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Abstract In this paper, a numerical method with high order
accuracy and high resolution was developed to simulate the
Richtmyer-Meshkov(RM) instability driven by cylindrical
shock waves. Compressible Euler equations in cylindrical
coordinate were adopted for the cylindrical geometry and a
third order accurate group control scheme was adopted to dis-
cretize the equations. Moreover, an adaptive grid technique
was developed to refine the grid near the moving interface to
improve the resolution of numerical solutions. The results of
simulation exhibited the evolution process of RM instability,
and the effect of Atwood number was studied. The larger the
absolute value of Atwood number, the larger the perturbation
amplitude. The nonlinear effect manifests more evidently in
cylindrical geometry. The shock reflected from the pole cen-
ter accelerates the interface for the second time, considerably
complicating the interface evolution process, and such phe-
nomena of reshock and secondary shock were studied.

Keywords Richtmyer-Meshkov instability - Atwood
number - cylindrical shock

1 Introduction

When two different fluids are impulsively accelerated
together by a shock wave, small perturbations at the mate-
rial interface grow linearly first, followed by the formation of
nonlinear structures characterized by “spikes” and “bubbles”,
and then the mixing of fluids. Such a phenomenon is known as
Richtmyer-Meshov(RM) instability. The instability was first
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predicted theoretically by Richtmyer in 1960 [1]. Ten years
later, Meshkov confirmed Richtmyer’s prediction experimen-
tally [2].

RM instability plays an important role in the area of iner-
tial confinement fusion (ICF). The mixing due to the insta-
bility at the interface is a restrictive factor for the energy gain
generated in ICF. RM instability also takes place in many
other natural and man-made phenomena, such as supernova,
deflagration-to-detonation transition and so on. Moreover,
the RM instability can induce turbulent mixing of fluids [3].
The research on the instability will be much helpful in under-
standing the mechanism of turbulence.

RM instability is closely related to Rayleigh-Taylor (RT)
instability. They share certain common features, such as the
formation and growth of bubbles and spikes. Here, the bub-
ble is the portion of the light fluid penetrating into the heavy
one. On the contrary, the spike is the portion of the heavy fluid
penetrating into the light one. However, due to the different
external forces, the two kinds of instabilities show different
characteristics. The driving mechanism of RT is the pres-
ence of a uniform gravity field affecting both fluids, which
gives rise to exponential growth in time in the regime of
small amplitude. On the contrary, the RM problem is driven
by shock wave and always unstable whether the shock wave
comes from the heavy fluid towards the light fluid and collides
with the interface or vice versa [4-6]. The initial deposition of
vorticity at the interface controls the instability growth rate.
This vorticity is modified later by the action of sound waves
that are reflected at the shock and go back to catch up with
the material interface.

The evolution of the instability has a closed relationship
with the compressibility of the system. Therefore, RM insta-
bility is not exactly a kind of RT instability, and in fact the
inherent compressibility physics is an important factor to take
into account [7]. Combination of compressibility phenom-
ena, such as shock interaction and refraction, with interface
instability, including linear and nonlinear growth and subse-
quent transition to turbulence across a wide range of Mach
numbers has been a challenge to theorists, experimentalists
and computer modeler alike [7,8].
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A number of linear and nonlinear theories have been
developed based on various simplifications and approxima-
tions [1,2,4-6,9-17]. Impulsive models were widely used
to describe the asymptotic growth rate in many experimen-
tal and theoretical works because of their simplicity [1,2,
10]. The explicit time dependence on the unperturbed state
makes the linear stability analysis of RM instability consid-
erably difficult. Fraley [5] and Yang et al.[4] advanced their
linear theories based on the early work of Richtmyer [1].
Velikovich [18] developed an analytic theory of Richtmyer-
Meshkov instability for the case of reflected rarefaction wave.
However, most of the theories maintain valid only to some
extent in the early and intermediate stages of RM instabil-
ity. Then, some nonlinear theories have been developed to
describe the evolution of the spikes and bubbles forming on
the interface in later stage [15, 16,19, 20]. Meanwhile, many
experiments have been designed to study the RM instability
[7,8,13,20-23]. In recent years, with the aid of modern com-
puters, numerical simulation has become a very helpful and
powerful tool for the investigation of RM instability [3,7,13,
19,24-30].

Previous theoretical and numerical studies are mainly
performed in planar geometry, i.e., the interaction between
planar shock wave and perturbed planar interface, and many
studies are restricted to two-dimensional cases. Recently, a
few studies of 3D RM instabilities have been found. Clout-
man and Wehner [25] simulated the RM instability of the
interface between layers of air and either helium or SFg in
both 2D and 3D cases by a finite difference method with
a front-racking technique. Their results were found to agree
well with experimental data except the initial instability growth
rate. Li and Zhang [20] presented a numerical study of RM
instability in two and three dimensions using a high reso-
lution numerical method, and the solutions agree well with
a recently developed nonlinear theory [17]. Oron et al.[31]
investigated the difference between 2D and 3D case for the
later stage evolution of RT and RM instability. Cohen et al.[3]
performed 3D high-resolution simulation for a RM instabil-
ity generated by a shock passing through a contact disconti-
nuity with a two-scale initial perturbation, and their results
suggests a mixing transition from unstable to turbulent flow
as the numerical Reynolds number is increased. Compared
with the results of single-scale perturbation, the coupling of
the disparate scales leads to destruction of the small-scale
bubbles and spikes. Zhou et al.[32] developed a robust, easy
to apply criteria for the mixing transition in a time-dependent
flow by the 3D DNS of RT and RM instability.

However, in most practical applications, such as ICF or
supernova, RM instability occurs in a curved geometry, which
complicates the system considerably. Firstly, the unperturbed
system does not have analytical solution in a curved geom-
etry, whereas the unperturbed system in the planar geom-
etry does. Secondly, due to the curved geometry, the ini-
tial perturbation grows nonlinearly even in the early stage of
RM instability. Moreover, the system is complicated by the
re-acceleration of the material interface caused by the waves
and shocks reflected back from the origin.

Now no analytic theory has been found for the RM insta-
bility in cylindrical or spherical case, and also there are only
a few simulation results. Zhang and Graham [26] performed
a numerical study of RM instability driven by cylindrical
shocks for both the imploding and exploding cases for the air-
SF¢ interface. Meanwhile, they [16] studied the scaling laws
for unstable interfaces driven by strong shocks in a cylindri-
cal geometry by numerical simulation incoporating the front
tracking, and found a critical Mach number above which the
scaling laws hold as a function of Atwood number, adia-
batic exponents of the two fluids and geometry. By applying
the front tracking, Dutta et al.[33,34] conducted numerical
simulations of RM instabilities in spherical geometry for axi-
symmetric flow. They demonstrated scaling invariance with
respect to the shock Mach number for fluid mixing statistics,
such as growth rate and volume fraction.

In this paper, we present a detailed numerical investiga-
tion of RM instability in a cylindrical geometry driven by
imploding shock waves. In Section 2, the numerical method
(Eulerian cylindrical plus level set method plus discretization
method) is discussed. In Section 3 a study on the Atwood
number effect is presented, especially for the formation and
growth of bubbles and spikes. Finally, a short summary is
given in Section 4.

2 Numerical method
2.1 Governing equations

The following two-dimensional compressible dimensionless
Euler equations in cylindrical coordinate are used to simulate
RM instability with cylindrical shock-cylindrical interface
interaction.

oW 9F©  13G©

o st =5, 1
or " ar T o0 ! )
where

W = [p, pu, pv, pE]",
.
F© = [pu, pu® + p, puv, pu<E + 2)] :
0

.
G© = [pv, puv, pv? + p, pu(E + B)] ,
P

g pu p(?—u®) 2puv  u(pE + p)7T

1= [ r’ r ’ ro’ r ] ’
o, p,u and v are the density, pressure, radial velocity and
azimuthal velocity, respectively; F©, G are the convec-
tive flux terms of radial and azimuthal direction, respectively;

and S; is the source term due to the polar coordinate.
Suppose that the gases on both sides of the interface are
ideal gases, the total energy per unit mass can be written as
1 p

y—1p
In the above formula, y is the ratio of specific heats of ideal
gas. It may be different on both sides of interface. When

1
+ E(I/lz + vz).
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the material interface changes due to the deformation by RM
instability with time and space, the y distribution will change
correspondingly depending on the deformation of interface.
In order to simulate the change of y automatically, the fol-
lowing y model equation [29] is adopted:

ad a0 1 0 1

el _ Sy 2
<8t+u8r+r 89) -1 @
In the numerical simulation of this paper, a unified y was
adopted since the efforts here are focused on the effect of
Atwood number. The effect of ¢ can be found in Ref.[30].

In order to capture the moving interface, level set method
[35] is used, in which the level set equation is

0 opu 10pv u
4l puyp _P‘P+P<P 3)
ot or r 00 r

where ¢ is the level set function. At the initial time ¢
is given as the signed distance distribution along the normal
direction of the interface. In fact, Eq.(3) is a passive equation.
At each time step the system of Egs.(1) and (2) are solved
first, then with the obtained flow field of p, u, v, EQ.(3) is
solved to get the function ¢ in which the interface position is
determined by the points where ¢ = 0.

In order to make the function ¢ satisfy the definition of
signed distance function at each time step, it is necessary to
reinitialize the distribution of ¢ by solving the reinitializaiton
equation [35, 36].

=0,

2.2 Discretization method and boundary condition

To simulate multi-scale complex flow fields accurately, high
order accurate schemes are necessary. However, nonphysical
oscillations may appear near discontinuities when high order
schemesare used in simulation. According to the group veloc-
ity of numerical solution, the schemes can be divided into
three classes, the FST (faster), MXD(mixed) and SLW(slower)
schemes [35-37]. The numerical oscillations are generated
before or behind the discontinuity for the FST scheme or SLW
scheme, respectively. As for the MXD scheme, the compo-
nents with low and moderate wave numbers in numerical
solutions travel faster than the corresponding physical wave
components, whereas the components with high wave num-
bers in numerical solutions travel slower than those of phys-
ical ones. The basic principle of the group velocity control
method is that the adopted scheme must be reconstructed to
make the schemes being FST/MXD behind the discontinuity,
whereas being SLW before the discontinuity.

In order to improve the resolution of discontinuity, a third
order accurate group velocity control scheme (GVC) was
constructed in Ref.[37] to approximate the convective terms
in the system of Egs.(1-3). The GVC scheme is written as
following:

J=3

2 +
o\ j+1+(§+o -
1

( 5+ 580 =20 3?-0f%5§)ﬁ

a.tr oo[1+ 10SS(p; ):IPPj+%|C|,

NI

' pj+1 ’
]+§ Pj+1+ Dj
p 8%p
o x2)
where F;/Ax represents the derivative approximation of
af /ox, andcr . is the control parameter for group velocity.

The above scheme is constructed for the case of positive flux,
and similar scheme can be written for the case of negative
flux.

The third-order Runge-Kutta method was used to discret-
ize the time derivatives.

To improve the resolution of the numerical solution near
the moving interface, an adaptive grid refinement technique
was developed in radial direction. It is implemented by the
following coordinate transform for the system of Egs.(1)—(3):

r = Disinh{(¢ — o)1 + A), ()
where rq(¢) is the refining position of radial mesh which rep-
resents the average position of moving interface.

Moreover, the cylindrical polar singularity was treated
well by a boundary extension method. At the outer bound-
ary far away from the center, non-reflective condition was
adopted so that the outwards moving waves will not influence
the inner flow fields. In the azimuthal direction, an extended
periodical boundary condition was developed to ensure that
uniform difference schemes were adopted when descretizing
the azimuthal derivatives at grid points. Both the polar coor-
dinate system and appropriate boundary conditions make the
simulation results exhibiting good symmetry with respect to
rotations about the origin. Thus all the above are essentially
the ingredients of an efficient numerical method for analyzing
the RM instability in the present paper.

Unlike the front tracking method [19,26], in this paper
the shock waves and interfaces are captured by the group
velocity control scheme and the level set equation, respec-
tively. Therefore, it is not necessary to introduce boundary
condition across the shock waves or the fluid interface.

As for the physical parameters adopted here, we specify
the units to be used in presenting our results for the numerical
simulations. The dimensionless length scale and velocity are
r =7/Rpand v = v/V;, respectively, where Ry is the mean
radius of the material interface (the radius of the unperturbed
interface) at r = 0, and V; is the speed of the incident shock.

The initial location of the material interface is given by
r = 1+ ag sin(k6), where qq is the dimensionless perturba-
tion amplitude and % is the wave number of perturbation. As
for the initial physical configuration, the incident Mach num-
beris 1.22, ap = 0.033 and k = 12 for all the present simu-
lation cases. The configuration is also shown in Fig. 1, where
the imploding shock, interface and two fluids are sketched.

To validate the adopted numerical method, a grid con-
vergence study with mesh refinement was conducted by sim-
ulating RM instability with initial density ratio equal to 5.
A sequence of computations was performed starting with a

and SS(p) = S|gn(
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Fig. 1 Pressure distribution with different grids along a radial direction
of 45° and its mirror reflection part, where the circular center is located
atx =1.5

resolution of 50x48 grids. Subsequent tests were made on
grid systems of 100x 96, 200x 192 and finally 400x 384. As
shown in Fig. 1, the numerical solution had converged with
grid system of 200x 192, since there was little difference be-
tween the pressure and density at 200x 192 and at 400 x 384.
Therefore, all of the following simulations were performed
with the grid system of 200x192. With the same initial con-
figuration, Zhang obtained the grid convergence at 400 x 400
by a second order finite difference method on a Cartesian grid
[26]. There were mainly two factors that contribute to the bet-
ter convergence of the present paper. Firstly, a high-order and
high-resolution group-velocity-controlling scheme was used
in the numerical solution, exhibiting good resolution perfor-
mance for the shock waves and the contact discontinuities.
Secondly, the adaptive refinement of grid was adopted in the
simulation.

3 RM instability at different Atwood numbers

The RM instability in a curved geometry has more practical
application significance, especially in the field of ICF prob-
lem. In this paper, the incident shock is an imploding shock
and collides with the material interface. First, the RM insta-
bility with Atwood = —0.67 was studied in detail in this part.
Then we gave the simulation results of other three different
Atwood numbers.

3.1 Evolution of the interface

The initial distribution is shown in Fig. 2(a). The fluids on
both sides of interface are ideal diatomic gases with the ratio
of specific heats equal to 1.4.

interface, =0

7

_l L
| interface, t=1.05 interface, r=0.45

Fig. 2 (a) Initial value distribution (b) Interfaces at different time to
illustrate the process of phase inversion

The Atwood number, defined as A = (02— 1) /(02 + p1),
is a very important parameter for the RM instability analysis,
where p; and p, are respectively the densities of external and
internal fluid cross the incident shock wave at r = 0.

Now we take the case of A = —0.67 as an example to
illustrate the evolution process of RM instability driven by
an imploding shock. The corresponding density ratio of the
outer fluid to the inner one is 5.

The evolution of the interface is shown in Figs. 2 and
3. When the imploding shock collides with the interface,
it bifurcates into a transmitted shock moving into the inner
fluid and a rarefaction wave traveling outwards. Figure 2(b)
shows the interface evolution during the early stage of RM
instability. Because the incident shock collides with the inter-
face from the heavy fluid to the light one, the phenomenon
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Fig. 3 Density contour at r = 3.0(A = —0.67)

of phase inversion occurs immediately after the collision,
i.e., the initial crests and troughs of perturbed interface will
exchange positions. This inversion can be observed clearly
from Fig. 2(b). It is also shown that asymmetric spike and
bubble structures have emerged clearly and the interface starts
nonlinear evolution after phase inversion of the interface at
about r = 0.45.

With the development of RM instability, both transmit-
ted shock and reflected rarefaction wave are no more per-
fectly circular. Both of them have some angles compared
with the initial circular shock, and self-intersection of waves
appears. The self-intersection and interactions give rise to the
so-called secondary waves which move towards the interface.
The waves will influence the evolution of interface. It can
be seen from the perturbation growth rate history shown in
Fig. 8, where the small oscillations of growth rate are caused
by the secondary waves.

When the transmitted shock traveled to the origin, it
bounced from the origin with high pressure left behind. The
bounced shock interacted with the interface for the second
time, which was called as reshock. When the bounced shock
moved from the inner light fluid into the outer heavy one, it
bifurcated into a transmitted shock traveling outwards, and
a reflected shock wave moving into the inner fluid. There
is no phase inversion in this reshock process. The reshock
accelerated the growth of perturbation at the interface, and
we see the influence of reshock clearly from the growth rate
history shown in Fig. 9. The reshock phenomena occurred
many times with weaker and weaker intensity, and it is a spe-
cial phenomenon for the RM instability in closed geometry.

Figure 3 showed the density contours at time ¢+ = 3.0.
Fully developed nonlinear structures of the bubble and spike
had been obtained. Moreover, there emerged the roll-up of
spikes due to the Kelvin-Helmhlotz(KH) instability. The
structures of interface became more complicated.

Moreover, Figs. 2 and 3 showed quite good symmetry
with respect to rotations about the origin. The achievement

of good polar symmetry would be a good justification for
adopting polar coordinates.

From the results we can see that the RM instability in
cylindrical geometry is similar to that of planar case in many
aspects [7,19,25,27,28]. For both cylindrical and planar
cases, there will be a phase inversion process when shock
travels from the heavy fluid to the light one, and the interfacial
perturbation grows continuously to form spikes and bubbles.
However, the nonlinear effect in curved geometry manifests
more evidently than in planar geometry. The results in this
paper are consistent with Zhang’s [26], and less grid points
are adopted in our simulation due to our high resolution
method. Moreover, we gave a more detailed analysis for the
effect of secondary shock and reshock, also we gave the time
history of the averaged interface position in Fig. 8 from which
we can observe the compression history of the interface.

3.2 The effect of Atwood number

In this part we present some simulation results with different
initial Atwood numbers, equal to —0.33, —0.82, and —0.90
in this section. Corresponding density ratios are 2, 10 and 20,
respectively.

Some results at + = 3.0 for the three different Atwood
numbers, —0.33, —0.82 and —0.90, were shown in Figs. 4, 5
and 6. Compared with Fig. 3, we can observe that the structure
of spike and bubble, especially the spike, is closely related to
the Atwood number (or density ratio). That is, the larger the
absolute value of Atwood number, the longer and narrower
the spike. In the case of larger absolute value of Atwood num-
ber, the inner fluid has lighter density and can be compressed
more easily, thus the outer heavy fluid can penetrate into the
light one deeper and sharper. Moreover, due to the lighter
density of the inner fluid, the waves move faster into it so
that more reshocks occurred. Thus the spikes become longer,
sharper and easier to break up. This is not favorable in the

| 185455
—! 176833
- 1.6821
159588
1.50966
142343

Fig. 4 Density contour at + = 3.0(A = —0.33)
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density
255472
240246
| 2.2502
2.09795
1.94569
1.78343
164117
1.48891
1.33665
1.18439
103213
0.879873
0.727614
0.575355
0.423096

Fig. 5 Density contour at t = 3.0(A = —0.82)

density
249284
233555
217826
2.02097
1.86368
1.70639
1.54911
1.39182
1.23453
1.07724
0.919951
5| 0.762663
0.605374
0.448085
0.290796

Fig. 6 Density contour at r = 3.0(A = —0.90)

application of ICF. However, for the case of A = —0.33, the
density ratio is small, and the structures of spike and bubble
are not obvious compared with other three cases.

The effect of Atwood number can also be observed from
the quantitative results of interface evolution. Figure 7 shows
the variation of perturbation amplitude with time, defined by

1 .
a = = (Fmax—Fmin), Where rmax and rmi, are the maximum and

minimum radius of interface, respectively. Figure 8 shows
the variation of the average interface position with time. The
growth rate of the perturbation, i.e. the time derivative of the
perturbation amplitude, is shown in Fig. 9.

From Fig. 7 we can see the process of phase inversion.
The amplitude decreases first and then begins to increase.
With different Atwood numbers, the phase inversion period
is different. The larger the absolute value of Atwood number,
the shorter the phase inversion period. The development of

0.25 - T T T T | T T T T I T T T T I
| [ —5— 4=—033 ;
[ | —— 4=-067 i
° 0.20 - | —— A4=-082 N
= L | —6— 4=-0.90 =
= ! ;
= [ ]
g 0.15 B 7]
E !
£ o10f .
g [ ]
(0] L
& [
0.05 -
0 1 2 3

time

Fig. 7 Variation of perturbation amplitude vs. time at different Atwood
numbers

1.00 g

INER1 RRRN1 NEAN1 RRAR1 FERE) RENN Fan NN
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T
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Fig. 8 Variation of averaged interface position vs. time at different At-
wood numbers

perturbation amplitude also reveals similar relationship
between the Atwood numbers and the above-mentioned
spikes. The larger absolute value of Atwood number, the
larger the amplitude. In the case of A = —0.90, the phase
seems to invert earlier than in the case of A = —0.67, and
even much earlier than in the case of A = —0.33. With earlier
phase inversion, the amplitude will be larger. In the case of

A = —0.33 with the longest inversion period, the ampli-
tude will take longer time to grow because it is later to start
growing.

Figure 8 shows the history of the average material inter-
face location. It implies how much the inner fluid is com-
pressed. The larger the Atwood number, the more the inner
fluid compessed. At early time, the four cases have about the
same compression ratio since they have the same incident
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Fig.9 Variation of perturbation growth rate vs. time at different Atwood
numbers

shock wave with Mach number equal to 1.22. At later time,
the reshocked waves reflected from the origin restrain the
compression process.

Figure 9 shows that the growth rate of perturbation grows
quickly in the early stage and reaches the maximum at about
t = 1.0 except for the case of A = —0.33. Afterr = 1.0 or
so, the growth rate decays gradually. In the early stage, the
larger the absolute value of Atwood number, the larger the
growth rate. However, after r = 1.0, the four cases except for
the one of A = —0.33 show almost the same growth rate and
seem to be independent of Atwood number. According to the
impulsive model or linear theory for planar case, the growth
rate is proportional to the Atwood number. However, in the
imploding case, it shows different relationship with Atwood
number. The nonlinear effect of the RM instability is more
evident except for the case of A = —0.33, and the growth rate
decays because of nonlinear effects as predicted by nonlinear
theories [7,15,17]. The case of A = —0.33 has no evident
decaying trend, and shows different feature as compared with
other three. In conclusion, we can infer that there should be a
sophisticated relationship between the Atwood number and
the inversion period or the growth rate.

Zhang, Dultta, et al. [16,26, 33] investigated the effect of
inflow Mach number by numerical simulation. In their paper,
only one kind of density ratio was considered. As far as we
know, the effect of Atwood number on the RM instability
has not been studied in curved geometry. According to the
linear theory for planar cases, the growth rate is proportional
to the Atwood number. Here, from simulation we find the lin-
ear theory not tenable in curved geometry even in the early
stage. This means that new models need to be proposed for
the RM instability in curved geometry. Furthermore, we find
that Atwood number has an important effect on the phase
inversion process.

4 Conclusions

In this paper, an efficient numerical method was developed
to simulate the RM instability in curved geometry. The anal-
ysis of simulation results shows that the Atwood number (or
density ratio) plays an important role in the development
of RM instability. The larger the absolute value of Atwood
number, the larger the perturbation amplitude. With differ-
ent Atwood numbers, the bubble and spike structure exhibits
different shapes. Furthermore, the effect of Atwood number
can be observed from the quantitative results of the interface
evolution, such as the variation of perturbation amplitude,
growth rate and averaged interface position versus time. The
simulation results in later stage have some limitations due to
the adopted two-dimensional numerical method. We expect
to perform three-dimensional numerical investigation of the
RM instability in the near future.
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