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Amino acid substitution matrices play an essential role in protein sequence alignment,
a fundamental task in bioinformatics. Most widely used matrices, such as PAM matri-
ces derived from homologous sequences and BLOSUM matrices derived from aligned
segments of PROSITE, did not integrate conformation information in their construc-
tion. There are a few structure-based matrices, which are derived from limited data of
structure alignment. Using databases PDB_SELECT and DSSP, we create a database of
sequence-conformation blocks which explicitly represent sequence-structure relationship.
Members in a block are identical in conformation and are highly similar in sequence.
From this block database, we derive a conformation-specific amino acid substitution
matrix CBSM60. The matrix shows an improved performance in conformational seg-
ment search and homolog detection.

Keywords: Amino acid substitution matrix; protein secondary structure; sequence
alignment.

PACS number(s): 87.10.4-¢,02.50.-r

1. Introduction

The similarity of amino acids is the basis for protein sequence alignment, protein
design, and protein structure/function prediction. The point accepted mutation
matrices of Dayhoff! and the substitution matrices of Henikoff? from protein blocks
are not only the standard choices for amino acid similarity evaluation, but also a
basis for amino acid classification.?:* Efforts have been made to develop different
score matrices, for example, for best fitting distances between aligned sequences,’
or using also the information of associated evolutionary trees.® Most of the matri-
ces widely used in protein design and protein structure prediction are obtained
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from sequence samples with certain homologous relationship, while conformation
similarity are taken as a secondary consideration.

Protein conformation is more conservative in evolution and is more directly
related to function than sequences. It is shown that residue substitution behavior
is influenced by protein conformation.”® Several structure-base matrices have been
published.” ' However, they were generally constructed from limited examples of
structure alignment of homologous sets with low sequence identity.

Many sequence-structure motifs have been identified from the nonredundant
PDB_SELECT-25 database.'? Extracting the propensity of residue substitution
to conformations from such sequence-structure motifs will be useful for protein
structure identification. We collect ungapped similar segments of amino acids from
PDB_SELECT!? database. The protein secondary structures of these residue seg-
ments are given in the database of secondary structure in proteins (DSSP).'* From
PDB_SELECT and DSSP, we derive a database of sequence-conformation segments
or blocks which explicitly represent sequence-structure relationship. It is our pur-
pose to construct a conformation-based amino acid substitution matrix from such
blocks, and examine its ability in protein conformation identification.

2. Materials and Methods

The popular amino acid substitution matrices BLOSUM were constructed from the
BLOCKS database,? which is derived from the homologous proteins in PROSITE!®
catalog by PROTOMAT!6 algorithm. Counts of residue substitution pairs obtained
from ungapped multiple alignments of amino acid segments in each block can be
converted to entries of matrices. This approach has also been used in construct-
ing substitution matrices from blocks of structure alignment. However, the align-
ment of three-dimensional structures, especially the multiple alignment, requires
heavy computation. The purpose of the structure alignment is to find residue
pairs in similar conformation segments. A feasible approach to find such residue
pairs without doing structure alignment is based on the idea of sequence-structure
motifs.1?

We collected a nonredundant set of 1612 nonmembrane proteins from
PDB_SELECT with amino acid identity less than 25% issued on September, 25,
2001. The secondary structure for these sequences were taken from DSSP database.
In DSSP algorithm, Kabsch and Sander defined eight states of secondary structure
according to the hydrogen-bond pattern. As in most methods, we considered three
states {h, e, c} generated from the eight by the coarse-graining H,G,I — h, E — e
and X,T,S, B — c.

2.1. Conformational block database

Two requirements are used in constructing our blocks database: (1) each amino
acid segment in a block has the same protein secondary structure; and (2) each
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amino acid segment in a block is similar enough with at least one other member
in the same block, i.e. the two segments have a high sum of some ungapped pair
similarity score (so-called single linkage clustering). A sliding window of width [ is
used to scan every sequence in the original dataset with the DSSP conformation
annotation. Two amino acid segments A = agay ...a;—1 and B = bgby ...b;_1 with
the same secondary structure sgsy - - - s;_1 is compared by calculating the similarity
score
i=l—1

T(A,B)= Y Score(a;,b;), (1)
=0

where Score(a;, b;) may be the entry of the BLOSUMG62 matrix for the residues
pair a; and b;.'7 If score T'(A, B) is above a preset threshold T, A and B are in a
same block. Suppose that there are already n, members in block ¥,. They must
have the same conformation o. A block has an index being an existing secondary
structure segment o. However, a single conformation index o may correspond to
several blocks each of which containing a class of sequence segments. A new segment
C of conformation o will be compared with all the n, members in block X, of
conformation o. If one of the n, members, say A’, satisfies T'(A’,C') > T, the C
also belongs to block ¥,. If no such member exists in block X, then C' will not
belong to the block. The new segment C' has to be compared with all the existing
blocks with the same conformation o. If C' belongs two blocks, say ¥, and Xz, then
the two blocks have to be merged as a single block. This can be done by moving all
members of X3 to block ¥, and removing the empty block ¥3. In this way, each
segment will belong to one and only one block. Once a segment is assigned to a
block, we skip the whole window by [ sites to avoid any overlapping of segments.
The obtained blocks represent frequently occurring sequence-structure elements of
proteins.

Generally, samples in a block are biased, i.e. many members are very similar to
each other. To reduce the bias, those closely related members will be clustered, and
counted as a single segment. By specifying the identity rate 60% (which is close
to 62% of the BLOSUMG62) as another similarity score threshold, another single
linkage clustering is conducted within each block. After this second clustering, we
obtain our database of blocks.

Entries in the nonredundant database PDB_SELECT are close to the so-called
twilight zone. The homologous relationship between any pair of sequences in the
database is rather weak. No alignment in a sequence level is performed in construct-
ing the block database. This is a fundamental difference between our method and
others.

2.2. Derivation of the amino acid substitution matriz

Following the way to derive substitution matrices from blocks, we count all pairs
of amino acid substitutions in each column of blocks. All these counts are summed.
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The result of this counting forms a frequency table whose entries are the numbers
of times for each of the 210 possible different amino acid pairs to occur in all blocks.
The table is then used to calculate a matrix representing the logarithmic odds ratio
between these observed frequencies and those expected by chance.

Denote by f;; the total number of pairs of amino acids 7 and j, 1 < 5 <1 < 20.
The observed probability of occurrence for the ij pair is then

20 i
a5 =Fig | D> fiss (2)
i=1 j=1
and the probability for amino acid 7 is
Pi = Qii + Z%‘j/z (3)
J#i
The expected probability for pair 45 by chance is e;;
i =pi; and ey =2p;pj, fori# j. (4)

In consistence with the BLOSUM matrices, a log ratio is calculated in unit of half
bit as

sij = 210gy(qij/eij), (5)

which is rounded to the nearest integer value to finally produce our conformational
blocks substitution matrix (CBSM60). The mutual information per amino acid pair
H as a relative entropy, and the expected score E are calculated as

20 i 20 20
H=>Y qijxsij, E=> Y pixp;xsi. (6)
=1 j=1 i=1 j=1

For more details on matrix driving, we refer the reader to Ref. 2.

3. Results

Sample size of conformational blocks is controlled by parameters T and [. A high
T'x keeps only highly similar segments in a block, so the block size reduces. Similarly,
a larger [ results in a smaller block size. In order to obtain enough blocks above a
reasonable size, the setting of T« = 27 and [ = 10 is practicable. The block database
consists of 3133 blocks and 7235 segments. After clustering within blocks, the final
effective number of segments are 4899. The resulting amino acid substitution matrix
CBSMG60 is shown in Table 1.

3.1. Comparison of CBSM60 with BLOSUM

It is interesting to make a comparison between the matrix CBSM60 and the com-
monly used BLOSUMG62. There are many remarkable differences. A lot of amino
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Table 1. CBSM60 substitution matrix (Lower) and the difference matrix (Upper) obtained by
subtracting the BLOSUMG62 from CBSMG60 entry by entry.

A R N D C Q E G H I L K M F P S T W Y V
1P 0-1 -1-1 0-1-1 0-1 0 0 1 O -1 1 0-3 0 0 A
1 0 -1-2 o0 0-1 0-1-1 0 0O O -1 0 0-3-1-1R
A 5 0 0o-4 0-1 0 0-2-1 0-3-1 -2 1 0-2-2-2 N
R -1 6 0o-5 o 0-1-1-4-3-1-2-2 -2 0-1-6-3-3D
N -3 0 6 Oo-5-3-1-2-1-1-4-1-4 -2 -2-1-3-2-2C
D -3 -3 1 6 o 0-1 0-1 0 0-1-3 -3 0 0-3-1-2Q
cC -1 -5 -7 -8 9 -1-2 0-2-2 0-1-3 -2 0-1-2-2-2E
Q -1 1 0 0 -8 5 1 -2 -3 -1 -1 -1 -2 0 0 -1 -2 -2 -1 G
E -2 0 -1 2 -7 2 4 0o-2 0 0-1-1 -2 0-1-3-1-1H
G -1-3 0 -2 —-4-3 -4 7 o 1-1 1 0 -3-1 0-2-1 1 1
H-2 0 1 -2-5 0 0-4 8 0o-1 1 0 -3-1 0 0-1 1L
I -2 4 -5 -7-2-4-5-7-5 4 0-1-1 -2 0 0—-4-1-1 K
r -1-3 -4 -7-2-2-5-5-3 3 4 o 1 -2 0-1-1 0 O0OM
K -1 2 0 -2-7 1 1-3-1-4-3 5 1 0-1-1-1 1 0 F
M 0-1-5 -5-2-1-3-4-3 2 3 -2 5 0-1-1-7-3-2P
r-2-3 -4 -5-6-6-6-5-2 0 0-4 1 7 0o 1 0-1-2 S
p -2 -3 -4 -3 -5-4-3-2-4-6 -6 -3 -4 -4 7 1 -2 -1 0T
S 2 -1 2 0-3 0 0 0-1-3-3 0-1-3 -2 4 -1 -1 -3 W
T 06-1 0 -2 -2-1-2-3-3-1-1-1-2-3 -2 2 6 0 0Y
W -6 -6 -6 -10-5-5-5-4-5-5-2-7-2 0-11 -3 -4 10 0V
Yy 2 -3 -4 -6 4-2-4-5 1-2-2-3-1 4 —-6-3-3 1 7
v 0-4-5 -6 -3-4-4-4-4 4 2-3 1-1 —-4-4 0-6-1 4
A R N D C Q E G H I L KM F P S T W Y V

acid pairs have scores more negative in CBSM60 than in BLOSUMG62. For example,
the scores for pairs CN, CD, ID, WD, QC, KC, FC, WK, and WP are more than
two bits lesser in CBSM60. This means that the substitution of dissimilar residues
is strongly forbidden by the conservation of conformation. On the other hand, some
similar residue pairs, such as SA, SN, LI, VI, MI, ML, VL, FM, YF, and ST have
their scores slightly more positive.

An uncorrelated residue pair distribution has a vanishing relative entropy H;
H measures the residue pair correlation. As far as H is concerned, CBSM60 is
comparable with BLOSUM90, and both have H ~ 1.2 (see Table 2). Compared
with CBSM60, residues are more conservative in BLOSUMO90, which has its diagonal
elements more positive. For some amino acid substitutions, especially for PW, WD,
and QC, matrix CBSM60 is less tolerant to mismatches than BLOSUM90. On
the contrary, for some other residue pairs, such as MA, FM, SN, VL, and VY,
substitutions are more tolerable in CBSMG60.

3.2. Detection of homologous pairs

Another evaluation of substitution matrices is the ability in detecting homolo-
gous pairs. All-against-all sequence alignment is carried out on test sets with
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Table 2. The difference matrix obtained by subtracting BLOSUMO90 from CBSMG60 entry by entry.

A 0

R 1 o0

N -1 1 -1

D 0 0 0 -1

C 0 0 -3 -3 0

Q 0 0 0 1 —4 —2

E -1 1 0 1 -1 0 -2

G -1 0 1 0 0 0-1 1

H o 0 1 0 0 -1 1 -1 0

I 0 0-1-2 0 0 -1 -2 -1 -1

L 1 0 0-2 0 1 -1 0 1 2 -1

K 0 0o 0-1-3 0 1 -1 0 0 0 -1

M 2 1 -2 -1 0-1 0 0 0 1 1 0 -2

F 1 1 0 0-3-2-1 0 0 1 0 0 20

P -1 0 -1 0 -1 -2 -1 1 -1 -2 -2 -1 -1 0 -1

s 1 0 2 1 -1 1 1 1 1 0 0 10 0 —

T 0 1 O O O O -1 0 -1 0 1 -1 0 0 0

W -2 -2 -1 -4 -1 -2 0 0 -2 -1 1 -2 00 -6 1 0 -1

Y 1 0-1-2 0 1 0 0 0 0O 0 0 1 1 -2 0 -1 -1 —1

vV 1-1-1-1-1-1-1 1 0 1 2 0 11 -1-2 1-3 2 -1
A R ND CQ E G H I L KMF P S T W Y V

Blast2.2.6.1%:1 The gap insertion and elongation parameters used for alignment
are set to 11/1. The detective ability is illustrated by the number of successfully
identified homologous pairs as a function of errors per query.?’ The error per query
is defined as the ratio of the total number of nonhomologous protein sequences
detected with expectation value not greater than the threshold to the total num-
ber of aligned sequence pairs. By varying the expectation value cutoff of Blast, we
obtain the curve to measure the detection ability.

For remote homologous sequences in the twilight zone, we examine whether
CBSM60 performs better than that BLOSUMG62 for sequence alignments. The
176 sequences extracted by Elber?! are selected as the test set. Each homologous
pair in this test set have a sequence identity less than 25%, but bear a very similar
structure. The detection results are shown in Fig. 1. CBSM60 is able to find nearly
one-third more homologs than BLOSUMG62.

The SCOP40%%:22 clustered database developed by Brenner for assessing
sequence comparison methods is selected as the test set for further assessment.
It contains 1323 proteins assigned to 639 folding families; no two homologous
sequences share more than 40% sequence identity. For comparison, CBSMG60,
BLOSUMG62, and other two score matrices of Gonnet and Overington are used
in the detection of homologous pairs. The matrix of Overington is also scaled in
the unit of half bit as BLOSUM.!'” The results are shown in Fig. 2. As shown in
the figure, for common homolog detection where sequence similarity is not so weak,
CBSMG60 still performs slightly better than other matrices.
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Fig. 1. The number of successfully identified remote homologous pairs in the test set of
176 sequences as a function of errors per query.
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Fig. 2. The number of successfully identified homologous pairs in SCOP40 clustered database as
a function of errors per query.

As a specific example to illustrate the performance of CBSMG60, the sequence
alignment of homologous pair IEAG_A and 3APR_E by Blast2.2.6 is shown in
Table 3. Segment ASEF of 1EAG_A (271-274) has conformation GGGG. This
ASEF/GGGG is aligned to DSLV/GGGE of 3APR_E (274-277) by CBSM60.
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However, BLOSUMG62 aligns the segment to GASF/TEEE of 3APR_E (266-269), a
segment of distinct conformation. As a whole, CBSM60 supports more conformation
pairs ee than BLOSUM.

3.3. Secondary structure segment search

If a score matrix is more sensitive to conformation, we would expect that in a set of
similar segments extracted according to some threshold score a higher proportion
will share the same conformation. As an evaluation of the performance of CBSM60
matrix, we calculate all-against-all pair similarity scores for pairs of width 10, using
the original dataset of PDB_SELECT. If two segments A and B have their similarity
score T(A, B) > 7 and they share the same protein secondary structure, they give
one count of ‘true positive’ (TP); otherwise, a ‘false positive’ (FP). We then obtain
the total counts of TP and FP.

We do the same thing with BLOSUMG62 matrix at some threshold 7/ to obtain
the counts of TP and FP. By varying the threshold 7, we make the total counts of
FP to be equal for both the matrices. Consequently, we can evaluate the improve-
ment by the raise in counts of TP. For example, at 7/ = 23 BLOSUMG62 finds 86,601
TP events and 1,389,714 FP. In the next step, by varying threshold 7, CBSM60
detects 1,368,517 FP samples. At the nearly equal FP, CBSM60 detects 101,745
TPs, gaining an increase of nearly 17.5%. The results of secondary structure seg-
ment search are shown in Table 4. The improvement of CBSM over BLOSUM is
remarkable. The TP counts increase by nearly 15% at all 7/. Furthermore, the
proportion of samples with only tiny structural discrepancy in all the FP cases
increases nearly by one percent. For example, the proportions of FP with only one
single mismatch in conformation are 6.9 and 7.8% in total pairs for BLOSUM62
and CBSM60, respectively.

4. Conclusion

We have derived from databases PDB_SELECT and DSSP a database of sequence-
conformation blocks which explicitly represent sequence-structure relationship. We
have constructed an amino acid substitution matrix called CBSM60 from this block
database. Compared with other substitution matrices, CBSM60 is more sensitive
to conformation, and performs better in protein secondary structure identification
and (either remote or common) homolog detection. CBSM60 can be used as an
alternative score matrix in protein design and protein structure prediction.

When creating our block database, we have to start with some existing matrix
to measure sequence similarity. Here, BLOSUMG62 is used at the beginning. We may
regard the construction of CBSM60 as the first step of iteration. We may replace
BLOSUMG62 with the newly found CBSM60 to construct an updated CBSM60, and
repeat the procedure until a final convergence is met.



An Amino Acid Substitution Matrixz for Protein Conformation Identification 777

Table 3. Alignments between 1EAG_A and 3APR_E given by Blast2.2.6 with CBSM60 and
BLOSUMSG62. The gap insertion and elongation parameters are set to 11/1. Query =1EAG_A,
Sbjct =3APR_E. The secondary structures of disgreed alignment are indicated in upper cases.
Some identical alignments are omitted.

Aligned with CBLM60

Query: 62 TYDPSGSSASQDLNTPFKIGYGDGSSSQGTLYKDTVGFGGVSIKNQV--LADVDSTSI-- 117

SS xbxgggxttxeee xttsx tteeeeeee--EEEEEEESS--
YDP+ SS Q I YGDGSS+ GL KDV GG+ IKQ LA ++ S
SS -bxgggxttxeee xttsx tteeeeeeeEEEEEEEXHHHHT

Sbjct: 58 -YDPNQSSTYQADGRTWSISYGDGSSASGILAKDNVNLGGLLIKGQTIELAKREAASFAS 116

Query: 118 ---DGILGVGYKT-NEAGG---SYDNVPVTLKKQGVIAKNAYSLYL-NSPDAATGQIIFG 169

S8 --—sxeeexsxgg GXSSX---SXXXHHHHhhhttssssseeeeex-xxttxseeeeeet
DG+LG+G+ T G DN L QG+I++ + +YL + + G+ IFG
SS SSXseeeexsxggGXSSTTXXXHHHH----hhhttsxssseeeececexxgggtxxeeeeet

Sbjct: 117 GPNDGLLGLGFDTITTVRGVKTPMDN----LISQGLISRPIFGVYLGKAKNGGGGEYIFG 172

Query: 225 DLADQIIKAFNGLTQDSNGNSFYEVDCNLSG--DVVFNFSKNAKISV-PASEFAASLDGQ 281

SS hhhhhhhhhttXEEExttsxeeeeeesxxxs—-EEEEEXSTTXEEEE-EGGGGEEEXXXS
++A  V +A+ NG+ Y I C+ S +VF+ + A VPSS GQ
SS hhhhhhhhhht---XeexsssxeeexsxgggXXXEEEEET-TEEEEEXGGGGEEEEETTE

Sbjct: 229 NIAASVARAYG---ASDNGDGTYTISCDTSAFKPLVFSIN-GASFQVSPDSLVFEEFQGQ 284

Aligned with BLOSUM62

Query: 62 TYDPSGSSASQDLNTPFKIGYGDGSSSQGTLYKDTVGFGGVSIKNQVL------- ADVDS 114

SS xbxgggxttxeeeceeceeceecexttsxececeecceccecececetteceeeeeE-——————- EEEEE
YDP+ SS Q + I YGDGSS+ G L KD V GG+ IK Q + A 8

S8 -bxgggxttxeeeeeceeece xttsxeeeeceeeececeecetteceeeeeEEEEEEEXHHHHT

Sbjct: 58 -YDPNQSSTYQADGRTWSISYGDGSSASGILAKDNVNLGGLLIKGQTIELAKREAASFAS 116

Query: 115 TSIDGILGVGYKTNEAGGSYDNVPVTLKKQGVIAKNAYSLYL-NSPDAATGQIIFGGVDN 173

SS ESSsxeeexsxggGXSSXSXXXHHHHhhhttssssseeeeex-xxttxseeeceeceteecet
DG+LG+G+ T L QG+I++ + +YL + + G+ IFGG D+
S8 SSXseeeexsxggGXSSTTXXXHHHHhhhttsxssseeeeeexxgggtxxeeeeetxxxg

Sbjct: 117 GPNDGLLGLGFDTITTVRGVKTPMDNLISQGLISRPIFGVYLGKAKNGGGGEYIFGGYDS 176

Query: 229 QIIKAFNGLTQDSNGNSFYEVDCNLSGDVVFNFSKNAKISVPASEFAASLDGQPYD---- 284
Ss hhhhhttXEEExttsxeeeeeesxxxsEEEEEXSTTXEEEEEGGGGEEEXXXSXTT----

+ +A+ NG+ Y + C+ S K S+ +F SD ++
S8 hhhhhhtX---eexsssxeeexsxggg-——---- XXXEEEEETTEEEEEXGGGGEEEEETT

Sbjct: 233 SVARAYGA---SDNGDGTYTISCDTSA------ FKPLVFSINGASFQVSPDSLVFEEFQG 283
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Unlike PAM or BLOSUM, matrix CBSM60 includes the information of confor-
mation explicitly. Compared with other structure-base substitution matrices, our
constructing procedure does not involve in any heavy computation of structure
alignment in a whole protein level. In this way, we can calculate matrix entries
from a much larger size of samples.

Since the conformation of each column in any block is known, we may group
residue pairs according to their conformation. We can then derive substitution
matrices for each group separately. The obtained matrices are shown in Tables 5-7.
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Appendix

Notable differences are seen among the three matrices. For example, the similarities
of CA, SR, MQ, PH, and TP change drastically from helix to sheet. The score of
CA is positive in helix, while it is negative in sheet. It is expected that such a set
of matrices would be very useful when aligning a query sequence to the sequences
whose structures are known. This will be discussed elsewhere.

Table 5. Amino acid substitution matrix CBSM60c for coil state (Lower) and difference matrix
(Upper) obtained by subtracting the CBSM60h matrix from CBSM60c entry by entry. Distinct
entries are in boldface to guide view.

A R N D C Q E G H I L K M F P S T W Y V
-1 1-1-1 -3 0 2 O 1 1 2 2 1 O 1 0 0 2 2 1 A
1 0 O 11 0-1-2 2 2 1 1 4 -3 1 0 1 4 3 R
A 4 -2 0 1 0-1-2 o0 3 1 -1 2 2 -2 0-1 7 0 3 N
R 0 6 -1 2-1 0-2 0 1 1 0 1 5 1 -1 -1 4 0 -1 D
N -3 0 5 -3 -4 2 2-4 1 0-1-1-5 -6 —-4-2 7-3-3 C
D -3-3 1 5 1 1 -2 0 2 3 1 3 5 1 0 1 -1 3 3 Q
C -2 —4 -7 -8 8 1 -1 0 4 2 1 3 4 2 0 1 1 1 3 E
Q-1 2 0 -1 —-11 5 -4 -3 -1 -1 0 2 1 1 -2 -3 1 -1 1 G
E 0 0-1 2 -6 3 5 1 -1 1 1 4 0 2 -1 0 4 1 4 H
G 0-3-1-3 -5 -3-3 5 2 1 0 1 0 2 2 2 4 1 1 1
H-1-2 1-2 -7 0 0-5 9 1 1 1 1 1 1 0-2 0 1 L
I -1 -2 -3 -6 0 -3 -2 -6 -6 5 0o 2 1 1 0 1 1 3 1 K
L 0-1-3 -6 -1 0-4-5-3 4 5 1 1 -3 1 3 -3 0 1M
K o 3-1-2 -8 2 1 -3 -1-4-2 5 1 3 2 0 3 1 1 F
M 0 0-3 -4 -2 1-1-2-1 3 4 0 6 -6 0 -1 -3 4 3 P
r-3-1-3-3 -8-3-3-4-2 0 1-3 1 8 o o0 3 2 2 S
p -1 -4-5-3 -7-3-2-4-4-5-4-2-4-3 5 -1 2 1 1 T
S 2 0 1 -1 -5 0 0~-1-2-1-2 0 0-2 -3 4 1 0 4 W
T 0-1r 0-2 -3 0-1-4-3 0-1-1 0-4 -3 2 5 1 -1Y
w-5-5-3-7 -3 -7-4-3-4-2-4-6-5 2-11 -2 -2 11 1V

Yy -1-1-4-5 -5 0-3 -5 2-1-2-1-1 5 -5 -2-2 1 8
v 1-2-3 -6 —-4-2-2-3-2 5 3-2 2 0 -2-2 0-2-2 5
A R N D C Q E G H I L K M F P S T W Y V
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Table 6. Amino acid substitution matrix CBSM60e for sheet state (Lower) and difference matrix

(Upper) obtained by subtracting the CBSM60c matrix from CBSM60e entry by entry.

S T W Y V

L K M F P

I

AR N D C Q E G H

0 -1 -3 -1 A
0 -2 -1 -1 R

0

-4

-1 -1
2 -3 -3

0 -1

3

—2

0 -1

0

OCRU T~

[}

1 -3 N
0 D
5 =3 =2

-3
-1 -3
-1 -2 -2
0
-1
-6 -3 -3

0
-3
0
-1
1
0
2
-1

—4 2
-5 -1 2
0 4 -1
3 0 0
2 0
0 2
5 2

2 =2 =2
-1 -3 —-1

-2 -1

-5 =3
-1

0 -3 -1
0 -3 —-1
0 -2 =2

-1

-2

1

-2 -1

2 2 2 -1 -6 -1 2 -1

2 0 1 1 -1 -1 1

8§ -1 -2 2 -4 -2 3

1 2 0 0

2 0 -2 -3 1
3 6 3 0 0
7 3 3 1
-2 =7 -1 8 -3 =2
-5 8 -1

3
8
0
-3 —4 -5 —6 10

3 2
2 1
-3 1

0 0 -1

5
~1
-1
-3 -2

A
R
N
D
C
Q
E
G
H

-2 -4 -2 K

1 0
-2

-3
2 —1

1

2
2

-2 -5 -9 -7 -4 -3 -4 -6 -3

0 -2 -1 M

-3 -2 -2 F

-1

4
—4 —4

-4 -4 -7 -3 -4 -7 -5 =2

-1
-1

L
K
M
F
P

2
4

0

-2 =2

6

2 -3 -1

-1 =5 2

1
-4 -5 —4
-2 -3 -7 -8 -8 -6 -6 -5 -3 -2

3

P

—6
0 -4 S
-3 -2 -1 T

7 -1
-5

3
0

1

2 -6 -5 —4

0 -1

—4
-3 -7 -5 -2 -5 11

0

-4 1

-3 -4 -3 -3 0

-5 -1

-9 W

-2 -1
-2 -1Y

0-3 -3 1-1-2-2 5
0 -4 -1 -2 -2 -1

-6 -7 -6 -6 -4 -2 -5 -7 -3 -8 -2 -8 -5 -1

-4 -2 -3 -8 -8 -3 =5 =5

-2 =2

0 -5 -3 —1

0 -1

T
W%

-2V

9
0

-4 -7 =5

3

3 -6 -2 —4 6
-3

1 -2 -8 -6 -1 —11

—4

-4 -2 -5 -3
2 1

1

0 -3 -6 -6 -3 -4 —4 -3 —4

Y
A%

S T W Y V

L K M F P

I

AR NDCQE G H

Table 7. Amino acid substitution matrix CBSM60h for helix state (Lower) and difference matrix

(Upper) obtained by subtracting the CBSM60e matrix from CBSM60h entry by entry.

T W Y V

D ¢C Q E G H I L K M F P 8

R N

-1 -1

-1

-1 -1 -1 0 -1

4 -1
-1 -2 -2

-3 -2 -1

-1

-1 -1

1 -3 -2
—4 -1

5

6

0

-1

1
4
2

-2
1
5

-1
0
3

0 -1
0
2

0 3
0 1 0
0 3

—4 -1

1
-3 —4 -1
1

-1
7

-1
—4

-4 -2

-1
—2

6 -2 -1 0 -1 -2 1

-5 -8 =10 11

-2 -3

0 -2 2 -1

-2 -1

1

-2 -5

0 -1 0
1 -7 -1
2 -4 0
0o 2 0

1 1

0 -2 -2 -1 -1
1 1

0

4
-2
0

0 -7
2 -8
-1 -7 -1
-2 -3 0
-7 -1 -5 -6 -5 =5

1
0
-2
0

2 -1 -1

0

3
3

-2 —4 —6
-2 -3 —4

-2
-1

I
L
K

M
F

P

4

0 -3 -2 -4 -3

-3 —6 —4 —4

-7 -1

-1 -2 -2
-1

1

5

0o -2 -7 1
-5 -5 -1 -2 -4 -4 -5

2
-1

P

3

-3 —4 -3

0

3
0

2
0

-8 -3 -8 -7 -5 -2
—4 -1

-3 -5 =5

-2 -1

-6 11

-1

-4 -4 -5 -6 -7 =5 -3

-3
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Table 7. (Continued)

S 2 -1 1 o -1 o0 o 1-1-3-3 0-1-4-3 4 1 1 5 W
T 0 -1 1 -1 -1 -1-2-1 -3 -2 -1 -2-3 —-4-2 2 6 1 2Y
v -7 -6 —-10 -11 -10 -6 -5 -4 -8 -6 —2 -7 -2 -1 -8 =5 —4 10 1V
Y 3 -5 -4 -5 -2 -3 -4 -4 1-2-2-4-1 4-9 -4 -3 1 7

v 0-5 -6 -5 -1-5-5-4-6 4 2-3 1-1-5-4-1-6 -1 4
AR N D CQ E G H I L KM F P S TW YV
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