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Abstract 

A hierarchical model is proposed for the joint moments of the passive scalar dissipation and the velocity dissipation in 
fluid turbulence. This model predicts that the joint probability density function (PDF) of the dissipations is a bivariate 
log-Poisson. An analytical calculation of the scaling exponents of structure functions of the passive scalar is carried out 
for this hierarchical model, showing a good agreement with the results of direct numerical simulations and experiments. @ 
1998 Published by Elsevier Science B.V. 

PACS: OS.6O.+w; 41.27.-i; 41.27.G~ 

The transport of a passive scalar field such as tem- 

perature, T, is governed by the advection-diffusion 
equation, 

aT 
x+(u.V)T=DAT, (1) 

where D is the diffusion coefficient, and u is the 

solenoidal velocity field governed by the Navier- 
Stokes equations, 

au 
;il+(u.V)u=-VP+vaU+f. (2) 

Here f is the external force, P is the pressure and Y 
is the kinematic viscosity. In the stationary unforced 

inviscid and nondiffusive limit (v, D + 0), ( 1) 
and (2) are invariant under a scale transformation: 

(t,u,x,T) -+ (A-(t-“)t, A-Ix, A%, AhT), where 

x is the spatial coordinate vector, A is an arbitrary 
positive real number and h is an arbitrary real num- 

ber. For the inertial-convective subrange where the 

velocity is no influence of viscosity and the scalar is 

simply transported by the velocity field [ 1 1, this scale 
invariance implies that the structure functions for the 

velocity and for the passive scalars obey power laws. 
Dimensional analysis suggests that nth-order struc- 
ture functions of velocity and passive scalars obey the 
following linear scaling relations [ 2-41, 

((Sup)“) - !“‘j, ((6T!)“) - l”‘3y (3) 

where SUE E u( x + C) - U(X) is the longitudinal ve- 
locity increment, ST! E T( x + .C) - T(x) is the scalar 
increment and L? is the spatial separation in the inertial 
subrange. However, existing experiments [ 5-71 and 

numerical simulations [4,8,9] do not support these 
predictions. The possible cause for the deviations from 
the predictions is believed to be associated with in- 
termittencies of velocity and scalar dissipations. The 
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observations also indicate that the scalar dissipation 
exhibits higher intermittency than the velocity dissipa- 
tion, leading to larger deviations from the linear scal- 

ing exponents for passive scalars than for velocity [ 71. 
To take account of intermittency corrections to the 

dimensional analysis, Kolmogorov proposed the re- 

fined similarity hypothesis (RSH) [ lo] for the veloc- 

ity field 

su/ = w,(&)“3. (4) 

Obukhov and Corrsin proposed a similar RSH for the 
passive scalar field [ 3,111, 

,jT[ = WTe1/3E-‘/6N’/2 
E e . (5) 

Here w, and WT are random variables whose statis- 
tics only depend on the Reynolds number. Ee and Ne 

are the locally averaged velocity dissipation and scalar 
dissipation over a sphere of radius e, respectively. As 

seen from (4) and (5)) the structure functions for ve- 

locity depend only on the properties of local averaged 
velocity dissipation, while the structure functions of 

passive scalars depend on the joint moments of both EP 
and Np. In other words, in order to calculate the struc- 
ture functions of the passive scalar, the joint probabil- 
ity density functions (PDF) of Ee and Ne are needed. 
In general, the joint PDF is more difficult to obtain 

than its marginal distribution. A simpler working ap- 
proach is to infer the joint PDF from its marginal dis- 

tribution. For example, because of the log-normality 
of Et, the joint PDF of EP and Ne can be inferred to be 

a bivariate log-normal distribution [ 121. 
Recently, She and Leveque [ 131 have suggested us- 

ing the log-Poisson PDF to describe E( on the basis 
of hierarchical structures. Cao and Chen [ 141 have 
extended this hypothesis and assumed a bivariate log- 
Poisson distribution for the joint PDF of Ee and Ne. 
Their model is in remarkable agreement with the re- 

sults of numerical simulations and experiments. How- 

ever, it has been not understood why Ee and Ne obey 
a bivariable log-Poisson distribution. In this brief re- 
port, we propose a hierarchical relation for the joint 
moments of both Ee and Te, and explain why hierar- 
chical structures of joint moments lead to a bivariate 

log-Poisson PDF for me and Te. 
The intensity of the pth-order dissipation struc- 

ture can be characterized by the ratio of the succes- 
sive moments of the turbulent dissipation, Et(P) = 

($“)/($). The ratios, et(p), are assumed to obey 
the following hierarchical relations [ 131, 

P 
Ee(P + 1) = Apee (PIEI: ‘-%4, (6) 

where Ep( m) z lim,,, c!(p) is associated with the 
most intermittent structure of turbulence; A, are func- 
tions which only depend on p; and p is assumed to 

be a universal constant. Eq. (6) connects the ratios of 

successive dissipation moments with the most inter- 
mittent structures. 

Similarly, one can characterize the intensity of the 

qth-order structure of the scalar dissipation using the 
ratio of the successive moments of the scalar dis- 

sipation, Ne( q) = (N;+’ ) /(N;). The qth-order ra- 
tio, Ne (q) , can be postulated to satisfy a hierarchical 
model similar to El, and the scalings of N: can be ob- 
tained from the hierarchical relations. However, this 

does not solve our problem since we require the scal- 
ing behavior of the joint moments of Nz and l T. 

It has been observed from numerical simulations 
that the iso-surfaces of higher intensive passive scalars 
form sheets [ 8,9], while the iso-surfaces of higher 
intensive vortices form filaments [ 151. These higher 
intensive structures are strongly correlated. Therefore, 
it is reasonable to assume that (6: Ni) Z 0. We denote 
the ratios of the successive joint moments by 

(7) 

Now we postulate further that Me (q, p ) and &fe (q, p ) 

obey the following extended hierarchical relations, 

Me(q+ l,P) = B&@(q.p)Mi-“(oo), (8) 

Me(4,P + 1) =B4,pfi~(q,p)fi~-p(cO), (9) 

where Me(a) = lim,,4_cx, Mc(q,p) and fit(m) 3 
limp,q-+m Qp( q, p) are the limits of the sequences of 
ratios of the successive joint moments; B,, and BqTp 
are functions independent of the scale C; and pT and p 
are universal constants. It is argued that Me( 00) repre- 
sents the most intermittent structures of passive scalars 
advected by turbulent flow. Ap( 00) represents the 
most intermittent structures of turbulent flow, which 
can be scaled as same as eirnf. 
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We assume that the joint moments of 6; and N,Y 
can be scaled as (NF.$) N p(q+), and that their lim- 
its scale as Mp(co) - O-“r, Mf(co) N l-It, where 
1~ and h are the singular scaling exponents on the 
sheets and filaments of the highest intensity, respec- 
tively. From (8) and (9), one can obtain the following 

system of partial difference equations for r( 9, p), 

7(9$2,/j) - (1 +Pr)7(9+ l,P) l tPr7(9.P) 

= -lzr( I - pr,, 

7(q,p+2) - (1 +p)r(q,p+ 1) -t@(q,p) 

=-lz(l -p,. ( 10) 

Introducing the boundary conditions, r(O,O) = 
r( 1.0) = T( 0, I ) = 0, we can obtain the solution of 
Eqs. ( IO), 

7(q,p)=c(I -P”)(l -p ; )i l _p _L(, _P”) 

hr 
+--- 

1 - PT 
( l - p;) - hp - hT9, (11) 

where c is a coupling constant. Taking a = h/( 1 - 

0) + C, (1~ = hT/( 1 - PT) + c and b = -c, we can 
rewrite the solution ( 11) as follows, 

r((/,/)) = -hp - /2r9 

+ ( (1 f (IT + b - Up” - a,# - bpp@). ( 12) 

The expression in parentheses in ( 12) is the generat- 
ing function for a bivariate Poisson distribution (see 
the discussion in next paragraph). a and ar are the 
variances of EC and Nl, respectively, and b is a con- 
stant representing the correlation between E! and NJ. 
For determining these parameters, see the discussions 

in [ 141. Assuming (( 6Tt)“) rv C:n, we obtain an an- 
alytical formula for the scaling exponents of the nth- 

order passive scalar structure functions by using (5) 
and (12). 

z,, = $1 -t 7( hII, -g> 

= (+ + $2 ~- $hy-)n + a( 1 - p-“‘6) 

+ nr( 1 - p;“) + b( 1 - p-“‘6fi;‘2). (13) 

With the parameters given in Ref. [ 141, Eq. ( 13) can 
be written as 

zn=3_?-2(1)n/6 
36 4 

- (I)G 
2 

+Y[1-(~)“‘6-(~)n’2+(~)n’6(~)n’?], (14) 

where y is a real positive number representing the 

correlation of EL and Nk. A good fit between ( 14) and 
measurements can be carried out for small y [ 141. 

The bivariate Poisson distribution of both passive 
scalars and velocity can be formulated by assuming 

a two-dimensional cascade processes with infinite 
divisibility. The generating function of such a two- 
dimensional infinitely divisible process [ 161 can be 

expressed as 

w XZ 

G(tl,t?) = 
/.I 

[expi(tlx + tzy) - I 

-*yl -w 

- i(tr,r f t~.v)]/(.~‘+ y’) dK(.r..v). f 1.5) 

where the kernel K( X, y) is a non-decreasing function 
of bounded variation. If K( x, .v) is chosen 

dK(x,y)=[-2b6(h--I,\i- I)-aS(.r- 1,~) 

- ar6(x, y - 1) 1 d.rd.v. 

then 

( 16) 

G(S,,Sz) =a+~7T+b-Usj -aTS?_-bs~s?, c 17) 

where 6(x, y) = G(x)S(y) is the Dirac function, and 
st =exp(iti),sz=exp(it2). 

If si and s1 are replaced by p” and /3q. respec- 
tively, the generation function (17) becomes the 

expression in parentheses in ( 12). Noting that the 
two-dimensional cascade process here is referrecl as 

(NI/Nl(ocJ),Q/EEtco)), we can re-formulate the 
scaling exponents of the joint moments, which is 
the same as the Eq. ( 12). We remark that the two- 
dimensional infinitively divisible process for the joint 
PDF of the scalar and velocity dissipation is realized 
only by choosing the kernel in the integral in ( 15). In 
the turbulent case, the kernel has one single “atom” 
[ 131, which has a log-Poisson distribution. In the 
case of a passive scalar advected by turbulent Aow. 
the kernel must contain three “atoms” resulting in a 
bivariate log-Poisson distribution. 

In summary, the bivariate Poisson distribution for 
both scalar dissipation, Nk, and turbulent dissipation, 
EP, is formulated using the postulated hierarchical re- 
lations. We assume that not only the moments of the 
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scalar dissipation and the velocity dissipation admit, 

respectively, the corresponding hierarchical relations, 
but also that theirjoint moments admit the extended hi- 
erarchical relations. In the extended hierarchical rela- 

tions, the ratio constants are assumed to be associated 
with the most intermittent structures of dissipations. 

These two assumptions are sufficient to specify com- 

pletely the scalings of the joint moments of Nt and E[. 
Furthermore, we have shown that the bivariate Pois- 
son distribution is a realization of the two-dimensional 
random process of infinite divisibility, whose kernel 
has three atoms [ 13,161. Given the bivariate Poisson 
distribution, the scaling exponents of the passive scalar 

structure function can be easily obtained [ 141 using 

the Obukhov and Corrsin RSH [ 31. 
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