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The thermo-visco-plastic instability analysis of saturated soil
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Abstract

A theoretical analysis of instability of saturated soil is presented considering the simple shearing of a heat conducting
thermo-visco-plastic material. It is shown that the instability is mainly the consequence of thermal softening which
overcomes the strain hardening and the other type of instability is controlled by strain softening. The e!ects of other
factors such as permeability to the instability are discussed in this paper. ( 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The instability of soil foundation has been the
focus of study. Researchers have done lots of ex-
periments and analysis trying to seek for the cri-
terion of soil instability in order to evaluate the
safety of foundations under vibration and to avoid
instability. Theoretical contributions are related
mainly to stability and bifurcation analysis of dif-
fused and localized failure models [1}3]. Typically,
the stability problem is formulated by considering
small perturbations in "eld variables (e.g. displace-
ment). Classical continuum approach leads, in this
case, to the ordinary di!usion equation for the
perturbation in stresses [1,2]. Alternatively, the loc-
alization in #uid-in"ltrated soil may be considered
as a bifurcation problem [4]. The experimental
evidence on deformation instabilities and the fail-
ure models comes from conventional triaxial [5,6]
as well as plain strain biaxial tests [7]. The results
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indicated that the uniform response is often fol-
lowed by the onset of a di!used, nonhomogeneous
deformation model, after which distinct shear
bands form. The problem is often discussed under
inertia-free conditions and without temperature ef-
fect [1,8,9]. Nevertheless, the temperature has an
important role under some conditions [10}12].
Therefore, in the present paper an attempt is made
to discuss the thermo-visco-plastic instability under
simple shear.

2. The mathematical model

2.1. Some assumptions

In order to clarify the problem, some assump-
tions are presented here:
(1) The density of water and gains is constant,

which means o
4
"const., o

8
"const.

(2) The deformation can only occur in one direc-
tion but may have a gradient in the other
direction.
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The geometrical con"guration and the deformation
can be expressed as follows:

x"X,

y"u(X,>)#>,

z"Z. (1)

The constitutive equations can be expressed as fol-
lows [10}12] under shear load:

p
%x
"f

1
(c, c5 , h)

p
%y
"f

2
(c, c5 , h)

q"f
3
(c, c5 , h), (2)

in which p
%x

, p
%y

are e!ective stresses in x and
y directions, respectively, q is the shear stress, c the
shear strain, c5 the shear strain ratio, and h the
temperature.

The relationship between the plastic work
=

1
and the heat q produced by it is as follows:

q"C
1
=

1
(3)

and because the elastic deformation energy is much
smaller than that due to plastic deformation, the
former may be neglected. Thus,

=
1
"Ppij

e5
ij

dt. (4)

The heat conduction is governed by Fourier's
law

h
i
"!jh

i
(i"x, y) (5)

in which h
i
are the components of heat #ux, and j is

the thermal conductivity. Therefore, the energy
equation becomes

C
1
=Q

1
"oclhQ !j*h (6)

in which * is the Laplace operator. In the case
concerned,

C
1
q
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"ocl
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where C
1

is a parameter and C
1
"C

1
(p).

2.2. The equilibrium equations

The momentum equations are as follows [13,14]:
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where u
8x

, u
8y

are displacements of pore water in
two directions and u

4x
, u

4y
are displacements of

solid phase in two directions, n is the porosity,
K"k/k, where k is the Darcy permeability and k is
the viscosity.

Di!erentiating Eq. (8) in x and y directions, re-
spectively and then adding them, the "rst governing
equation is obtained as follows:

(1!n)o
4
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!
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"!Kn2
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. (9)

Now, the control equations can be rewritten as
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,

o
4

L2c
Lt2

!

L2q
Ly2

"!Kn2
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. (10)

The analytical solutions of these equations are
di$cult to seek for because of the non-linearity. It
has been shown by experiments and computation
that the soil deformation develops from slow
to fast, that means, from stable state to one of
instability.

Now, there are three points should be empha-
sized: "rstly, examing all of the assumptions, Eq.
(10) can deal with large shear deformation, because
no limitation of the shear deformation has been
introduced. Secondly, the "rst one of Eq. (10) is
a wave equation but the right side of the second is
a typical di!usion equation, this two types of di!er-
ent phenomenon are coupled through the term
C

1
qc5 . This is the distinctive feature of the phenom-

enon under consideration. Finally, Eq. (10) is obvi-
ously non-linear.

Since the aim of this paper is to seek for the
condition under which a smooth deformation
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process changes into catastrophe, the perturbation
method, which is widely used in the analysis of #uid
dynamics [15], is adopted here. Hence, a smooth
developing deformation state c

0
, q

0
, p

0
is taken as

the base state which is a solution of Eq. (10). When
perturbation has been applied on the control equa-
tions, we will be able to analyze the factors and
conditions of instability.

3. Perturbation analysis [16]

To seek for the point deformation implies a shift
from smooth to catastrophic, we study the solu-
tions in the following form:

c"c
0
#c@, Dc@D;Dc

0
D,

h"h
0
#h@, Dh@D;Dh

0
D, (11)

where c
0
, h

0
is a solution Eq. (10), and

c@"c* eat`*bx, h@"h* eat`*bx. (12)

a,b are, respectively, the frequency and the wave
number.

Di!erentiating the constitutive relations (2), we
obtain

dq"R
0

dc!Q
0

dh#H
0

dc5 (13)

in which
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Therefore,

q*"R
0
c*!Q

0
h*#aH

0
c*. (15)

Substituting Eqs. (11), (12) and (15) into Eq. (10), the
homogeneous system of equations is obtained as
follows:
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As we all know, the determinant of the coe$-
cients should be equal to zero if the system has

solutions, which leads to
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It is a spectral equation. If a has a positive real root,
instability is possible.

Now, we can give the dimensionless form of
Eq. (17), using the next dimensionless variables
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Then, the spectral equation (17) can be reduced to
the following form:

a6 3#[bM 2#C#AbM 2#D]a6 2

#[(1!B#D)bM 2#AbM 4#DC]a6 #bM 4"0.

(19)

It is obvious that this equation has two extreme
situations:

(i) For long wavelength (bP0), Eq. (19) has two
solutions

bM "0, a6 "
!(C#D)$J(C#D)2!4DC

2
. (20)

It shows that the deformation is always stable.
(ii) For short wavelength (bPR), Eq. (19) has

only one solution, which is

bM PR, a6 "!

1

A
. (21)

It is again always stable.
But we can see that there is a negative term

1!B#D which may lead to instability; it must
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Fig. 1. Plots of the functions f
1
, f

2
, de"ned in Eqs. (26) and (27).

occur at special wave numbers. Therefore, it is of
interest to seek the wave number bM

.
for which the

corresponding a
.
'0 is a maximum. In addition

to the spectral equation (19), a6
.

and bM
.

must satisfy
the equation

da6
dbM 2

"0 (22)

which is

bM 2
.
"!

(A#1)a6 2
.
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.
2(Aa6

.
#1)

. (23)

Keeping in mind bM 2
.
'0, we arrive at an impor-

tant inequality to determine the limit of the
a6
.

value

0(a6
.
(

B!D!1

1#A
"a6 H

.
. (24)

Combining both the spectral equation (19) and
the extreme condition (24), the equation to deter-
mine a6

.
can then be obtained as

f
1
"f

2
, (25)

where

f
1
"4(a6 3
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.
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.
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2
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If the permeability obstruction may be neglected,
which means, D"0, the same solutions as those of
Bai [16] may be obtained and the criterion of
instability is as follows from Fig. 1a that for the
region a6

.
'0. It may be seen that the left branch of

function f
2

and the right branch of f
1

must have an
intersection between 0 and a6 H

.
as long as

B!1'2JC. (28)

It is the criterion for the existence of a solution
a6
.

and hence is what we desired. In most condi-
tions C+0, then the criterion can be simpli"ed to

B"

C
1
q
0
Q

0
o
4
clR0

'1. (29)

This means the condition of instability is that
thermal softening overcomes the strain hardening.
It is very interesting that whether instability occurs
or not is not related to the obstruction coe$cient

K and the strain-rate hardening H
0
. However,

these factors in#uence instability markedly in some
other aspects which will be discussed later.

If DO0, it can be seem that if only
Lf

1
/La6

.
Da6 ./0

(Lf
2
/La6

.
Da6 ./0

(Fig. 1b), there is at
least one positive a6 . It may be expressed as follows:

B!1!D'J4(ADC#C#D). (30)

In most conditions, A, C;1, and the right term
in the inequality may be neglected compared with
the left term. Then, it has the following form:
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This means that the condition of instability is
that the softening e!ect caused by thermal and
permeability obstruction overcomes the strain
hardening e!ect. The strain hardening e!ect and
the permeability e!ect are the obstructed factors of
localization while the thermal e!ect is a promoting
factor.

The intersection a6
.

in Fig. 1 and the correspond-
ing value of bM

.
represent the most probable unstable

solution. The solution a6
.

has the same order as a6 H
.
.

Hence, for qualitative discussion, the value of
a6 H
.

can be used to represent the point of intersection
a6
.
. The characteristic time can be expressed as
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It is obvious that the characteristic time is a!ec-
ted by strain-rate hardening, permeability obstruc-
tion, strain hardening and thermo-softening.

The characteristic length l
#

is related to t
#

by

l2
#
/t

#
&a

.
/b2

.
&

j
ocl

(bM 2
.
/a6

.
)&a(bM 2

.
/a6

.
) (33)

where a is the thermal di!usivity. Therefore, l
#

is
the pattern length rather than the thermal di!usion
length l

0
which is connected to time t by l2

0
/t&a.

Next, the three interesting special cases: no per-
meability, no strain hardening and no temperature
will be discussed.

4. Some other conditions

4.1. Adiabatic conditions, j"0

In this case, the spectral equation (17) becomes
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It Kn2
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1
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b2(0, namely

B!1!D'0, it is certain that a has a positive
root and the instability must occur. It is appreci-
able that the same criterion (31) can be used
whether the instability is adiabatic or not. But the
equation (d2a/db2"0) leads to

a
.
"

R
0

H
0

(B!1) (35)

and

b
.
PR. (36)

This means the characteristic length approaches
zero in the adiabatic case.

4.2. The ewect of permeability

(i) KPR, means DPR, the spectral equation
(17) becomes

o
4
cla2#(jb2#Cc5

0
Q

0
)a"0. (37)

a has two solutions

a"0, a"!
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0
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. (38)

It shows that in this case the deformation is stable.
Therefore, the permeability has a negative e!ect on
the emergence of localization deformation of
saturated soil.

If KP0, which means D"0. The condition of
instability is the same as Eq. (28), i.e.

B!1'J4C. (39)

We can see, if C;1, a will have a positive real root
and instability will occur when B'1.

4.3. No strain hardening, R
0
"0

Now, the spectral equation (17) will take the next
form
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The condition a has positive real root as follows in
this case:
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In this criterion obstruction coe$cient K, strain-
rate hardening H

0
and thermal softening play the

role. The equation (d2a/db2"0) leads to
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Combining Eqs. (42) and (41), we have the follow-
ing equations for a
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There must be a solution for a
.

between 0 and
(C

1
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(41).

In this case, the characteristic time is
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4.4. No thermal softening, Q
0
"0

Now, we turn to discuss the second mode of
instability in which there is no thermal softening; in
this case, we can formulate the spectral equation
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Though H
0
,K must be positive, R

0
may be nega-

tive. Therefore, R
0
(0 may be another possible

cause of instability. Eq. (46) can be rewritten in the
form
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It is easy to see that there must be a solution
a'0; therefore, deformation must be unstable. It is
very simple to show that no maximum in a exists
and a is a monotonically increasing function of b,
with

lim
b?0

aP0 and lim
b?=

aP
DR

0
D

H
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, (48)
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b?=

t"t
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"

H
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0
D
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This implies that the shorter the wavelength, the
earlier the occurrence of instability. Nevertheless, it
is a totally di!erent instability mode. There is no
further criterion except R

0
(0, with which, as we

have seen, are associated no characteristic length
and time but there exists a minimum time t

.*/
.

5. Conclusions

It has been shown that there may exist two types
of possible instability of saturated soil under shear

load considering thermal e!ect. One is dominated
by thermal softening while the other by strain sof-
tening. The criterion for the "rst mode of instability
combines thermal softening, strain hardening and
the other one requires strain softening conditions.
This is only a theoretical paper and experiments for
testing should be processed afterwards.
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