended
and modified [4–7], among which the method proposed
by Romeiras, Grebogi, Ott, and Dayawansa (RGOD) [4]
has attracted much attention. As a related topic, “using
chaos to direct trajectories to targets” has also been investi-
gated [8].

From a practical point of view, controlling a “fully” un-
stable system (i.e., a system having a fixed point with no
preexisting stable manifold in its neighborhood) is as in-
teresting and important as the one with a stable manifold.
However, the issue of controlling such hyperchaos has not
been particularly addressed. Actually, the OGY method
[1] is to stabilize an unstable orbit in the neighborhood of
a hyperbolic fixed point by forcing the orbit onto the stable
manifold. Therefore the method cannot be used to control
hyperchaos. The RGOD method [4] uses a feedback ma-
trix which makes the fixed point under consideration fully
stable. Therefore, in our opinion, the method is not suit-
able for controlling hyperchaos since the method changes
the stability property of the fixed point completely: it is
fully unstable originally but fully stable after the parame-
ter adjustment. In this Letter we use a new idea to stabilize
unstable orbits even if there is no preexisting stable mani-
fold nearby.

The systems under our study may or may not be given
analytically. In other words, a priori analytical knowledge
of system dynamics is not necessary. The unstable mani-
fold can be detected from (chaotic) experimental data by
using the embedding procedure (also known as technique
of reconstruction) [1,9]. The embedding theorem asserts
that if an orbit is in an attractor in the phase space, then the
corresponding orbit in the embedding space is also in an
attractor (but in the embedding space). The theorem fur-
ther asserts that the two attractors have the same dimension
and the same Lyapunov exponents. Let the unstable orbit
to be controlled be in an embedding space of dimension
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N , where N $ 1 is a finite integer, and be near a fixed
point at which the dimension of the unstable manifold is
Nu, where Nu # N is an integer. (Nu � N is the case we
are particularly interested in.) We formulate the system
under consideration by map T : jn ! jn11, where

jn11 � Fe�jn� . (1)

Here j [ RN is the dynamical variable, e [ RNu is a
small control parameter vector, and Fe�jn� is a vector-
valued function of jn with e as parameter. For flows, map
(1) is a Poincaré map. We emphasize that this map is for-
mally written (i.e., the map may be given not analytically
but given by a data set) and that properties of the vector
field Fe are experimentally accessible.

Let j0
� be the fixed point of map (1) with e � 0. We

want, by slightly adjusting parameter e, to control an orbit
of the map that runs away from the fixed point if e �
0. Let J be the Jacobian matrix of the map with e � 0
evaluated at the fixed point, i.e.,

J �

µ
≠F0

≠jn

∂
jn�j 0

�

. (2)

The elements of the Jacobian matrix can be determined
experimentally in practical problems. Without loss of gen-
erality, it is assumed that proper coordinate changes have
been made so that j0

� is the origin of the N-dimensional
space and that the eigenvectors of the Jacobian matrix are
along the coordinate axes of the space. The eigenvalues
of the Jacobian matrix J in Eq. (2) are all with modu-
lus greater than unity for the case we study in this Let-
ter. Therefore the determinant of the Jacobian matrix is
not equal to one, and the implicit function theorem can be
used to assert that map (1) with small parameter e has a
fixed point in the neighborhood of j0

� . Denote this fixed
point by j� and define the following matrix:

M �

µ
≠j�

≠e

∂
e�0

. (3)

Again, the elements of this matrix can be obtained experi-
mentally for a practical problem under study.

When e is small, consider a neighborhood of j0
� , W ,

that is large enough to also include a neighborhood of
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j�; see Fig. 1 for illustration. We also require W to be
large enough so that if jn is in W then its image under
the mapping, jn11 � Fe�jn�, is also in W . We write
jn11 2 j� � J̃�jn 2 j��, where J̃ is the Jacobian matrix
of the map with small e evaluated at j�. This J̃ can be
approximated by matrix J given in Eq. (2). Hence, for
e ! 0,

jn11 2 j� � J�jn 2 j�� . (4)

To stabilize the unstable orbit, we propose to require

jn11 � kjn , (5)

where k is a constant and 21 , k , 1. This means that
the orbit is forced to go to the fixed point j 0

� located at the
origin. On the other hand, from the definition of matrix
M, we have, for e ! 0,

j� � Me . (6)

When matrices �J 2 I� and M are both invertible, we
eliminate j� and jn11 in Eqs. (4), (5), and (6) to have

en � M21�J 2 I�21�J 2 kI�jn , (7)

where I is the N 3 N identity matrix. Here e has been
redenoted by en to indicate that the parameter adjustment
is in the nth iteration of the map. With the parameter ad-
justed according to Eq. (7), iterations of map (1) give the
series �j1,j2, . . .� converging to the fixed point j0

� mono-
tonically, and therefore stabilization is achieved. The con-
stant k in Eq. (7) is arbitrary as long as its absolute value
is smaller than unity. The radius of convergence for the
control method can be mathematically estimated. For two-
dimensional systems, we have been able to mathematically
estimate the maximum size of the neighborhood W defined

FIG. 1. Schematic illustration of the method of controlling hy-
perchaos. Point j0

� is a fully unstable fixed point of map (1),
jn11 � Fe�jn�, when e � 0. Point j� is the fixed point of the
map when e is nonzero but small. To stabilize an unstable orbit,
the parameter e should be adjusted at each iteration so that jn11
is closer to j0

� than jn does along the dashed straight line.
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previously. This mathematical work will be published
elsewhere.

The method of controlling chaos as given by Eq. (7)
can be applied to a wide range of problems. It can be
used in practical problems, for which a priori analytical
knowledge of the system dynamics is usually not available,
because the elements of the matrices J and M are ex-
perimentally accessible. The method can also be used to
control a flow by taking a Poincaré map first and then
using Eq. (7). Furthermore, the method is formulated
for an N-dimensional system; there N is a finite integer.
Therefore the method can be used for high dimensional
problems. When an unstable orbit of period p, where p
is an integer greater than one, needs to be stabilized, the
method can still be used if the p-fold composition of the
map with itself takes the place of the original map in
the formalism.

The idea of the OGY method introduced in Ref. [1] is
to force the orbit toward a preexisting stable manifold.
Therefore the OGY method cannot be used to control hy-
perchaos, while our method can because there is no re-
quirement for existence of a stable manifold. Furthermore,
the unstable orbit to be controlled is guided toward the
stable manifold in the OGY method and, most likely, it
falls not exactly on the manifold but on a tiny strip around
the manifold. One more iteration of the adjusted map may
take the orbit toward an unstable direction where non-
linearity is important, and the orbit continues to wander
chaotically as if there were no control. The orbit may
eventually return due to ergodicity of the attractor, but only
after a long time. This kind of wandering of the orbit may
also happen in our method but the odds are much lower
because the orbit is forced to go directly towards the fixed
point itself (not via the stable manifold). Therefore our
method should be more effective in the sense that it takes
less time for an unstable orbit under control to reach the
fixed point than that in the OGY method.

The idea of the RGOD method [4] is to use the “regula-
tor” matrix R as the feedback matrix. All eigenvalues of
matrix R are required to have modulus smaller than unity
so that, under iterations of the adjusted map jn11 � Rjn,
the unstable orbit becomes closer and closer to the fixed
point. Therefore the method requires the fixed point to
become “fully” stable after the parameter adjustment. In
our opinion, it is an over requirement. Our method re-
quires the orbit to be stable along only one direction, the
direction connecting jn and the fixed point, as shown in
Eq. (5). Therefore the parameter adjustment proposed in
the RGOD method may change the original system too
much, especially if the dimension of the system is high. In
addition, the radius of convergence for the RGOD method
should be smaller than ours due to the over requirement.
Numerical examples are easy to find to show this.

Equation (7) can be rewritten as jenj � Cjjnj, where C
is a constant. In other words, the size of the control per-
turbation required to implement control is proportional to
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the distance between the fixed point j0
� and the unstable

orbit to be controlled. In either the OGY method or the
RGOD method, the control perturbation is also propor-
tional to the distance jjnj, as shown in Eq. (2) of Ref. [1]
and Eq. (2.6) of Ref. [4]. Considering proportional con-
stant C to be of order one in general, the size of the
control perturbation is therefore of the same order as the
distance between the fixed point and the unstable orbit to
be controlled, no matter if the OGY method, the RGOD
method, or our method is used. This is expected because
the three control methods are all based on a linearization
analysis. The proportional constant (C in the linear re-
lation jenj � Cjjnj) in our method is given by requiring
the system to be stabilized along only one direction, and
therefore should be smaller, in general, than the one in the
RGOD method that requires the system to be stabilized in
all the directions. Furthermore, k in Eq. (7) is a free vari-
able (as long as jkj , 1) and gives an additional device
to obtain a smaller control perturbation. (The proportional
constant in the OGY method cannot be compared directly
with ours because the former involves an eigenvalue of the
Jacobian matrix with modulus less than one and the latter
does not.)

The control parameter in our method can be adjusted
in a range because k in Eq. (7) can be any value between
21 and 1. Therefore we can optimize parameter adjust-
ment to have a fast control. On the other hand, the number
of parameters introduced in either the OGY or the RGOD
method is one, less than that in our method. Our method is
formulated in a way that the number of control parameters
is equal to the dimension of the unstable manifold. How-
ever, we can, if needed, make only one of the parameters
independent and all other parameters dependent on that pa-
rameter in each iteration step. This is done by determining
a parameter vector e0 � Mjn for a given jn first, and then
letting en � c e0, where c is a scalar constant. By doing
so, only the first, say, element of en is independent. We
can do so because jn is to be dragged to the fixed point
along the straight line connecting jn and the fixed point
on the phase space, and therefore en varies also along a
straight line, the line connecting en and the origin e � 0
in the parameter space.

Finally we give an example to illustrate how hyperchaos
can be successfully controlled by adjusting parameters ac-
cording to Eq. (7). Consider the two-dimensional map
[10],

Ω
xn11 � 1 2 2�x2

n 1 y2
n� 1 p ,

yn11 � 24xnyn 1 q .
(8)

This map is in form (1) if we let j � �x, y� and e � �p, q�.
The map has four fixed points, which can be analytically
written down. Here we consider only one of them, the
one with coordinates x� �

1
8 �22 1

p
1 1 8�1 1 p 1 q� 1p

1 1 8�1 1 p 2 q�� and y� �
1
8 �

p
1 1 8�1 1 p 1 q� 2
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FIG. 2. Numerical results for map (8) in the example. Four
orbits are shown, starting at points A, B, C, and D, respectively.
All of them converge to the fully unstable fixed point j0

� � � 1
2 , 0�

very quickly under iterations of the map with parameters pn and
qn given by Eq. (7).

p
1 1 8�1 1 p 2 q��. When p � q � 0, the fixed point

is at j0
� � � 1

2 , 0�. It is easy to see that J �

µ
22 0
0 22

∂

and M �

µ 1�3 0
0 1�3

∂
. Therefore the parameters pn and

qn in the nth iteration should be adjusted to pn � �2 1

k� �xn 2
1
2 � and qn � �2 1 k�yn. Figure 2 shows results

of our numerical computation when k �
3
4 . In the figure,

there are four orbits starting from points A, B, C, and D,
respectively. Under iterations of map (8) with the adjusted
parameters, the four orbits all converge to the fully unstable
fixed point at � 1

2 , 0� monotonically and very fast.
In conclusion, we have shown how an unstable orbit in

the neighborhood of a fully unstable fixed point can be sta-
bilized. The stabilization is done by adjusting the control
parameter so that one of the unstable directions becomes
stable. The previously known OGY method [1] cannot be
used to control such hyperchaos because the method re-
quires preexistence of stable manifold. The RGOD method
[4] also cannot be used to control hyperchaos because the
method requires all unstable directions to become stable
after parameter adjustment and therefore changes the in-
trinsic stability property of the original system completely.
Our method of controlling hyperchaos can be used not only
for a system analytically given, but also for a system in a
practical situation where no priori analytical knowledge of
the system dynamics is available. The method can be ap-
plied to any finite-dimensional system, including mapping
and flow.
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