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Abstract

The strengthening behavior of particle-reinforced metal-matrix composites (MMCp) is primarily attributed to the dislocation
strengthening effect and the load-transfer effect. To account for these two effects in a unified way, a new hybrid approach is
developed in this paper by incorporating the geometrically necessary dislocation strengthening effect into the incremental micro-
mechanical scheme. By making use of this hybrid approach, the particle-size-dependent inelastic deformation behavior of MMCp is
given. Some comparisons with the available experimental results demonstrate that the present approach is satisfactory. © 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Particle-reinforced metal-matrix composites (MMCp)
have the potential to provide desirable mechanical prop-
erties including high specific stiffness, specific strength,
and high creep resistance. This suite of properties makes
MMCp strong candidates for use in aerospace, defense
and automobile applications. As a class of microstructure-
sensitive materials, the mechanical behavior of MMCp
depends significantly on the reinforcement pattern. There-
fore, the understanding of the relationship between the
strengthening behavior and the microstructure is a critical
issue in developing advanced MMCp.

It is generally recognized that two types of strength-
ening may occur in MMCp: direct and indirect. Direct
strengthening results from load transfer from the metal
matrix to the reinforcing particle whereas indirect
strengthening results from the influence of reinforcement
on matrix microstructure or deformation mode. One
example of indirect strengthening is the dislocation
strengthening induced by the deformation mismatch
between the reinforcement and the matrix. To explain the
load-transfer effect, various continuum models including
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the shear-lag theory [1-3] and the homogenization
methods [4-9] have been proposed during the past sev-
eral decades. The shear-lag theory assumes that the load
transfer occurs between a high-aspect-ratio reinforce-
ment and the matrix by means of shear stresses at the
particle-matrix interface. By this mechanism the parti-
cle can act as a “reinforcement” to bear some of the
load. The original model [1] only accounts for the shear
transfer of load along the interphase parallel to the
applied load. Modifications have subsequently been made
by Nardone and Prewo [2] and Piggot [3] for the case of a
small aspect ratio of reinforcements. By contrast with the
shear-lag theory, the homogenization method addresses
mainly on the stress allocation between the reinforce-
ment and the matrix in a volume average sense, so that
the load-transfer effect can be included. Once the stress
concentration factors of the constituents are known, the
overall strengthening behavior of MMCp can be deter-
mined by the analytical approach for linear composites
and by the finite-element method [4,5], the secant modulus
method [6,7] or incremental method [8,9] for non-linear
composites.

It is noted that continuum models lead to a dependence
of deformation behavior on the volume fraction of the
reinforcing particle but not on particle size. However,
several recent experimental studies [10-12] have clearly
displayed a significant effect of the particle size on
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inelastic behavior of MMCp. To understand the parti-
cle-size effect, dislocation models [13,14] and the strain
gradient plasticity theory [15] have been developed in
the past. Nevertheless, these models lead to a smaller
increase in the yield strength than the observations in
experiments due to the fact that only indirect strengthening
was involved. Recently, some strain gradient-dependent
bounds on the overall behavior of linear and nonlinear
composites have been developed by Smyshlyaev and
Fleck [16,17] for addressing the size effect in composites.

In view of the aforementioned observations, a new
hybrid micromechanical approach, namely a marriage
of the geometrically-necessary dislocation model and
the incremental micromechanical scheme, is developed
in this paper. In this hybrid approach, both direct and
indirect strengthening effects are included. A comparison
with the available experimental results demonstrate that
the present new approach is quite satisfactory.

2. Dislocation strengthening behavior

It is well known that the microstructure and properties
of the composite matrix or in situ matrix may be sig-
nificantly different from those of the unreinforced matrix
alloy. The presence of particles induces an inhomgeneous
deformation pattern in MMCp even if the composite is
subjected to uniform loading (as shown in Fig. 1) and
high dislocation density in the composite matrix, thus
leading to a higher yield strength in the composite
matrix. The increase in the dislocation density in the
composite matrix is assumed to be mainly due to the
elastic modulus (EM) mismatch and the coefficient of
thermal expansion (CTE) mismatch between the matrix
and the reinforcement. The dislocations generated by
EM mismatch and CTE mismatch can be considered as
two examples of geometrically necessary dislocations of
Ashby [18].

2.1. EM mismatch

Consider a MMCp subjected to a compressive load-
ing, as is shown in Fig. 2a. Subscripts “m”, “p”’, and
“c” stand for the matrix, the particle and the composite
respectively. To determine the geometrically necessary
dislocation density, an idea similar to Eshelby’s equiva-
lent inclusion principle [19] is adopted. Firstly, imagine
that all particles in the MMCp sample of Fig. 2a are
replaced by the matrix material, thus particles turning
into ““matrix spheres”. So, the whole body of this matrix
sample will experience a uniform deformation ¢ when the
sample is subjected to a uniform compressive loading. In
this case, those “matrix spheres” will be distorted into
“matrix ellipsoids”. However, in the real MM Cp sample
such a distortion will not be allowed to take place
because of the existence of the reinforcing particles.

Fig. 1. Inhomogeneous plastic deformation pattern in SiCp/2124 Al
composites under compressive loading [10]: (a) 13 um; (b) 37 pm.
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Fig. 2. Configuration and EM-mismatch dislocation model for MMCp
under compressive loading: (a) configuration; (b) dislocation model.

Hence, a lot of geometrically necessary dislocations must
be stored near the surfaces of particles for accommodat-
ing this distortion deformation (Fig. 2b). According to
the deformation-geometry condition, the number of the
geometrically necessary dislocation loops imposed on
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the surfaces of particles to accommodate the mismatch of
plastic deformation n®M is approximately estimated by

n™p = ed, (1

where b is Burgers vector, djpis the diameter of particles.
Assume the volume fraction of particles is denoted by
Jp, then the total number of particles Ny, is

Ny =22 ©)

If the length for each dislocation loop is taken as wd,,
then the geometrically necessary dislocation density for
EM mismatch is

of,
M _ Yp
PG _bdp€ (3)

2.2. CTE mismatch

When a MMCp is quenched from Ty to T, resulting in
a temperature change AT = Ty — T, mismatch strain
ecte will be induced in particles and it is given by

ECTE = (Cm - Cp)AT: AC-AT (4)

where Cy,, Cp are CTE of the matrix and the particle,
respectively. For a real hard-particle MMC, such a defor-
mation mismatch will be constrained by the particle.
Thus, in order to accommodate this thermal mismatch
deformation, amounts of geometrically necessary loops
will be imposed around the surfaces of particles. The
number of the dislocation loops imposed on each parti-
cle for CTE mismatch n“TF can be approximately esti-
mated by

b, = AV, (5)

where A, = ;7d} is the area of dislocation loop, AV}, =
37d)-AC-AT is the volume change due to CTE mis-
match. Thus, #n°TE can be written as

WCTE _ 2d,AC-AT ©)
b

The length for each loop is assumed to be 7d,. So, the
total geometrically dislocation density due to CTE mis-
match is given by

cre 12/,AC-AT
pG - =

i (7

It is seen from Egs. (3) and (7) that the geometrically
necessary dislocation density to accommodate EM

mismatch and CTE mismatch for the small particle is
higher than that for the large particle.

The increased dislocation density in MMCp leads to
the in situ matrix being of higher yield strength over the
unreinforced metal matrix. For this case, the yield
strength of the in situ matrix is given by

Omy = Omo + Ao (®)

where oy, omo are the yield strength of the in situ
matrix and the unreinforced matrix, respectively. While
Ao the total increment in yield stress of the in situ
matrix and can be estimated by [20]

Ao = /(Ao +(Aocre) ©)

Here, Aogm, Aoctg are determined by Taylor dis-
location strengthening relation:

Aoem = V3apmb pEM (10)

AoctE = ﬁﬂumb\/ pSTE (11)

where s the shear modulus of the matrix, two disloca-
tion strengthening coefficients « and B are taken respec-
tively to be 0.5 and 1.25 in subsequent calculations.

3. Incremental micromechanical scheme

Instead of adopting the shear lag theory, the incre-
mental micromechanical scheme is used here to char-
acterize the load transfer effect. The incremental self-
consistent scheme was first developed by Hill [21] and
Hutchinson [22] to predict the overall mechanical behavior
of polycrystalline aggregates. In extending this method to
the inclusion based composites, some researchers, e.g.
Ponte Castaneda and Sequet [23], have found that the
method gives predictions that violate rigorous bounds.
However, in our recent extension, this phenomenon was
not found and our extended incremental method gives
slightly softer predictions than those of the secant
methods [9]. The full information on our incremental
method and its applications to MMCp with progressive
interface damage will be discussed in another paper.
Here, only the principal idea of the incremental scheme
is outlined.

Consider a MMCp consisting of elastic spherical par-
ticles perfectly bonded to a nonlinear metal matrix. The
local constitutive behavior of constituents can be char-
acterized by a strain potential U(o):

AU (o)
.=t

o (12)
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This constitutive model is commonly used to repre-
sent a number of nonlinear mechanical phenomena,
including time-independent plastic deformation (i.e.
deformation theory of plasticity) and time-dependent vis-
cous deformation (e.g. high temperature creep) of metals.
In the first case, o and ¢ are the infinitesimal stress and
strain tensors. In the second case, o and ¢ should be
identified with the Cauchy stress and Eulerian strain
rate, respectively. For simplicity, attention is focused on
a class of isotropic materials for which U(o) reads as

Ulo) = 5.2+ ¢(00) (13

where k is bulk modulus, oy = r(0)/3 and o, =
(3s:s/2)"/? are the first two invariants of o, while s is
the deviatoric stress. By differentiation with respect to
time, the local constitutive relation (12) can be expressed
in the incremental form:

&= Myo): 0o (14)
where M(o) is the local tangent compliance tensor for

the constituents. Following the spectral decomposition
used by Ponte Castaneda [24], M(o) can be written as

1 1 1

M =—J+—K+-F 15

(o) =35l 5, K+ (1)
where

@ @ @ @ @

J=1Q® 1/3 K=1-1®1)/3
F=5®3s §=s/o. (16)
while

k = om/[30U(0)/3tr(0)] 1 = 0c/3'(0c)
A= (4/9)[06/(06(p//(a€) - (p/(ae)]

¢'(0e) = dp(0e)/d0e ¢ (0e) = 82@(06)/8206 (17)
(2) “)

where [ and [ are the second-rank and the fourth-rank

unit tensors, respectively.

In general, the local tangent compliance tensor M (o)
is anisotropic and varies from one point to another, a
simplified assumption is made and constant tangent
tensor is considered in nonlinear matrix phase. How-
ever, M(o) is the stress-state dependent and evaluated
at some effective stress for the matrix phase. It is noted
that the tangent compliance tensor defined by (15)
depend not only on the first two stress invariants
(equivalently, o, and o.) but also on F=3§® § which
cannot be completely determined by the first two stress

invariants. Hence, the currently-defined tangent com-
pliance tensor can, at least partly, reflect the effect of the
third stress invariant. It is this point that differs from
the widely-used secant method [25] where the effect of
the third stress can not be incorporated. For some cases,
such as power-law materials reinforced by rigid parti-
cles, Lee and Mear [26] and Suquet and Ponte Casta-
neda [27] have demonstrated that the effect of the third
stress invariant cannot be ignored.

The overall stress-strain behavior of MMCp can be
characterized by the following incremental constitutive
relation:

§=M(5): o (18)

where o, ¢ are the macroscopic stress and strain for the
composite. While M, is the overall or effective tangent
compliance tensor of the composite. Usually, determin-
ing M, is very difficult due to involving in solving the
anisotropic-matrix inclusion problem. In our present
scheme, M, is determined by the generalized self-con-
sistent Mori—-Tanaka method which was recently devel-
oped by Dai et al. [28]

My =M™ + £ (M — M)

] - (19)
[(1 —fo)M™  H o M® +fi,(?:|

where M™, M® are the tangent compliance tensors of
the matrix and the particle, respectively. While the
inclusion/matrix interaction strain concentration tensor
H is defined by

=" +P: (prf‘ - M?“Vl) (20)

where P is related to Eshelby tensor of particle S by
P=S: Mﬁm), S was given by Mura [29] for the aniso-
tropic-matrix inclusion problem.

The overall behavior of nonlinear MMCp can be
modeled by a series of incremental steps. In each incre-
mental step, the nonlinear composite will be character-
ized by a linecar one so that the average stress in
nonlinear matrix phase can be determined by making
use of the linear homogeneous approach. In this paper
we consider the case that the matrix phase is nonlinear
and the spherical particle remains elastic in the course of
whole deformation procedure. Since the tangent com-
pliance of nonlinear material depends on the current
stress state in the considered material, the average stress
in the matrix at each incremental step should be deter-
mined. Once the average stress of the matrix is deter-
mined, the local tangent compliance tensor of the
matrix phases can be obtained from Eq. (15). Then, the
overall tangent compliance tensor of the composite can
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be estimated by (19) for each incremental step. Hence,
the overall stress-strain curve for the composite can be
obtained point by point using the incremental con-
stitutive relation (18).

4. Size-dependent inelastic behavior

To predict the particle size-dependent behavior of
MMCp, a new hybrid approach, namely incorporating
the dislocation strengthening effect into the incremental
micromechanical scheme, is presented in this section.
Although the dislocation model and strain gradient
theory can predict particle size and volume fraction-
dependent behavior of MMCp, our recent study [15],
however, has demonstrated that these models lead to a
smaller increase in yield and flow strength than was
observed in experiment of Ling et al. [10,11], which is
shown in Fig. 3. On the other hand, the incremental
micromechanical scheme does not directly predict a par-
ticle size dependence on deformation behavior, although
a dependence on volume fraction is predicted. However,
recent experimental results have clearly demonstrated
that both particle size and volume fraction exert an
influence [10-12]. Therefore, we hope the present hybrid
approach can give a reasonable prediction of the particle
size-dependent behavior of MMCp.

The key point involved in this hybrid approach lies in
replacing the yield stress of the unreinforced metal
matrix (omo) by that of the in situ matrix (oy), as shown
in Eq. (8). To check the utility of the present hybrid
approach, comparisons with the available experimental
results are made here.

1500
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Fig. 3. A comparison of uniaxial compressive stress—strain curves
predicted by the strain gradient law [15] with the experimental data
[10] for SiCp/2124 Al composite.

To investigate the particle size effect, a series of uniaxial
compression tests of 2124A1 and 2124A1 reinforced with
17% volume fraction of 3, 13, and 37 um SiC particles
were carried out by Ling et al. [10,11]. Recently, Lloyd [12]
performed uniaxial tension tests on A356 aluminum alloy
and 15% Vol. SiCp/A356 composites with two particle
sizes, 7.5 and 16 um. Both these two types of experi-
ments displayed a pronounced increase in yield and flow
strength of the composites with decreased particle size.
The pertinent mechanical and physical properties for
both kinds of materials are listed in Table 1. While the
uniaxial stress-strain behavior for both 2124 Al and
A356 alloy can be modeled by an empirical power law
such as the Ramburg—-Osgood relation

1/n
e=— gm0 (") 1)

En Em \omo

equivalently, this uniaxial stress-strain relation can be
characterized by the following nonlinear strain potential
U(o):

ntl

1, n o2 ( oe g
= = — 22
v om T n+ 1 En \Omo -

2
2o o +§

6m

where Ramberg—Osgood factor & is taken as 3/7,
km, mm, Em arethe bulk, shear, and Young’s moduli of
the matrix, respectively. n is the strain hardening expo-
nent, oy, 1s the yield stress of the unreinforced matrix and
should be replaced by that of the in situ matrix oyy in
the present hybrid approach. Table 2 shows the para-
meters in Ramberg—Osgood equation, n, o, Which are
obtained by fitting Eq. (21) to the unreinforced matrix
alloy flow curves given in Refs. [10] and [12].

Figs. 4 and 5 present the comparison of the predicted
uniaxial stress-strain curves by the hybrid approach
with the experimental results of Ling et al. [10,11] and
Lloyd [12], respectively. From Figs. 3-5, we can see that

Table 1
Material properties

Parameter Unit 2124 Al A356 SiC

Young’s modulus GPa 72 70 427
Poisson ratio 0.31 0.33 0.17
CTE x107¢/°C 24 23.6 43
Burgers vector nm 0.283 0.283

Table 2
Ramberg—Osgood parameters

Matrix alloy n omo (MPa)

2124 Al 0.089 354
A356-T6 0.110 208
A356-T4 0.213 85
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Fig. 4. Uniaxial compression stress—strain behavior for SiCp/2124 Al
composites (symbol points: experimental data [10]; solid lines: predicting
data).
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Fig. 5. Uniaxial tension stress—strain behavior for SiCp/A356 compo-
sites (symbol points: experimental data [12]; solid lines: predicting data):
(a) SiCp/A356-T4 Al composite; (b) SiCp/A356-T6 Al composite.

the present hybrid approach gives a much better pre-
diction (Figs. 4 and 5) than that of the strain gradient
theory (Fig. 3). The reason for this point is that the
strain gradient theory only considers the indirect
strengthening (dislocation strengthening) whereas the
present hybrid approach includes both direct strengthen-
ing (load transfer from the matrix to the reinforcing par-
ticles) and indirect strengthening. This tells us that both
direct and indirect strengthening effects should be con-
sidered in order to predict accurately the size-dependent
inelastic behavior of MMCp. For large particle case,
d,>10 pm, a slight deviation of the theoretical results
from the experimental data can be found. This may be
due to the intrinsic limitation of the dislocation
strengthening model, because the dislocation strengthen
behavior has been turned out to be modeled effectively
for small particle by many researchers. Undoubtedly, the
further attempts are still necessary to understand such a
deviation phenomenon. In spite of these, the comparison
demonstrates that the present hybrid approach is satis-
factory on the whole.

5. Conclusions

By incorporating the dislocation strengthening effect
into the incremental micromechanical scheme, a new
hybrid approach is developed in this paper for character-
izing the particle size-dependent inelastic deformation
behavior of MMCp. In the present hybrid approach, both
direct strengthening (load transfer) and indirect strength-
ening (dislocation strengthening) effects are incorporated.
Comparisons with the available experimental results
demonstrate that the present hybrid approach is satis-
factory.
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