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SUMMARY

In this paper, an incremental-secant modulus iteration scheme using the extended/generalized finite element
method (XFEM) is proposed for the simulation of cracking process in quasi-brittle materials described
by cohesive crack models whose softening law is composed of linear segments. The leading term of the
displacement asymptotic field at the tip of a cohesive crack (which ensures a displacement discontinuity
normal to the cohesive crack face) is used as the enrichment function in the XFEM. The opening component
of the same field is also used as the initial guess opening profile of a newly extended cohesive segment in
the simulation of cohesive crack propagation. A statically admissible stress recovery (SAR) technique is
extended to cohesive cracks with special treatment of non-homogeneous boundary tractions. The application
of locally normalized co-ordinates to eliminate possible ill-conditioning of SAR, and the influence of
different weight functions on SAR are also studied. Several mode I cracking problems in quasi-brittle
materials with linear and bilinear softening laws are analysed to demonstrate the usefulness of the proposed
scheme, as well as the characteristics of global responses and local fields obtained numerically by the
XFEM. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The extended/generalized finite element method (XFEM) (Moës et al. [1], Strouboulis et al.
[2], Karihaloo and Xiao [3], Babuška et al. [4], Xiao and Karihaloo [5]) is promising for the
simulation of cracking or failure process in materials and structures. It enriches the standard local
FE approximations with known information about the problem, such as a displacement discontinuity
across a crack, the asymptotic solution at a crack tip, or a strain discontinuity across an interface,
with the use of the partition of unity (PU) (Babuska and Melenk [6]). Therefore, in contrast with the
FEM, it avoids the use of meshes conforming with the discontinuity and also adaptive remeshing
as the discontinuity grows.

Cohesive zone (or crack) models (Dugdale [7], Barenblatt [8], Hillerborg et al. [9]) have been
extensively used in the study of localization and failure in engineering materials and structures.
Elices et al. [10] have discussed the advantages and limitations of these models. In the most widely
used standard formulation of the cohesive crack model for quasi-brittle materials (see Figure 1), it
is assumed that the stress–strain behaviour is isotropic linear elastic, and that the crack is initiated
at a point where the maximum tensile principal stress �1 reaches the tensile strength ft of the
uncracked material, and that the crack is oriented normal to the direction of �1. An evolution
law is also postulated for the monotonic mode I loading so that the cohesive stress is a unique
function of the crack opening which, for concrete, decreases monotonically along the cohesive zone.
The cohesive crack propagates when the maximum tensile principal stress �1 at its tip reaches
ft . Although this standard formulation of the cohesive crack model is highly simplified, it is
able to capture the essence of the fracture process in concrete specimens and structures (see, e.g.
Karihaloo [11]).

Several researchers have studied cohesive crack propagation in quasi-brittle materials using the
XFEM. Wells and Sluys [12] and Moës and Belytschko [13] analysed a continuous cohesive crack
that runs through an existing FE mesh. Remmers et al. [14] studied the possibility of defining
cohesive segments that can arise at arbitrary locations and in arbitrary directions and thus allow for
the resolution of complex crack patterns including crack nucleation at multiple locations, followed
by growth and coalescence. de Borst et al. [15] have given a concise overview of the various
ways to numerically implement the cohesive zone methodology. They concluded that the XFEM
provides a proper representation of the discrete character of cohesive zone formulations avoiding
any mesh bias.

r
θ

x

y

w

σy(w) ft

traction-free

crack

cohesive

zone

KI = 0

Figure 1. A real traction-free crack terminating in a fracture process (cohesive) zone (FPZ) with residual
stress transfer capacity �y(w) whose faces close smoothly near its tip (KI = 0).The material outside the

FPZ is linear elastic, but within the FPZ is softening.
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In the XFEM formulation of the cohesive zone model, Wells and Sluys [12] used the jump
function as an enrichment function for the whole cohesive crack, hence the cohesive crack tip
touches the element boundary. Moës and Belytschko [13] used the jump function for the part of the
cohesive crack not adjacent to its tip, and a branch function adjacent to the tip. This approach can
handle cases in which the cohesive crack tip does not touch the element boundary. However, the
adopted branch function does not represent the true asymptotic nature of the displacement/stress
field adjacent to the cohesive crack tip. Hansbo and Hansbo [16] modelled strong and weak
discontinuities in solid mechanics by considering an element traversed by a discontinuity as a
double element each half of which is used for the interpolation of one side of the discontinuity.
This approach is difficult to use when the discontinuity ends within an element. Recently, Areias and
Belytschko [17] discussed the relationship between this approach and the XFEM. Zi and Belytschko
[18] enriched all cracked linear 3-node or quadratic 6-node triangular elements including the
elements containing the crack tip by the sign function. Alfaiate et al. [19] embedded displacement
jumps which do not need to be homogeneous within each FE. Mariani and Perego [20] introduced
in a standard FE model a cubic displacement discontinuity, in order to reproduce the typical cusp-
like shape of the process zone at the tip of a cohesive crack. However, this cubic function does not
represent the true angular distribution of the displacement adjacent to the tip.

Rubinstein [21] has shown that relatively small errors in the determination of the crack path
deflection angle can lead to a significant cumulative deviation of the crack path over a finite crack
length. Therefore, a reliable analysis of cohesive crack propagation requires not only a suitable
criterion of crack growth but also an accurate knowledge of the crack tip field. Recently, Xiao
and Karihaloo [22] have demonstrated that, for a crack with traction-free faces, when the crack
tip asymptotic field is available and used as enrichment function, the XFEM not only avoids the
use of a mesh conforming with the crack but it is also more accurate than the FEM. However, it
is necessary to ensure that the unknown coefficients of the crack tip field at the enriched nodes
are all equal to one another. Hence the XFEM can use a much coarser mesh around the crack tip.
However, when the enrichment function does not represent the true asymptotic nature of the crack
tip field, the mesh needs to be refined in the same manner as in the FEM. Thus it is advantageous
to use the true asymptotic fields around a cohesive crack tip in the XFEM.

In this paper, we will use the leading term of the displacement asymptotic field at the tip of
a cohesive crack in quasi-brittle materials obtained recently by Xiao and Karihaloo [23] as the
crack tip enrichment function for the simulation of cracking or failure process using the XFEM.
In the published literature (see, e.g. [12, 18–20]), incremental-tangent modulus iteration schemes
are frequently adopted. For many widely used cohesive crack models for quasi-brittle materials,
the softening law is composed of linear segments, e.g. linear and bilinear softening laws. It seems
possible to use the simpler incremental-secant modulus iteration strategy. This strategy has been
used by Moës and Belytschko [13] for a linear softening law, and by Karihaloo et al. [24] for a
bilinear softening law in the semi-analytical analysis of the cohesive zone in quasi-brittle materials.
The application of this strategy to non-linear softening laws composed of linear segments within
the XFEM will be detailed and demonstrated in this study.

In order to determine more accurately the direction of propagation of the cohesive crack tip,
Wells and Sluys [12] used non-local stresses at the tip to find the principal directions. These stresses
were calculated as a weighted average of stresses using a Gaussian weight function

w(r)= 1

(2�)3/2l3
exp

(
− r2

2l2

)
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where w(r) is the weight, l determines how quickly the weight function decays away from the
tip and is taken as approximately three times the typical element size, and r is the distance of
a point from the tip. At the end of a load increment, if the maximum principal tensile stress at
all integration points in the element ahead of the crack exceeds ft , a discontinuity is introduced
through the entire element. For each in-plane stress component, Mariani and Perego [20] fitted a
complete fourth-order polynomial to the stress values at the Gauss points belonging to a semi-circle
ahead of the process zone tip, with a radius up to eight times the element characteristic dimension
using the least-squares optimization. These stress recovery techniques have not paid attention to the
angular distribution of the stress adjacent to the crack tip. For this purpose, the statically admissible
stress recovery (SAR) scheme of Xiao and Karihaloo [22, 25], which has been shown to be very
powerful for the traditional FEM as well as the XFEM in linear elastic problems with traction-free
boundary segments, will be extended to cohesive cracks. SAR uses basis functions, which meet
the equilibrium equations within the domain and the local traction conditions on the boundary,
and moving least squares (MLS) to fit the stresses at sampling points (e.g. quadrature points)
obtained by the XFEM. Techniques for handling non-homogeneous tractions on the boundary will
be discussed. Furthermore, the normalization of local co-ordinates suggested by Zienkiewicz et al.
[26] will be employed to eliminate the possible ill-conditioning of MLS. The influence of different
weight functions on the recovered stresses of SAR will also be studied. The most widely used
stress recovery scheme (denoted as AVG) will also be used for comparison. AVG simply averages
the stress values at each node evaluated from adjacent elements by bi-linear extrapolation from the
Gauss points, and interpolates the averaged stresses using shape functions.

Finally, the cracking or failure process of several typical quasi-brittle material specimens with
linear and bilinear softening laws will be analysed to demonstrate the usefulness of the proposed
scheme, as well as the characteristics of global responses and local fields obtained numerically by
the XFEM.

2. INCREMENTAL-SECANT MODULUS ITERATION SCHEME FOR COHESIVE CRACK
MODELLING OF QUASI-BRITTLE MATERIALS USING XFEM

To model the cohesive cracks in the XFEM, a standard local FE displacement approximation
around the crack is enriched with discontinuous Heaviside functions along the crack faces behind
the crack tip including the open traction-free part, and the crack tip asymptotic displacement fields
at nodes surrounding the cohesive crack tip using the PU. The approximation of displacements for
an element can be expressed in the following form:{

uh(x)
vh(x)

}
=∑

i∈I
�i (x)

{
u0i
v0i

}
+ ∑

j∈J∩I
� j (x)H(x)

{
b1 j
b2 j

}
+ ∑

m∈Mk∩I
�m(x)

{
u(tip k)
m

v
(tip k)
m

}
(1)

where I is the set of all nodes in the element, (u0i , v0i ) are the regular degrees of freedom at node
i , �i is the FE shape function associated with node i , J is the subset of nodes whose support is
intersected by the crack but do not cover any cohesive crack tips, the function H(x) is the Heaviside
function centred on the crack discontinuity, and (b1 j , b2 j ) are the corresponding additional degrees
of freedom. Mk is the subset of nodes that are enriched around the cohesive crack tip k with the
asymptotic displacements u(tip k) and v(tip k). u(tip k)

m and v
(tip k)
m are enrichment functions adopted at

node m with corresponding nodal parameters independent of the other nodes.
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Figure 2. Body with a crack �c involving a cohesive zone �coh subjected to prescribed boundary tractions
F on �t and displacements u on �u .

Consider a domain � containing a crack �c, as shown in Figure 2. The boundary � is composed
of the segments �u , �t , and �c. The part of the crack on which a softening law is active, i.e. the
FPZ, is denoted by �coh. Prescribed displacements u are imposed on �u , while tractions F are
imposed on �t . The crack surface �c excluding �coh is assumed to be traction-free. The cohesive
tractions t+, t− are imposed on the upper and lower surfaces of �coh.

The virtual work equation without body forces is given by [12, 13]∫
�
r(u) : ∇sv d� +

∫
�coh

t · w(v) d�=
∫

�t

F · v d� (2)

where r is the Cauchy stress, and ∇s denotes the symmetric part of the gradient operator. The
displacements u must belong to the space U of kinematically admissible displacement fields

u ∈ U ={u ∈ U : u=u on �u,u discontinuous on �c} (3)

where the space U is related to the regularity of the solution. The test function v must belong to
the space V defined by

v ∈ V = {v ∈ V : v= 0 on �u, v discontinuous on �c} (4)

The cohesive tractions t= t+ = − t− and the separation w(v) = v− − v+ are related by a softening
law on �coh.

For a softening law composed of n linear segments, the relationship between the normal cohesive
stress and opening for the i th segment (i = 1, 2, . . . , n) can be expressed as

�y = fi − kiw (5)

where ry = t · n is the normal traction and w(v) =w(v) · n is the normal separation. The unit
normal is n=n+ = − n−, and n+,n− are the normals to the upper and lower surfaces of �coh,
respectively. ‘−ki ’ is the slope of the i th segment and ‘ fi ’ gives the �y-intercept. For simplicity but
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without loss of generality, the relationship (5) is used for both loading (w increases) and unloading
(w decreases) stages. The virtual work Equation (2) can thus be simplified to read∫

�
De(u) : e(v) d� −

∫
�coh

kiw(u)w(v) d�=
∫

�t

F · v d� −
∫

�coh

fiw(v) d� (6)

where D is the linear elastic stiffness of the uncracked material, and e the strain tensor. Substitution
of (1) into (6) gives a discrete system of equations [12, 13]. Since ki is a constant dependent on the
opening of the cohesive crack, Equation (6) can be solved using a secant modulus iteration scheme
when the length of the cohesive zone and external loads are given. The term secant modulus here
refers to the fact that the stiffness matrix of XFEM obtained from (6) relates directly the total
displacements to loads.

For a pure mode I problem, the first term of the asymptotic displacement field at the tip of a
cohesive crack corresponds to a non-integer eigenvalue that gives a normal displacement disconti-
nuity over the cohesive-crack faces. It has been derived in [23] and is

u = r3/2

2�
a1

[(
� + 1

2

)
cos

3

2
� − 3

2
cos

1

2
�

]
(7)

v = r3/2

2�
a1

[(
� − 1

2

)
sin

3

2
� − 3

2
sin

1

2
�

]
(8)

where �= E/[2(1+ �)] is the shear modulus; the Kolosov constant is � = 3−4� for plane strain or
� = (3− �)/(1+ �) for plane stress; E and � are Young’s modulus and Poisson’s ratio, respectively.
(r , �) represent polar co-ordinates at the cohesive crack tip (Figure 1). Displacements (7) and (8)
are used as the crack tip enrichment function in (1) for a mode I cohesive crack. The unknown
coefficient a1 depends on the softening law, and boundary and load conditions. It is considered as
an additional degree of freedom at relevant enrichment nodes in XFEM. We mention in passing
that in [23] complete asymptotic expansions for frictionless and frictional cohesive cracks have
been obtained which are analogous to the Williams expansions in brittle solids. These expansions
are valid for many commonly used separation laws, e.g. rectangular, linear, bilinear, exponential,
etc with or without Coulomb friction.

In the numerical implementation of the XFEM for cohesive crack modelling, the integration over
the domain in (6) is performed element by element using the quadrature rule in Xiao and Karihaloo
[22] with a slight modification. We divide an element containing the crack tip into quadrilaterals
whose boundaries align with the crack geometry as in [22]. However, we do not further subdivide
the quadrilateral including the crack tip into four sub-quadrilaterals scaled down to the crack tip
as in [22], since there is no singularity at a cohesive crack tip. An element cut by the crack but
not containing the crack tip is divided into quadrilaterals whose boundaries align with the crack
geometry. Fifteen order Gauss–Legendre quadrature is used for each quadrilateral of an element or
the whole element containing node(s) enriched with branch functions (7) and (8). In the cohesive
zone, the integration is performed by looping over all the segments. Three Gauss points are used
on a segment with its length close to the element size for an accurate integration of the branch
function.
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The flowchart for the simulation of the cohesive crack growth using an incremental-secant
modulus iteration scheme is as follows:

Prescribe information on mesh and any traction-free crack, if it exists.
Carry out initial linear analysis to judge at which point r1 (recovered by, e.g.
SAR) first reaches ft . The corresponding load is used as the initial load for the
next iteration.
Loop over cohesive zone increments
A cohesive segment of given length (user defined) is added at the location
(i.e. at the front of a pre-existing traction-free or cohesive crack) where the
maximum tensile principal stress �1 (recovered by, e.g. SAR) reaches ft . The
initial guess opening for the first increment is set to be zero. Otherwise, the
guess opening profile of the newly added cohesive segment is assumed to be
of cr3/2 type, where coefficient c is determined by the opening displacement
at the closest integration point of the previous cohesive crack segment.
The assumed load factor �1 for first load iteration is the converged value of
the previous increment.
Iteration for balance load
Secant modulus iteration for solving the displacement field using (6); for
a given external load and cohesive zone
If a linear softening law is used, the problem is linear and it is not
necessary to check the convergence, exit iteration.
When a non-linear softening law is used, if the ratio of the increment of
the crack opening displacement in the current iteration to the total
opening displacement (we just consider the part whose opening is
larger than 0.1 of the maximum opening) �10−4, the solution is deemed
to have converged and exit secant modulus iteration.

End secant modulus iteration
The stresses at the tip of the cohesive crack are calculated using AVG or
SAR.
If the maximum tensile principal stress �1 at the cohesive crack tip
satisfies | f (k−1)/ ft | = �(�1 − ft )/ ft�<10−3, exit iteration for balance load.
If | f (k−1)/ ft |�10−3, compute the load factor of the next iteration step (k)
using a secant method:

k = 2 : �(2) = �(1)(1.1 − 0.1�1/ ft ), f (1) = �1 − ft (9)

k > 2 : f (k−1) = �1 − ft

�(k) = �(k−1) − (�(k−1) − �(k−2)) f (k−1)/( f (k−1) − f (k−2)) (10)

If

∣∣∣∣∣�
(k) − �(k−1)

�(k−1)

∣∣∣∣∣> 0.1, �(k) = �(k−1)

(
1 + 0.05

�(k) − �(k−1)

|�(k) − �(k−1)|

)

End iteration for balance load
If the last cohesive segment away from the tip has an opening at its central
point w>wc, it is removed from the cohesive zone and treated as a traction-free
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segment. The opening profile of the remaining part of the cohesive zone
is used as the initial guess opening profile and the iterations for the new
balance load are started for the modified cohesive zone.
If w<wc, the balance load has been found for the current cohesive
increment.
Output converged results.
If stop criterion has met, exit cohesive zone increment.

End loop over cohesive zone increments

3. IMPROVEMENTS AND FURTHER STUDIES ON SAR

3.1. Elimination of possible ill-conditioning of the matrix

MLS interpolants are widely used in the literature nowadays (see, e.g. [22, 25]) and thus not
repeated here. In MLS smoothing of the stresses, the matrix may tend to become ill-conditioned
(especially for a finer mesh) when higher-order monomial terms are used. This was overcome by
using a larger domain of influence (DOI) including more sampling points in Xiao and Karihaloo
[25]. An alternative way is to introduce locally normalized co-ordinates running from −1 to +1 as
suggested by Zienkiewicz et al. [26]. This can be done as follows.

In the process of recovering the stress at a point with co-ordinates x̃ using MLS, when we
calculate the stress shape function of a sampling point with co-ordinates xI in the DOI (for which
the weight function w(x̃ − xI ) is non-zero), its co-ordinates xI are normalized to

xI = xI − x̃
rdoi

(11)

where rdoi is the radius of the DOI. In calculating the MLS shape function for point x̃, its normalized
co-ordinates x̃= 0 should be used instead of x̃.

According to (11), the equation of a boundary

n1x + n2y = p

(where (n1, n2) are the direction cosines of the unit outward normal to the boundary, and p is a
constant) will be changed into

n1x + n2y = p − n1 x̃ − n2 ỹ

rdoi
= p

3.2. Influence of weight functions and sensitivity to the size of DOI

We have tested four widely used weight functions. They are defined on 0�di�rdoi, or 0�di =
di/rdoi�1. When di > 1, all weight functions vanish. di = |x̃ − xi | is the distance between the
considered supporting point xi and the interpolation point x̃ . These weight functions and their first
and second derivatives are given below.

(I) Cubic polynomial:

wC (di ) = 1 − 3d
2
i + 2d

3
i (12)
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�wC (di )

�di
= −6di + 6d

2
i ,

�wC (di )

�di

∣∣∣∣∣
di = 1

= 0 (13)

�2wC (di )

�d2i
= −6 + 12di ,

�2wC (di )

�d2i

∣∣∣∣∣
di = 1

= 6 (14)

Equations (13) and (14) show that the application of the cubic weight function (12) leads to an
exact C1 continuous MLS interpolation function.

(II) Fourth-order spline function:

wS(di ) = 1 − 6d
2
i + 8d

3
i − 3d

4
i (15)

�wS(di )

�di
= −12di + 24d

2
i − 12d

3
i ,

�wS(di )

�di

∣∣∣∣∣
di = 1

= 0 (16)

�2wS(di )

�d2i
= −12 + 48di − 36d

2
i ,

�2wS(di )

�d2i

∣∣∣∣∣
di = 1

= 0 (17)

Equations (16) and (17) show that the application of the fourth order spline function (15) leads
to an exact C2 continuous MLS interpolation function.

(III) Gaussian exponential weight function:

wG(di ) = e−(di/	)2 − e−1/	2

1 − e−1/	2
, 	 = 0.4 (18)

�wG(di )

�di
= − e−(di/	)2

1 − e−1/	2
2di
	2

,
�wG(di )

�di

∣∣∣∣∣
di=1

= − e−1/	2

1 − e−1/	2
2

	2
≈ − 0.024 (19)

�2wG(di )

�d2i
= − e−(di/	)2

1 − e−1/	2

(
2

	2
− 4d

2
i

	4

)

�2wG(di )

�d2i

∣∣∣∣∣
di=1

= − e−1/	2

1 − e−1/	2

(
2

	2
− 4

	4

)
≈ 0.278

(20)

Equations (19) and (20) show that C1 and C2 continuity of the MLS interpolation function can
only be reached approximately by using the Gaussian weight function (18).

(IV) Regularized weight function:
Most and Bucher [27] presented a regularized weight function for meshless shape functions

to fulfil the interpolation conditions and the essential boundary conditions without any additional
effort. Their interpolation gives much more stable results for the element-free Galerkin (EFG)
method for varying size of the influence radius and for strongly distorted nodal arrangements than
other weight functions.
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The weight function value of node i at an interpolation point x̃ is

wR(di ) = wRi (x̃) = [d2i + 
]−2 − (1 + 
)−2


−2 − (1 + 
)−2
(21)

Assuming the regularization parameter 
�1 (Most and Bucher [27] suggested the choice 
= 10−5)

such that

dmin

D
	
1/2 (22)

where dmin is the minimal distance between two nodes, we have

|wRi (x j ) − �i j |max ≈
[(

dmin

D

)−4

− 1

]

2 (23)

�wR(di )

�di
= − 4(d

2
i + 
)−3di


−2 − (1 + 
)−2
,

�wR(di )

�di

∣∣∣∣∣
di = 1

= − 4(1 + 
)−3


−2 − (1 + 
)−2
≈ −4
2 (24)

�2wR(di )

�d2i
= − 4(d

2
i + 
)−3


−2 − (1 + 
)−2
+ 24(d

2
i + 
)−4 d

2
i


−2 − (1 + 
)−2

�2wR(di )

�d2i

∣∣∣∣∣
di=1

= − 4(1 + 
)−3


−2 − (1 + 
)−2
+ 24(1 + 
)−4


−2 − (1 + 
)−2
≈ 20
2

(25)

Equations (24) and (25) show that the application of the regularized weight function (21) leads
to a nearly C1 and C2 continuous MLS interpolation function when 
 is small. Which of the above
four weight functions gives the best results is discussed later in this section.

A finite plate with an inclined edge crack under uniaxial tension (ICLECT), as shown in
Figure 3(a), is used for tests on the influence of the above weight functions on the stresses recov-
ered by SAR. The geometrical parameters of the ICLECT considered here are: c= 0.6, w = h = 1,
ϑ0 = 30◦. The conventional bilinear isoparametric Q4 elements are used as background elements.
Plane stress conditions with unit thickness are assumed. All nodes on the bottom line (y = −1) are
fixed in the vertical (y) direction, but just the extreme left point (x = −0.5, y = −1) on the line is
fixed also in the horizontal (x) direction (i.e. the plate is subjected to uniaxial tension at both ends).
Uniaxial tensile stress �y = 1 is applied on the top boundary. Young’s modulus E = 1.0, and Pois-
son’s ratio � = 0.25. The ICLECT is divided into 80×160 square elements. Computational aspects
are similar to those detailed in [22]. We will use the singular term in the Williams expansion but
change its r term from r1/2 to r3/2. Only one layer of nodes surrounding the crack tip is enriched.
The quadrature rule in Xiao and Karihaloo [22] will be adopted in the following computations
without modification. 2 × 2 Gauss–Legendre quadrature points are chosen as sampling points for
SAR in all (enriched and un-enriched) elements.
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Figure 3. (a) A finite plate with an inclined edge crack under uniaxial tension (ICLECT); and (b) the mesh
pattern at the crack tip and three circles with radii r = 0.015, 0.03 and 0.05 corresponding to a uniform

division of 80 × 160 rectangular elements.

If the distance between a point and the crack is smaller than or equal to 1/
√
2 times the shorter

diagonal of the element containing the point, and if the line perpendicular to the crack passing
through this point crosses the crack, then a second order self-equilibrated stress field with six
parameters meeting the local traction-free boundary conditions [25] is used, and the size of DOI is
chosen as

√
2rdoi. Otherwise, a linearly self-equilibrated stress field with seven parameters meeting

homogeneous equilibrium equations [25] is used, and the size of DOI is chosen as rdoi. Based on
past experience [22] only two choices of rdoi have been tested: 1/

√
2 times the shorter diagonal

of the element containing the point for stress evaluation and length of the shorter diagonal of the
element. For brevity, we will summarize the results instead of presenting them in graphs or tables
to compare the efficiency of the adopted methods. The recovered stresses corresponding to the two
different rdoi are slightly different in the first two layers of elements surrounding the crack tip. The
difference reduces further away from the crack tip, and almost disappears in the fourth layer of
elements. For Gaussian exponential (18) and fourth order spline (15) weight functions, the stresses
may exhibit spurious oscillations, especially for a small rdoi. For the regularized weight function
(21), the sensitivity of the recovered stresses to rdoi is much weaker than that of the other three
weight functions when 
�(dmin/rdoi)2 (especially when 
�0.1(dmin/rdoi)2). However, the spurious
oscillations in the recovered stresses are more serious.

The weight function affects somewhat the recovered stresses. As expected, the difference between
different weight functions reduces with the distance from the crack tip, and almost disappears in
the fourth layer of elements. Overall, the cubic weight function (12) outperforms the rest. The
recovered stresses using Gaussian weight function (18), the fourth-order spline function (15) and the
regularized weight function (21) with 
= (dmin/rdoi)2 are almost identical. The recovered stresses
from the cubic weight function (12) are almost identical to those from the regularized weight
function (21) with 
= 10(dmin/rdoi)2. No ill-conditioning was observed in the MLS process, if the
local co-ordinates are normalized as in Section 3.1.

3.3. Treatment of non-homogeneous boundary tractions

The non-homogeneous traction conditions on the boundary (see Figure 4) can be treated by append-
ing suitable special terms to the statically admissible stress fields meeting traction-free conditions
on the boundary. If linearly distributed tractions are applied on the boundary segment AB of
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x'

y'
123

Figure 4. Linear and non-linear tractions on a boundary segment.

element ‘e’, these tractions correspond to stresses at nodes A and B as (�y′A, �x ′y′A) and (�y′B ,
�x ′y′B) in the local co-ordinate system x ′y′ with x ′-axis parallel with boundary AB and y′-axis
normal to it. The following self-equilibrated linear stress field in the local co-ordinate system can
be used to enforce the tractions on the boundary:

�0x ′ = 0

�0y′ = 
2 + 
5x
′ − 
6y

′

�0x ′y′ = 
3 + 
6x
′

(26)

where


2 = �y′Bx ′
A − �y′Ax ′

B

x ′
A − x ′

B
+ �x ′y′A − �x ′y′B

x ′
A − x ′

B


3 = �x ′y′Bx ′
A − �x ′y′Ax ′

B

x ′
A − x ′

B


5 = �y′A − �y′B
x ′
A − x ′

B


6 = �x ′y′A − �x ′y′B
x ′
A − x ′

B

If quadratically distributed tractions are applied on the boundary segment formed by the three
nodes with co-ordinates (x ′

1, y
′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), y

′
1 = y′

2 = y′
3 = y′

0, and given stresses (�y′1,
�x ′y′1), (�y′2, �x ′y′2), (�y′3, �x ′y′3), the following self-equilibrated quadratic stress field in the local
co-ordinate system can be used to enforce the tractions on the boundary:

�0x ′ = 0

�0y′ = 
2 + 
5x
′ − 
6y

′ + 
9x
′2 − 2
10x

′y′

�0x ′y′ = 
3 + 
6x
′ + 
10x

′2
(27)
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where


2 = �y′2 − 
5x
′
2 + 
6y

′
0 − 
9x

′2
2 + 2
10x

′
2y

′
0


3 = �x ′y′2 − 
6x
′
2 − 
10x

′2
2


5 = �y′2 − �y′1
x ′
2 − x ′

1
− 
9(x

′
2 + x ′

1) + 2
10y
′
0


6 = �x ′y′2 − �x ′y′1
x ′
2 − x ′

1
− 
10(x

′
2 + x ′

1)


9 = 1

x ′
3 − x ′

1

(
�y′3 − �y′2
x ′
3 − x ′

2
− �y′2 − �y′1

x ′
2 − x ′

1

)


10 = 1

x ′
3 − x ′

1

(
�x ′y′3 − �x ′y′2

x ′
3 − x ′

2
− �x ′y′2 − �x ′y′1

x ′
2 − x ′

1

)

This quadratic stress field meeting equilibrium and quadratic boundary traction conditions will
be appended to the stress field meeting traction-free boundary conditions used in Section 3.2 in the
SAR for simulations in the rest of this paper. The three points (not necessarily in the same element)
on the boundary with the central one closest to the point where stresses are evaluated are used to
construct the special stress field (27).

4. NUMERICAL RESULTS

In this section, we will analyse three typical mode I cohesive cracking problems of quasi-brittle
materials using the incremental-secant modulus iteration scheme discussed in Section 2. These
include a three point bend beam without any initial crack (Figure 5(a)) under linear and bilinear
softening laws (we have actually assumed a very small initial crack of length 0.1mm at the bottom
midpoint of the beam), and an edge cracked plate under uniaxial tension (Figure 5(b)) with a bilinear
softening law. A state of plane strain condition is considered for all specimens. The geometrical
parameters for the three-point bend beam and the uniaxial tensile plate shown in Figure 5 are

b= 150mm, l = 4b, t = b (28)

(t is the specimen thickness in the out-of-plane direction). The initial edge crack in the tensile plate
(Figure 5(b)) has a length of a0 = 15.1mm.

The beam and plate are discretized in the same way. Two meshes, as shown in Figure 6, are
used in the analysis. The coarser mesh consists of 50× 100= 5000 rectangular elements, giving a
total of 5151 nodes. The finer mesh consists of 150 × 120= 18 000 rectangular elements, giving
a total of 18 271 nodes. Both meshes are uniformly divided in x-direction. For the coarser mesh,
the central 50 layers of elements have an identical height (y-direction) of 3mm; the remaining
elements have an identical height of 9mm. Therefore, elements in the central zone are 3 × 3mm2

squares. For the finer mesh, the central 60 layers of elements have an identical height of 1mm; the
remaining elements have an identical height of 9mm. Therefore, elements in the central zone are
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Figure 5. (a) An un-notched three-point bend beam (TPB); and (b) an edge-cracked
plate under uniaxial tension.

1× 1mm2 squares. We will study global responses including the load–deformation behaviour and
the evolution of the cohesive zone, as well as local properties including the opening profile and
distribution of the cohesive stress in the cohesive zone, and displacements and stresses adjacent to
the cohesive crack tip. More precisely, the displacements and stresses along the circle r = 3.5mm
(the second layer of elements in the coarser mesh, or the fourth layer of elements in the finer mesh)
around the crack tip and along the line of extension of the crack are studied. The intention of using
two meshes is to study the mesh size sensitivity of the global responses as well as of the crack tip
fields. Furthermore, the results from the finer mesh will be used as a reference solution, since no
analytical solutions are available and the stresses from this mesh along the circle r = 3.5mm (the
fourth layer of elements) obtained by direct differentiation of the displacements agree quite well
with those obtained by the AVG and SAR, and can thus be regarded as accurate. The conventional
4-node bilinear isoparametric Q4 elements are also used as background elements. The first layer
of nodes surrounding the cohesive crack tip (the elements that include the crack tip k are defined
as the first layer elements of the crack tip with enriched nodes; the nodes in the first layer elements
are called the first layer enriched nodes) are enriched with (7) and (8). The potential fracture
locus coincides with the specimen’s axis of symmetry y = 300 and thus the boundary of the mesh.
However, in XFEM the crack is modelled by enriching the nodes on the crack faces with jump and
branch functions without the double nodes that are used in the traditional FEM.

In the simulation, the first increment of the cohesive crack is 4.4mm, then the cohesive crack
propagates by a segment of length 3mm after each step in the coarser mesh, and by three segments
of length 1mm each in the finer mesh.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2606–2635
DOI: 10.1002/nme



2620 Q. Z. XIAO, B. L. KARIHALOO AND X. Y. LIU

300

350

400

450

500

550

600

0 50 100 150
x

y

(a)

300

350

400

450

500

550

600

0 50 100 150
x

y

(b)

Figure 6. (a) Coarse; and (b) fine mesh for one half of the specimen to the left of mid-span (Figure 5).

Unless otherwise mentioned, the details of SAR are the same as in Section 3.2. The cubic
polynomial weight function (12) is used. rdoi is chosen as 1/

√
2 of the short diagonal of the

element containing the point for stress evaluation. The stresses at the tip of the cohesive crack
recovered by SAR are used to judge whether or not the tip will propagate.

For all examples studied below, the stresses for the finer mesh recovered by AVG and SAR are
identical along the circle r = 3.5mm and the line of extension of the crack. Therefore, all stress
results are for the coarser mesh, unless mentioned otherwise.

The dimensions of the displacement and length parameters are in mm, and those of the stresses
in MPa.

4.1. Three-point bend specimen with linear softening law

The initiation and growth of a cohesive crack in such a beam has been studied extensively by
Carpinteri and Colombo [28] using the FEM and the node release technique. The material properties
with linear softening law (Figure 7) are

E = 36.5GPa, � = 0.1, ft = 3.19MPa, GF = 50Nm−1 (29)

where E is Young’s modulus, � the Poisson’s ratio, and GF the specific fracture energy, and

�y = ft

(
1 − w

wc

)
(30)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2606–2635
DOI: 10.1002/nme



INCREMENTAL-SECANT MODULUS ITERATION SCHEME 2621

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
w /wc

σ
y/

ft

(w1/wc , f1/ft )

Linear law

Bilinear law

Figure 7. Linear and bilinear softening laws. The first and second branches of the bilinear diagram are
referred to as (1) and (2) in Figures (14) and (19).
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Figure 8. The non-dimensional load–midspan deflection curves of the
three-point bend beam (GF = 50Nm−1).

Similar to Moës and Belytschko [13], x-direction of nodes with co-ordinates (0, 0) and
(0, 600mm) and y-direction of the node with co-ordinates (150, 300mm) are constrained; the
load is distributed over a length of 6mm for the coarse mesh (Figure 6(a)) and 2mm (two ele-
ments) for the fine mesh (Figure 6(b)). Since a low Poisson’s ratio of 0.1 is used, the results are
believed to be close to [28] where a plane stress condition is assumed and a concentrated load was
considered.

The non-dimensional load–midspan deflection curves are shown in Figure 8. They are not
sensitive to the mesh size and agree very well with the results of Carpinteri and Colombo [28] and
Moës and Belytschko [13]. As the specific fracture energy is rather moderate (GF = 50Nm−1),
the snap-back in the global load–deflection curve (Figure 8) is not pronounced, and the curve is
not sensitive to the enrichment function [13] and the stress recovery technique used to determine
the stresses at the cohesive crack tip. The evolution of the cohesive zone size as the cohesive tip
travels through the beam shown in Figure 9, and the opening profile and distribution of cohesive
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Figure 9. Evolution of the cohesive zone size as the cohesive tip travels through the beam.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
x / b

w
/w

c

A

B C

Coarse mesh

Fine mesh

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x / b

σ
y/

f t

A

B

C

Coarse mesh

Fine mesh

Figure 10. Opening profile and distribution of cohesive stresses in the FPZ at
typical loading stages (see Figure 8).

stresses in the FPZ at several typical loading stages shown in Figure 10 are not sensitive to the
mesh size. The evolution of the cohesive zone agrees very well with Moës and Belytschko [13].
Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
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Figure 11. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
of the crack at loading stage A (Figure 8).
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Figure 12. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
of the crack at loading stage B (Figure 8).
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Figure 13. The non-dimensional load–midspan deflection curves of the three-point bend
beam with a bilinear softening law.
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Figure 14. Evolution of the cohesive zone size as the cohesive tip travels through the beam. (1) and (2)
correspond to the first and second branches of the bilinear softening diagram (Figure 7).

of the crack at loading stages A and B are shown in Figures 11 and 12, respectively. The basic
characteristics of the results for both stages are generally similar. Both displacements and stresses
on r = 3.5mm are sensitive to the local mesh size. However, the stresses for the coarser mesh
recovered by SAR are more accurate than direct differentiation and agree quite well with the
finer mesh. Along the line of extension of the crack, the displacement u in x-direction is quite
sensitive to the local mesh size, but not the stresses. The SAR is more accurate than AVG close to
the crack tip.

Note that close to the cohesive crack tip, the maximum values of the main stresses �x and �y
occur on the cohesive crack face. This feature of the stress distribution for this type of specimen
has also been noticed by Planas et al. [29].

The use of the enrichment function in the XFEM has been noticed to deteriorate the condition
of the discrete system [2, 30]. This does not affect global responses or the stresses and the strain
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Figure 15. Opening profile and distribution of cohesive stresses in the FPZ at
typical loading stages (Figure 13).

energy. However, it may affect significantly the displacements adjacent to the tip of the cohesive
crack, so that a direct comparison of the coarse and fine mesh patterns (Figure 6) adopted in the
analysis is not possible. Hence, we compare instead the displacements relative to the tip of the
cohesive crack.

4.2. Three point bend beam with bilinear softening law

We now study the beam in Section 4.1 with the properties and a bilinear softening law obtained
by Abdalla and Karihaloo [31] for a real normal strength concrete. The material properties are

E = 36.9GPa, � = 0.2

and the bilinear softening law (Figure 7) is described by

�y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ft

[
1 − w( ft − f1)

w1 ft

]
, 0�w<w1

f1wc

(wc − w1)

(
1 − w

wc

)
, w1�w�wc

(31)
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Figure 16. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
of the crack at loading stage A (Figure 13).
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Figure 17. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
of the crack at loading stage B (Figure 13).
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Figure 18. The non-dimensional tensile stress-central extension curves of the uniaxial
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Figure 19. Evolution of the cohesive zone size as the cohesive tip travels through the plate. (1) and (2)
correspond to the first and second branches of the bilinear softening diagram (Figure 7).

with

ft = 3.14MPa, f1 = 0.455MPa, wc = 0.279mm

w1 = 0.0373mm, GF = 122N/m (32)

The applied constraints and loadings in the simulation are the same as in Section 4.1.
The non-dimensional load–midspan deflection curves are shown in Figure 13. The evolution of

the cohesive zone size as the cohesive tip travels through the beam is shown in Figure 14. These
global properties reveal very weak mesh size sensitivity. The opening profile and distribution of
cohesive stresses in the FPZ at typical loading stages are shown in Figure 15. At loading stage B,
these properties are almost independent of the mesh size. However, their mesh size dependence
increases with the evolution of damage, as seen at loading stage C. Non-vanishing displacements
and stresses along the circle r = 3.5mm, and the line of extension of the crack at loading stages A
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Figure 20. Opening profile and distribution of cohesive stresses in the FPZ at
typical loading stages (Figure 18).

and B are shown in Figures 16 and 17, respectively. The basic characteristics of the results for both
stages are generally similar. Both displacements and stresses on r = 3.5mm are sensitive to the
local mesh size. However, the stresses for the coarser mesh recovered by SAR are more accurate
than direct differentiation and agree quite well with the finer mesh. Along the line of extension of
the crack, the displacement u in x-direction is quite sensitive to the local mesh size, but not the
stresses. The SAR is more accurate than AVG close to the crack tip.

It is interesting to note that the angular distribution of displacements and stresses for linear
(Figures 11 and 12) and bilinear laws (Figures 16 and 17) are quite similar.

4.3. Edge-cracked uniaxial tensile plate with bilinear softening law

Finally, we analyse an edge cracked plate under uniaxial tension shown in Figure 5(b). The material
properties including the adopted bilinear softening law are the same as in Section 4.2.

The variation of the tensile stress �y and displacement v in y-direction at the central point of the
loading edge is shown in Figure 18. Obviously, it shows no mesh dependency. The evolution of the
size of the cohesive zone corresponding to the two branches of the bilinear softening law is shown
in Figure 19. It also reveals very weak mesh dependence. The opening profile and distribution
of cohesive stresses in the cohesive zone are shown in Figure 20, and show some weak mesh
dependence. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2606–2635
DOI: 10.1002/nme



INCREMENTAL-SECANT MODULUS ITERATION SCHEME 2631

-1

-0.5

0

0.5

1

1.5

2

-180 -135 -90 -45 0 45 90 135 180

θ

-180 -135 -90 -45 0 45 90 135 180

θ

-180 -135 -90 -45 0 45 90 135 180

θ

-180 -135 -90 -45 0 45 90 135 180

θ

-180 -135 -90 -45 0 45 90 135 180

θ

r = 3.5

Coarse mesh

Fine mesh

-4

-3

-2

-1

0

1

2

3

4

(v
-v

ti
p)

×1
04

(u
-u

ti
p)

×1
04

r = 3.5

Coarse mesh
Fine mesh

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

σ
x

r = 3.5

Direct
AVG

SAR
Fine mesh

Direct
AVG
SAR
Fine mesh

Direct
AVG

SAR
Fine mesh

Direct
AVG

SAR

AVG

SAR
Fine mesh

2.7

2.8

2.9

3

3.1

3.2

3.3

σ
y

r = 3.5

-0.2

-0.1

0

0.1

0.2

τx
y

r = 3.5 

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7

0 10 20 30 40
r

0 10 20 30 40
r

0 10 20 30 40
r

0 10 20 30 40
r

(u
-u

ti
p)

×1
04

θ = 0

Coarse mesh

Fine mesh

Coarse mesh

Fine mesh

-12

-10

-8

-6

-4

-2

0

(v
-v

ti
p)

×1
04

θ  = 0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ
x

θ  = 0

2

2.2

2.4

2.6

2.8

3

3.2

3.4

σ
y

θ = 0

Direct

Fine mesh

Figure 21. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
of the crack at loading stage A (Figure 18).
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Figure 22. Non-vanishing displacements and stresses along the circle r = 3.5mm, and the line of extension
of the crack at loading stage B (Figure 18).
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of extension of the crack at loading stages A and B are plotted in Figures 21 and 22, respectively.
The basic characteristics of the results for both stages are generally similar. The displacements on
r = 3.5mm from the coarser mesh agree quite well with the finer mesh. The stresses for the coarser
mesh obtained by SAR are more accurate than the direct differentiation and AVG, and agree quite
well with the finer mesh. Along the line of extension of the crack, the displacement u in x-direction
is very sensitive to the mesh size, however the remaining non-vanishing displacement and stress
components are not. The agreement between AVG, SAR and the finer mesh is generally very good,
however, SAR is better than AVG close to the cohesive crack tip.

It is interesting to note that although the angular distribution of the displacement for the uniaxial
tensile plate (Figures 21 and 22) is completely different from that of the three-point bend beam
(Figures 11, 12, 16 and 17), the angular distributions of the stress are very similar.

5. CONCLUSIONS AND DISCUSSION

The normalization of the local co-ordinates makes the SAR more robust. The cubic weight function
seems the most appropriate for SAR. Non-homogeneous tractions on the boundary can be handled
by appending the proposed special stress fields.

The incremental-secant modulus iteration scheme is simple but powerful for the simulation of
cracking or failure of quasi-brittle materials using the cohesive crack model with softening law
composed of linear segments, e.g. the widely used linear and bilinear laws. It is stable, and converges
in just a few iterations until the very last stage of failure. Although only mode I problems are studied,
extension of the scheme to mixed mode problems with or without friction is straightforward. The
corresponding enrichment functions (counterparts of (7) and (8) for mode I) can be found in [23].

Global responses like load–deformation curves, and evolution of the cohesive zone, are not sen-
sitive to the size of the adopted mesh in the XFEM. However, local properties like the opening
profile and distribution of the cohesive stresses in the cohesive zone, especially crack tip displace-
ments and stresses are more sensitive to the mesh size. Although no singularity exists at the tip
of a cohesive crack, the stresses obtained by direct differentiation of the displacements are not
accurate, and cannot be used to predict accurately the growth of the tip. The SAR, which satisfies
exactly the non-homogeneous cohesive tractions, gives more accurate results than the widely used
AVG adjacent to the crack tip. Therefore, in the simulation of the failure process in quasi-brittle
materials using a cohesive model together with the XFEM, if high accuracy of the local fields is
required (e.g. these fields are used to judge the growth of the tip), a relatively fine mesh needs to be
used together with accurate stress recovery methods, such as SAR. For this reason, the evolution
of multiple cohesive cracks, as discussed in [14], should be treated with special care.

For mode I cohesive cracks, the stresses recovered by SAR are highly accurate along the line of
extension of the cohesive crack, and can be used directly to predict the growth of the crack. For
general mixed-mode cracks, further studies are required on whether the SAR stresses at the tip, or
on a small circle enclosing a few (e.g. one or two) layers elements around the tip should be used
to predict the growth of the crack.
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