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MAPPING CLOSURE APPROXIMATION TO CONDITIONAL DISSIPATION RATE

FOR TURBULENT SCALAR MIXING

GUOWEI HE� AND R. RUBINSTEINy

Abstract. A novel mapping closure approximation (MCA) technique is developed to construct a model

for the conditional dissipation rate (CDR) of a scalar in homogeneous turbulence. It is shown that the CDR

model from amplitude mapping closure is incorrect in asymptotic behavior for unsymmetric binary mixing.

The correct asymptotic behavior can be described by the CDR model formulated by the MCA technique.

The MCA approach is outlined for constructing successive approximation to probability density function

(PDF) and conditional moment.
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1. Introduction. The probability density function (PDF) approach has been shown to be a useful

tool in turbulence research. The systematic approach for determining the PDFs is by means of solving the

transport equations for the PDFs. In the PDF equations for turbulent scalar �elds, conditional dissipation

rate (CDR) appears as the only unclosed term [1]. The recently developed large-eddy simulation schemes for

turbulent reactive 
ow, such as �ltered PDF approach [2], conditional moment closure [3] and Lagrangian


amelet model [4] also appeal the CDR models.

No satisfactory closure model for CDR had been constructed until the mapping closure approach [5, 6]

was formulated. Amplitude mapping closure suggests a CDR model [7] whose form is separable in scalar

and time variables. The model is in good agreement with direct numerical simulation (DNS) for initially

symmetric binary mixing but fails in describing asymptotic behavior of the CDR for initially unsymmetric

binary mixing [8]. Girimaji [9] has developed a novel amplitude mapping closure approach in which the

reference �elds are time-dependent. The CDR model obtained from a time-evolving Gaussian reference �eld

still fails to describe the asymptotic behavior, but the one from a time-evolving Beta reference �eld can

successfully describe the asymptotic behavior. This strongly suggests that the amplitude mapping closure is

inadequate to describe the asymptotic behavior by itself.

In this paper, we will develop a novel mapping closure approximation (MCA) to make successive ap-

proximations to statistics of a scalar in homogeneous turbulence. This technique will be used to construct

a CDR model which accounts for the asymptotic behavior of the CDR. In Section 2, we will investigate the

asymptotic behavior of the CDR model from amplitude mapping closure and explain the reason why it fails

to describe the asymptotic behavior correctly. In section 3, we will outline the MCA technique for successive

approximation. In section 4, we will use the MCA technique to formulate a novel CDR model and compare

it with DNS results. We will conclude with a summary in section 5.
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2. Asymptotic behaviors of amplitude mapping closure. In this section, we will show that the

CDR model from amplitude mapping closure has incorrect asymptotic behavior for unsymmetric binary

mixing. We consider the simple case of a single conserved scalar Z(x; t) in incompressible homogeneous

and isotropic turbulence. With u(x; t) being the velocity �eld and � the molecular di�usivity, the evolution

equation for scalar Z is

@Z

@t
+ u � rZ = �r2Z:(2.1)

Here the boundary condition is periodic and the scalar is initially homogeneous and isotropic. Therefore,

the scalar Z(x; t) will remain homogeneous and isotropic for all time. We further assume that the scalar is

binary (0 or 1) and its initial PDF is a double-delta distribution:

P (Z; 0) =

8><
>:

A if Z = 0

1�A if Z = 1

0 if Z 6= 0 or 1;

(2.2)

where 0 � A � 1. A = 0:5 implies that the binary scalar has the same weights and the corresponding PDF

P (Z; 0) is symmetric with respect to Z = 0:5, while A 6= 0:5 implies that the binary scalar has di�erent

weights and the corresponding PDF P (Z; 0) is unsymmetric. DNS [10] has shown that the scalar PDF

P (Z; t) asymptotically approaches a Gaussian distribution, whether the initial double-delta distribution is

symmetric or unsymmetric. The mean hZi = 1 � A remains unchanged in turbulent mixing. The CDR

�(Z; t) = �h(rZ)2jZi is nearly parabolic. At early stages, the CDR maximum is located at Z = 0:5, the

mean of the initial interface of the binary scalar. The maximum then moves and �nally approaches the mean

hZi of the scalar, accompanied by a distortion of the parabola. Therefore, for an initially symmetric binary

scalar (A = 0:5), the maximum will remain �xed at Z = 0:5, where the mean of the scalar and the mean of

the initial interface are coincident. For an initially unsymmetric binary scalar (A 6= 0:5), the maximum will

shift to the mean Z = 1�A of the scalar from the mean Z = 0:5 of the initial interface.

Amplitude mapping closure assumes

Z = X(�0; t);(2.3)

where �0(x) is a homogeneous Gaussian random �eld. The governing equation for the mapping function X

is

@X

@t
= �h�20xi

�
� �0
h�2
0
i
@X

@�0
+

@2X

@�2
0

�
;(2.4)

where �0x is the spatial gradient of the scalar �0. The initial mapping function corresponding to (2.2) is

X(�0; 0) =

(
0 if �0 � 


1 if �0 > 
;
(2.5)

where 
 =
p
2erf�1(2A� 1). The exact solution of the equation (2.4) with the initial condition (2.5) is
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X(�0; t) =
1

2

�
1 + erf

�
�0 � 
e�p

2�

��
;(2.6)

where

�0 =
�0p
h�2
0
i ;

� = �
h�20xi
h�2
0
i t;

� =
p
exp(2�) � 1:(2.7)

We can calculate the CDR from the exact solution (2.6)

�(Z; t) = �
h�20xi
h�2
0
i

1p
2��

exp
�
�2 �erf�1(2Z � 1)

�2�
= �(0:5; t) exp

�
�2 �erf�1(2Z � 1)

�2�
:(2.8)

The most striking feature of the CDR model (2.8) is the separability of its form in Z and t. The

separability suggests that the CDR's shape remains unchanged although its amplitude decays with time. The

CDR maximum is located permanently at Z = 0:5 without any shift for either symmetric or unsymmetric

initial conditions. The permanent location of the maximum for unsymmetric initial condition [7, 8, 9] is

contrary to the known asymptotic behavior of the CDR. Therefore, the CDR model (2.8) from amplitude

mapping closure is not able to describe the asymptotic behavior of the CDR. The amplitude mapping closure

with a time-evolving Gaussian reference �eld gives a similar CDR model whose form is separable in t and Z

and also fails to describe the shift of the maximum. Therefore, the separation in form is the main reason for

the incorrect asymptotic behavior of the CDR model from amplitude mapping closure.

3. Mapping closure approximation. The basic idea of mapping closure is to represent an unknown

random �eld by mapping of a known random reference �eld. The statistics of the unknown random �eld

can be calculated from the mapping function and the known reference �eld. The governing equation for

the mapping function can be obtained from the evolution equation of the unknown random �eld and the

governing equation of its PDF.

Amplitude mapping closure assumes that the unknown random �eld can be mapped by a single known

Gaussian reference �eld: Z = X(�(x0); t) and a coordinate transformation dx0=dx = J(d�(x0)=dx0; t) that

accounts for turbulent stretching. The assumption [11] holds if and only if the spatial level crossing frequency

at which the unknown random �eld passes through a given value has a single maximum as a function of

that value. Therefore, the existence of the mapping function as well as the coordinate transformation is not

ensured for arbitrary unknown random �elds. Physically, a turbulent �eld exhibits eddies of di�erent length

and time scales so that it cannot be mapped by a single reference Gaussian �eld with a compact spectrum.

Therefore, it is necessary to introduce more reference �elds accounting for di�erent eddies of di�erent time

and length scales:

Z = X(�0(x; t); �1(x; t); � � � ; �n(x; t);x; t)(3.1)
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where �i, i = 1; � � � ; n, are reference �elds. So far, we have not imposed any constraints on the reference

�elds so that we have some freedom in choosing the reference �elds. For example, �0 could be Gaussian but

�1 could be a Beta random �eld.

A one-to-one mapping could be established arti�cially between (Z; �1; � � � ; �n) and (�0; �1; � � � ; �n).
Thus, we can calculate the PDF and the conditional dissipation rate of the scalar

P (Z;x; t) =

Z
P (�0; �1; � � � ; �n)

�
@X

@�0

�
�1

d�1 � � � d�n;(3.2)

h(rZ)2jZi = h(rX)2jZi:(3.3)

Here the integration is taken over the entire subspace of the composition �1; � � � ; �n. The ensemble average
is taken over the level surface on which (�0; �1; � � � ; �n) satis�es the constraint for a given Z

X(�0(x; t); �1(x; t); � � � ; �n(x; t);x; t) = Z:(3.4)

Introduction of more reference �elds is expected to improve the approximation accuracy of mapping

closure. The reference �elds might be chosen to be statistically orthogonal so that more information can be

introduced at less expenses. The hierarchy of mapping closure approximations with an increasing number

of reference �elds remains essentially non-perturbative. A perturbative approach, like the Wiener-Hermite

expansion [13], could lead to the same result, but would require a prohibitively large number of terms to

achieve the accuracy attainable with mapping closure based on a small number of reference �elds.

4. The model for conditional dissipation rate. Broad classes of mapping function are admissible

to MCA approach. The form to be considered here is

Z = Y (�0(x); �1(t); t);(4.1)

where �0(x) is a homogeneous random Gaussian �eld in space and �1(t) an inhomogeneous random Gaussian

�eld in time. Amplitude mapping closure requires �1(t) = 0, which fails in the asymptotic behavior of

conditional dissipation rate due to lack of an independent time-evolving reference �eld.

Following the standard method [11, 12], we can formulate the mapping equation:

@Y

@t
+

@Y

@�1
hd�1
dt

jZi = �hurY jZi+ �hr2Y jZi:(4.2)

The conditional averages in (4.2) can be evaluated by homogeneity of the velocity and scalar �elds and

Gaussianity of the reference �elds

hurY jZi = 0;

hd�1
dt

jZi = �1
2h�2

1
i
dh�21i
dt

;

hr2Y jZi = ��0 h�
2
0xi

h�2
0
i
@Y

@�0
+ h�20xi

@2Y

@�2
0

(4.3)
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Fig. 4.1. Normalized CDRs �(Z; t)=F (t) for the initially unsymmetric double-delta distribution with A = 0:6. Line (DNS)

and plus (model): initial CDRs; Dash (DNS) and diamond (model): �nal CDRs.

An exact solution can be obtained from (4.2) with the evaluated conditional averages (4.3) and the initial

condition (2.5) which requires �1(0) = 0

Y =
1

2

�
1 + erf

�
�0 � 
e�p

2�

�
+

�
1� exp[�1 � h�1i+

Z t

0

hd�1
dt

jZidt]
�
(2hZi � 1)

�
:(4.4)

We will calculate the CDR �(Z; t) = �h(rY )2jZi, where ensemble average is taken over the level surface

on which (�0; �1) satis�es Y (�0; �1; t) = Z. The expression obtained is then simpli�ed by the �rst-order

approximation of its Taylor expansion with respect to the mean h�1(t)i. This leads to

�(Z; t) = F (t) exp

2
4�2

 
erf�1[(2Z � 1)� (1� 1p

1 + f�1t
)(2hZi � 1)]

!235 ;(4.5)

where

F (t) =
f�0p
2��

;

f�0 = �
h(�x0)2i
h�2
0
i ;

f�1 =
dh�21i
dt

=h�21i:(4.6)

The time scales f�0 and f�1 are parameters of the present closure which must be input externally. Usually,

they are reset at each time using a dynamical scheme, such as f�0 = �h(rZ)2i=hZ2i and f�1 = f�0 , so as to

give correct evolution of the CDR. The CDR model (4.5) is compared with DNS of the di�usion equation

with � = 1. In the case of homogeneity, the use of the di�usion equation to validate the CDR model for

turbulent mixing has a reasonable justi�cation. Figure 4.1 shows the initial and �nal CDRs obtained by
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the DNS and the CDR model (4.5) for the initially unsymmetric binary scalar with mean hZi = 0:4. For

exhibiting the shift of the maximum, the CDRs are normalized by their amplitudes F (t) and (4.5) is rescaled

by the scalar's variances.

The CDR model (4.5) is no longer separable in Z and t. Its shape will shift while its amplitude decays

with time. It is easy to verify �(0:5; 0)=F (t) = 1 and �(hZi;1)=F (t) = 1 so that the location of maximum

dissipation shifts from initial interface Z = 0:5 to the scalar's mean Z = hZi. While hZi = 0:5, the equation

(4.5) recovers the CDR model (2.8) from the amplitude mapping closure. Therefore, the CDR model (4.5)

correctly describes asymptotic behaviors of CDR: the CDR's maximum asymptotically approaches Z = hZi,
while initially being at Z = 0:5. We emphasize that (4.5) is the �rst term of the Taylor expansion of the

CDR obtained from (4.4) with respect to the mean h�1(t)i. This simpli�ed form gives the correct initial

and asymptotic behavior of the unsymmetric binary mixing at the expense of an inaccurate description of

the intermediate behavior. Indeed, it is well-known [9] that at short times, the CDR remains symmetric

about the location of the initial interface. The symmetry point (location of maximum dissipation) begins to

shift only after the elapse of a �nite amount of time, depending on the extent of the initial asymmetry [14].

The present model predicts that the symmetry point begins to move immediately. A model which is also

accurate at short times can be formulated from (4.4) in the general form

�(Z; t) = F (t) exp
h
�2 �erf�1[(2Z � 1)� (1� f(t))(2hZi � 1)]

�2i
;(4.7)

where f(t) is a time-dependent function with f(0) = 1 and f(+1) = 0. The time-dependent function f(t)

is responsible for the shift of the CDR's shape. However, it is very di�cult to write its expression explicitly,

which needs a time scale as same as the case of amplitude function F (t).

It has been shown that the mapping (4.1) is an appropriate approximation for a scalar gradient �eld.

However, it is not expected that the mapping (4.1) makes the same accurate approximation to the scalar �eld

as it does to the scalar gradient �eld itself. The reason is that a homogeneous random �eld is statistically

orthogonal to its gradient �eld. The amplitude mapping (2.3) is an appropriate approximation to scalar

�elds but fails to approximate its gradient �eld. Generally speaking, the mapping closure carried out at the

level of single-point PDFs is not valid for two-point PDFs such as gradient �elds. This is the motivation to

develop mapping closure approximation of higher orders. We expect that a higher-order approximation to a

random �eld could produce a correct description of its gradient �eld.

5. Conclusion. We have developed a novel model of the conditional dissipation rate for turbulent mix-

ing. The model is able to describe the asymptotic behavior of the CDR for either symmetric or unsymmetric

initial double-delta distributions. The amplitude mapping closure has unsatisfactory asymptotic properties

for the shift of the CDR's maximum. The problem can be solved using the extended mapping closure ap-

proximation developed in this paper. Further research is to account for the evolution of scalar variance by

extending the CDR model (4.5) . MCA can incorporate the e�ect of multiple time and length scales of

practical interest in its predictions using more than one reference �eld. It provides a useful approach to

describe statistics of turbulent mixing.

The author (G. W. He) is grateful for the very valuable discussions on the conditional dissipation rate

with G. Kosaly and H. Pitsch. Special thanks are due to G. Kosaly for pointing out the exact solution (2.6).

We thank S. S. Girimaji for his valuable comments on the shift process of the symmetric point.
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