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SUMMARY

The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free,
boundary-type, radial basis function collocation technique for the numerical discretization of general
partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular
general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial
boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D
Helmholtz and convection—diffusion problems under rather complicated irregular geometry, The method
is also first applied to 3D problems, Numerical experiments validate that the BKM can produce highly
accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots
are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are
numerically illustrated and the completeness issue is also discussed. Copyright © 2003 John Wiley &
Sons, Ltd.

KEY WORDS: boundary knot method; radial basis function; non-singular general solution; method of
fundamental solutions; dual reciprocity method; boundary element; meshless

1. INTRODUCTION

The meshless numerical techniques have in recent years become increasingly popular since
the construction of a mesh in the standard finite element and boundary element methods is
not a trivial work especially for non-linear, moving boundary and higher-dimensional prob-
lems [1-3]. Among these meshless techniques, the local boundary integral equation (MLBIE)
method [4], the boundary node method (BNM) [5], and the method of fundamental solu-
tions (MFS) [3, 6] are typically meshless boundary-type numerical schemes. The essence of
the meshless MLBIE and BNM is basically a combination of the moving least square (MLS)
technique with variant boundary element schemes, whereas the MFS is a boundary-type radial
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basis function (RBF) collocation scheme. Both the MLBIE and the BNM involve singular
integration and hence are mathematically more complicated in comparing with the commonly
used finite element method (FEM). In addition, their low order approximations also lower
computational efficiency [3]. In fact, since the BNM still requires meshes in its numerical
integration, it is not a truly meshless scheme like those MLS-based meshless FEMs [4, 7].
The MLBIE does not require a mesh at all but is not casily used. On the other hand, the
MFES possesses integration-free, spectral convergence, easy-to-use, inherently meshfiee merits
[3,6]. However, the requirement of an arbitrary fictitious boundary outside the physical domain
to avoid the singularity of the fundamental solution hinders its practical applicability [3, 8].
In particular, applying the MFS to complex-shaped boundary problems requires the tricky
location of source knots in terms of boundary conditions and geometry [9] and often leads to
severe ill-conditioning of the resulting interpolation matrix [10].

Chen and Tanaka [11, 12] recently developed a boundary knot method (BKM) as an alter-
native boundary-type meshless RBF collocation scheme. The BKM is basically a combination
of the Trefftz-type technique [13] with the RBF, non-singular general solution, and dual reci-
procity method (DRM). The RBF is employed in the BKM to approximate the inhomogeneous
terms via the DRM, while the non-singular general solution of the partial diflerential oper-
ator leads to a boundary-only RBF formulation for the homogeneous solution. It is worth
stressing that the BKM eliminates the inherent fatal inefficiency of the MFS. Namely, the use
of the non-singular general solution in the BKM instead of singular fundamental solution in
the MFS avoids the construction of a controversial artificial boundary. It is noted [12] that
as compared with the dual reciprocity boundary element method (DR-BEM) [14, 15] and the
MFS [3], the BKM is theoretically flexible to general linear and non-linear inhomogeneous
partial differential equations. Moreover, due to the use of the radial basis function, the BKM
is essentially meshless for solving any dimensional problems [11]. In addition, the method is
mathematically simple and easy to implement.

Owing to its very recent origin, the method has so far merely been applied to linear
and non-linear Dirichlet problems defined on a smooth 2D elliptic domain [11, 12, 16]. This
paper aims to extend the BKM to 2D Helmholtz and convection—diffusion problems under
rather complicated domains with irregular boundaries. This will also be a first time the BKM
is shown to be effective in solving 3D problems. Since applying the DRM and RBF to
approximation of particular solution is now a rather mature technique, this paper only gives
an inhomogeneous example to illustrate that the inner knots are absolutely necessary to ensure
the solution stability and accuracy. This observation is at odd with a controversial argument
given in Reference [15] and other literature that the inner knots are not always necessary
in the DRM except for improving accuracy. It is noted that the emphasis of this study is
concerned with various 2D complex-shaped boundary geometry and 3D problems. Numerical
experiments presented are very encouraging in terms of efficiency, accuracy, stability, and
simplicity. The stability and convergence rate of the method are also numerically illustrated.
Some open issues on completeness, condition number, and convergence are raised in Section 4.

2. BOUNDARY KNOT METHOD

The BKM can be illustrated by a two-step numerical approach [11, 12]. Firstly, the DRM
and RBF are employed to evaluate the particular solution of the problem, and secondly, its
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BOUNDARY KNOT METHOD 1933

homogeneous solution is calculated by using non-singular general solution formulation. With-
out loss of generality, consider the following multi-dimensional convection—diffusion equation

DV2u(x) + ve Vu(x) — ku(x) = f(x) (1)
ulx)=R(x), x&S, (2a)

Dul;
‘ 135:) =N@), x€S; (2b)

where v denotes a velocity vector, D is the diffusivity coefficient, & represents the reaction
coefficient, S, and Sy denote the boundaries with the Dirichlet and Neumann conditions,
respectively, x is the multi-dimensional independent variable and » the unit outward normal.
The solution u(x) can be expressed as

u(x) = un(x) + up(x) (3)

where up(x) and u,(x) are the homogeneous and particular solutions of the problem, respec-
tively. In other words, the particular solution ,(x) satisfies

D(x)V2up(x) + v e Vuy(x) — kup(x) = f(x) (4)

but does not necessarily satisfy the boundary conditions. The homogeneous solution uy(x)
satisfies

DV*un(x) + ve Vuy(x) — kup(x) =0 (5)

un(x) = R(x) —up(x), x€SI, (6a)
Oun(x) Qup(x)

= N(x) - S €St (6b)

The computation for these particular and homogeneous solutions by using a two-step BKM
scheme will be introduced in the following sections.

2.1. Particular solution by the DRM and RBF

Based on the DRM and RBF [14, 15], the inhomogeneous term f(x) of Equation (4) can be
approximated by

N+L

Jx)= le e p(1) (7
where o are the unknown coefficients to be determined, N and L represent, respectively, the
total numbers of knots on the domain and the boundary, r, = ||x — x;|| denotes the Euclidean
distance between each x and x;, and ¢ denotes a RBF, which we will specify in the later
example part. It is noted that different from the RBF-based Kansa method, the augmented
polynomial terms are missing in Equation (7). This is because that Li [17] proved very
recently that the invertibilility of the dual reciprocity interpolation matrix does not require
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such augmented polynomial terms with conditionally positive definite MQ RBF. Our numerical
examples also show that the augmented polynomial terms are not necessary with the DRM
and various RBFs we have used. The difference between the DRM and the Kansa’s method
lies in that the former does not involve any boundary conditions. On the other hand, the
mterpolation conditions of the RBF approach has been discussed in many publications. For
instance, see Reference [18].

From Equation (7) we can uniquely determine each «; by

o=dAg {f(x)) (8)

where 4, is a (N+L) x (N+L) non-singular RBF interpolation matrix. From Equation (8), the
particular solution u,(x) at any points can be obtained by summing all the localized particular
solutions

N+L

up(x) = E oY) (9)

where each /(r;) satisfies the equation

$(r)=DVHY(r) +ve VY(r) — kii(r) (10)

In general, it is not a trivial task to integrate Equation (10) to obtain the approximated partic-
ular solution s for an arbitrary RBF ¢ [3]. Recently, Muleskov et al. [19] derived an analytic
formula to compute the approximated particular solutions for Helmholtz operator by using the
polyharmonic splines as the RBF ¢. Unfortunately, in the case of convection-diffusion op-
erator, such analytical approximation is still not available now. In our practical computation,
we apply a reverse procedure for the particular solution () of Equation (1). Namely, the
approximated particular solution i is specified beforehand, and then the corresponding RBF
¢ is evaluated by simply substituting the specified ¥ into Equation (10). This scheme also
works well for various types of problems with the dual reciprocity BEM [20, 21].

2.2. Boundary formulation with non-singular general solution

The homogeneous solution uy, from Equations (5) and (6a), (6b) can be obtained by using
various boundary-type numerical techniques 3, 15]. In the BKM, we employ a non-singular
general solution instead of a singular fundamental solution in the standard BEM. For illustra-
tion, in the case of the convection—diffusion operator, the non-singular general solution is as
follow:

1 (nf2)—1 e
()= o= (5%) e o (), 2 (11)
For comparison, the corresponding fundamental solution is given by
. 1 ¢ N\ (/2)—1 v
=5 (5=) P K (ur), 22 (12)

where 1 is the dimension of the problem; / and K, are respectively, the modified Bessel
functions of the first kind and the second kind; and

[ = .J_Y.J_2+_l£
*=I\2Dp) ™D
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It is not difficult via any symbolic software package such as Maple to verify that the general
solution (11) satisfies the following homogeneous convection—diffusion equation

DVl +ve Vil — kul =0 (14)

The only difference between the non-singular general solution and the singular fundamental
solution is that the former uses the modified Bessel function of the first kind whereas the latter
uses instead the modified Bessel function of the second kind. It is noted that the fundamental
solution (12) has a singularity at the origin.

Let {x;}-_, represent a set of knots on the physical boundary. The homogeneous solution

j=1 7 )
up(x) of Equation (5) can be approximated by the following series:

L
up =3 () (15)
=l

where #; = ||x — x;||, L is the total number of boundary knots, f; are unknown coefticients to

be determined. Collocating Equations (6a) and (6b) in terms of the series (15) produces

L
> ﬂj“ﬁ(f’fj) = R(x;) ~ Hp(xi) (16a)
j=1

L a”ﬁ(rmj) _ N a”p(xm)
> 5 =N Gw) — =5 = (16b)

1

where i and m indicate the Dirichlet and Neumann boundary response knots respectively.
In the case where the inner knots are used, we need to constitute a set of supplementary

equations for the unknowns as follow:
L
S Bty =ulx) —up(xi), 1= l,....N (17)
j=

where ! denotes the index of each internal response knot and N is the total number of
interior points. We have then obtained a total of N + L simultaneous algebraic equations.
By solving the simultaneous equations (16a), (16b) and (17), we obtain the values of the
undetermined coefficients f; and the solutions values at the N internal knots. Once this is

done, it is straightforward to calculate u value at any inner knot by

NA-L

L
w(x) = up(x) + up(x) = Zl () + kEl o (7e) (18)
j= =

Unlike the MFS, all boundary collocation knots x; in the BKM are placed only on the physical
boundary and can be treated as either source or response points. It is straightforward to extend
the above solution procedure to the other differential operators such as the Helmholtz, modified
Helmholtz, and biharmonic operators [11,15].

As was pointed out in References [3,22], the DRM with the RBF is a meshless technique for
evaluating particular solution of general PDEs. The non-singular general solution formulation
in the BKM for homogeneous solution is also an essentially meshless RBF boundary-type
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Figure 1. Configuration of 2D irregular geometry.

methodology. Thus, the proposed two-step BKM scheme constructs a truly meshless numerical
discretization technique for general higher-dimensional problems.

3. APPLICATIONS AND DISCUSSIONS

In this section the applications of the BKM to solve both 2D and 3D Helmholtz and conv
ection-diffusion problems will be illustrated. As was mentioned earlier, the main purpose of
this paper is to verify the applicability of the BKM to solve PDE problems with arbitrarily
irregular boundary. In the BKM, the inhomogeneous term is approximated by using the DRM
and RBF which is similar to DRBEM and MFS. Therefore, the major emphasis on the BKM
solution is on its applicability to finding the solutions of the corresponding homogeneous
problems. In this paper, an inhomogeneous case is given to indicate that some internal knots
are necessary for the DRM evaluation of the particular solution in the BKM solution of
inhomogeneous problems. The application of the BKM to more complicated inhomogeneous
problems is very straightforward [12, 16]. Furthermore, to the knowledge of the authors, this
paper gives the first attempt to apply the BKM to solve 3D problems.

Unless otherwise specified, all 2D tested cases have the same configuration of irregular ge-
ometry shown in Figure 1with Neumann conditions at x = 0 and y =0 boundary and Dirichlet
conditions at otherwise boundary portions. It is also noted that this configuration involves cor-
ners, sharp notches, and interior elliptical and rectangular cut-outs. These interior and exterior

boundary shapes are deliberately designed to verify the robustness of the BKM in solving

arbitrary complicated geometric problems. For the 3D case, the configuration is given in
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¥

Figure 2. Configuration of a cube.

Figure 2 which is a 3D cube with all sides of equal length. Both the Helmholtz and convection—
diffusion problems with this 3D cube geometry are tested to verify the simplicity, efficiency,
and accuracy of the BKM for solving higher-dimensional problems. The present experimental
problems were taken from Reference [15] with some modifications.

All tested results are displayed in Tables I-V. The relative error of the BKM solution,
which is defined to be the ratio of the approximation error to the value of the analytical
solution, are shown under the columns of BKM (L + N), where L and N are, respectively,
the total numbers of boundary and inner knots. The quantities under the column Exact are
the exact solutions. In Figure 1, the small blank circles denote the boundary discretization
knots, while the tiny crosses represent the inner knots.

3.]. A 2D homogeneous Helmholtz problem

We first consider a homogeneous Helmbholtz problem

0%y 0%u

-a—ﬁ—l-a—yz—klzu:(), x, y €] (19)

subject to the following boundary conditions

u(x, y)=R(x,y), X YES, (20)

du(x, y)

2Ol N(x ; S 21
2L NG y) xyess (21)
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Three cases with analytical solutions

u(x, y)=sin(x)sm( y) (22a)
u(x, v) =xsin(v2y) (22b)
u(x, ) =sm(10x) + sin(10y) (22¢)

are tested. The above Dirichlet and Neumann boundary conditions R(x, y) and N(x, v) can be
evaluated easily by using the corresponding analytical solutions (22a), (22b) and (22¢). The
non-singular solution of the 2D homogeneous Helmholtz operator is

o(r)=Jy(nr) (23)

where Jy is the zero order Bessel function of the first kind and 5 is the wave number. For
the above three cases, 7 is taken to be v2, v/2, and 10, respectively.

From the numerical relative errors of the BKM solutions with incremental boundary knots
given in Tables I(a)~(c), we find that the BKM is a stable, accurate and rapidly convergent
numerical technique, It is noted that only boundary knots were required in the homogeneous
cases. It is also observed that the BKM results with only 29 knots were very accurate for
the cases (22a) and (22b) with small wave number, while the cases (22¢) with higher wave
number need relatively more knots to attain the same accurate BKM results. Taking the
consideration of the complicated exterior and interior contours, the accuracy of the proposed
BKM solution is very satisfactory.

3.2. An inhomogeneous Helmholtz problem

To investigate the effect of the inner knots to the solution of the inhomogeneous problems,
we consider the following problem

*u  0%u
a;g‘i‘"a?‘l'um% (x,y) €2 (24)
ulx, y)=~R(x,y), (x,y)€ES, (25)
a -
ME;; 2y (xp)  (ny)eSr (26)
The analytical solution is
u(x,y)=sinx +siny+x (27)

Similar to the previous case, the boundary conditions R(x, y) and N(x, y) can be determined
from the exact solution (27). Here the rather simple inhomogeneous term is deliberately
chosen to show that even for such a smooth linear inhomogeneous term, some inner knots are
also required in finding the BKM solution. The DRM and RBF were employed to evaluate
the particular solution. In terms of the mulitquadratic (MQ) RBF, the chosen approximated
particular solution for Equation (9) is

Y(r)=(r* + )" - (28)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1931-1948
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BOUNDARY KNOT METHOD

(a) Relative errors for 2D homogeneous Helmholtz problem with analytical solution (22a).

X Y Exact BKM (25) BKM (29) BKM (33}
0.5 0.5 0.230 —7.0e -3 —25¢e—4 ~1.le — 6
4.0 6.0 0.211 S54c—4 48¢c —5 —2.5e—7
6.0 4.5 0.273 4.0¢ — 3 —2.5¢ — 4 20e—6
1.0 4.0 —(.637 —4,le — 5 [.9e — 5 ~2.le—7
7.5 6.0 —0.262 1.2¢e — 2 —-12¢ —3 2.le—=5
0.5 7.0 0.315 57¢ — 4 l.le—3 21le—5
7.5 1.0 0.789 —2.5¢e — 2 33e -3 2.le—-5
(b) Relative crrors for 2D homogeneous Helmholtz problem with analytical solution (22b).

X Y Exact BKM (25) BKM (29) BKM (41)
0.5 0.5 0.325 7.4e — 2 ~24e -3 -6.6e — 6
4.0 6.0 3.229 —59¢ — 4 1.8¢ — 5 -37e~7
6.0 4.5 0.484 —4.4d4c — 2 —lle—3 1.7¢ — 6
1.0 4.0 —0.586 1.6 — 2 l.3e —3 47e -7
7.5 6.0 6.054 1.2e — 2 42e — 4 32e 7
0.5 7.0 —0.229 24e — 2 —l.le—~2 21le—5
7.5 1.0 7.408 4.5¢—2 25¢e -3 ~8.0e — 7
(c) Relative errors for 2D homogeneous Helmholtz problem with analytical solution (22¢).

X Y Exact BKM (121) BKM (129) BKM (149)
0.5 0.5 —1.918 —39¢ — 4 73¢ -6 9.7¢ — 9
4.0 6.0 0.440 —53e—4 82¢—6 6.3¢c—7
6.0 4.5 0.546 —42e —4 24e — 6 3.7e — 8
1.0 4.0 0.201 2.5¢—3 —1.2e -6 l.le—6
7.5 6.0 —0.693 4.8¢ — 5 —~32e—06 48¢ -9
0.5 7.0 ~0.185 1.9¢ — 3 1.2¢ — 4 50e — 6
7.5 1.0 —0.932 29e —4 —6.0e — 6 9.8¢ — 8

where ¢ is called the shape parameter. In applying Equation (10), the corresponding MQ-like
radial basis function is

3 "2
(/)(f") = 6(;#2 -+ (;2) + ﬁ -+ (’,2 4+ o )3/2 (29)

The particular solution is then evaluated by using formulas (8) and (9). Compared with other
radial basis functions such as the thin plate spline, the MQ enjoys a spectral convergence
[23]. However, the accuracy of the solution greatly depends on the optimal value of the
shape parameter ¢, which is often problem-dependent [24]. An analytical formula for the
value of the optimal ¢ remains an open issue. See Chen and Tanaka [11, 16] for some latest
developments on how to construct an efficient RBF.

Table [I(a) lists the BKM results without using inner knots. The nearly optimal shape

arameters ¢ is obtained by trial-and-error to be 3, 2, 1 for the cases with 21, 25, and 27

P
d from the tables that as the knot density increases, the

knots, respectively. It can be observe

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1931-1948




1940 Y. C. HON AND W. CHEN

Table II.

(a) Relative errors for 2D inhomogeneous Helmholtz problem without inner knot.

X Y Exact BKM (21) BKM (25) BKM (29)
0.5 0.5 1.459 —-7.6¢ — 2 6.4e — 3 6.0e — 3
4.0 6.0 2,964 —2.9¢ -3 9.7e — 5 2.le -4
6.0 4.5 4,743 --7.6e — 4 —2.5¢e —3 —25e -3
1.0 4.0 1.085 —2.5e -2 —9.0e — 3 —0.8¢c -3
7.5 6.0 8.159 —13¢ -2 —1.le =2 —37¢ -3
0.5 7.0 1.636 —2.0e — 1 —34e — 2 —5.6e — 2
1.5 1.0 9.279 57¢ -2 ~2le—3 27¢e -2

(b) Relative errors for 2D inhomogeneous Helmholtz problem with 7 inner knots.

X Y Exact BKM (1747} BKM (21+7) BKM (25+7)
0.5 0.5 1.459 64e —3 3.7e - 5 —1.5e -6
4.0 6.0 2.964 —~51le—4 29e — 6 —3.2e — 6
6.0 4.5 4.743 72e — 4 8.le—06 —1.6e — 6
1.0 4.0 1.085 33e-—-3 54e — 4 1.2e - 4
7.5 6.0 8.159 ~6.7e —4 —~99e — 6 —19¢ —5
0.5 7.0 1.636 1.0e —2 —12e—3 —52e—4
7.5 1.0 9.279 —]4de —2 1.0e — 4 —3.5¢ -6

(¢) Relative errors for 2D inhomogencous Helmholtz problem with 1 inner knot.

X Y Exact BKM (17+1) BKM (21+1) BKM (2541)
0.5 0.5 [.459 58¢ -3 —4.6e — 4 —34c -5
4.0 6.0 2.964 —-52e —4 —5.7e — 06 —1l.le -6
6.0 4.5 4.743 7.2e — 4 2.5e~35 22e—6
1.0 4.0 1.085 3.1le—-3 lde =3 50c—35
7.5 6.0 8.159 —04e —4 08e—35 —2.le—35
0.5 7.0 1.636 l.le =2 —3.1le —~3 —1.2e — 4
7.5 1.0 9.279 —1.5e -2 1.2e — 4 —1.0e — 4

optimal value of the shape parameter decreases. It is also observed that these BKM solutions
converge unstably and slowly. Unlike the previous homogencous case, the BKM results were
not much improved even with more knots. Table 1I(b) instead gives the solutions by using
an additional 7 interior knots. The locations of these interior knots are listed in the first and
second columns of Table 1I(b). The BKM solutions at these knots are used to compare their
relative errors against the exact ones. In sharp contrast to those without inner knots as given
in Table II(a), it can be observed that the BKM solution by using the additional 7 inner
knots has a much faster and stable convergence rate for the present inhomogeneous problem.
In addition, the MQ shape parameter ¢ is all set to 9 in these computations but the BKM
solution accuracy seems not sensitive to the parameter ¢ if inner knots are used. Furthermore,
the BKM results with only one interior knot are given in Table II(c). Similar to the case of
using 7 inner knots, the shape parameter of the MQ is all taken as 15 irrespective of the total
number of knots. Comparing the results given in Tables Ii(a)—(c), we can conclude that the

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1931-1948
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mpre inner knots are used, the more accurate and stable the BKM solutions are. Moreover
with the use of inner knots, the MQ shape parameter in the BKM solution is not sensitive tc;
the knot density.

In this inhomogeneous case, it is particularly worth noting that the BKM with one inner
knot performed much better than without any inner knots. This indicates that inner knots are
indispensable to guarantee the stability and accuracy in the DRM and RBF evaluation of the
particular solutions in the proposed two-steps BKM scheme. Since the DRBEM also applies
the DRM to caleulate the particular solution, the argument given in Reference [15] that except

for improving the solution accuracy the interior knots are not necessary in the DRBEM is in
doubt.

3.3. A 2D homogeneous convection—diffusion problem

The numerical solution of convection—diffusion problem is often a difficult task due to the
troublesome convection terms. [t has been claimed that the BEM performs better than the FEM
and FDM in solving the convection—diffusion problems due to the fact that the convection
terms have been inherently included into the fundamental solution for the convection—diffusion
operator. This is also expected to be true to the proposed BKM scheme. For illustration, we
consider the applicability of the BKM scheme in using the non-singular general solution of
the convection—diffusion operator to the following homogeneous problem

V2u = —0u/dx — dufdy (30)
with boundary conditions
u(x, y)=R(x,y), X, yES, (31
@i%%y—)—:N(x,y), X, yEST (32)
The analytical solution is given to be
u(x, y)=e "4+ (33)

Again the boundary values can be determined from the analytical solution (33). The BKM [11]
using the non-singular general solution of Helmholtz operator was also successfully employed
to solve the above problem in a smooth elliptical domain and under a Dirichlet boundary
condition, where the DRM was used to evaluate the particular solution due to the convection
terms. In this study we used the non-singular general solution of the convection—diffusion
operator as shown in Equation (11). In addition, the present experiments can handle much
more complex-shaped boundary with both Neumann and Dirichlet conditions.

The relative errors of the BKM solutions are summarized in Table 1I, Tt is noted that
the BKM results using 17 boundary knots achieved in average an accuracy up to the fourth
significant digits. In contrast, the DRBEM with 16 boundary knots and 17 interior points [15]
produced a less accurate solution for the same homogeneous convection—diffusion problem
under a much simpler smooth elliptical domain and Dirichlet boundary conditions. The use
of the Laplacian fundamental solution and the lower order of convergence ratio of the BEM
are blamed for this inefficiency of the DRBEM. It should be pointed out that the present
BKM solutions are also better than the BKM solutions with the non-singular solution of

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1931-1948




1942 Y. C. HON AND W. CHEN

Table I1I. Relative errors for 2D homogeneous convection—diffusion problem.

X Y Exact BKM (17) BKM (21) BKM (25)
0.5 0.5 1.213 —13e -3 33e -7 6.5e — 7
4.0 6.0 0.021 32e -6 —42e¢—9 1.3e — 8
6.0 4.5 0.014 59e— 35 —-35e — 8 —69c— 8§
1.0 4.0 0.386 —3.le— 5 37e -7 —8.8¢ — 8
7.5 6.0 0.003 —42e — 4 38¢—6 —1.2e -6
0.5 7.0 0.607 20e—5 —~13e—6 22e — 7
7.5 1.0 0.368 —1.7e — 3 —15e -6 l.le—6

Helmholtz operator. This striking accuracy here is because the present proposed BKM with
the convection—diffusion non-singular solution could well capture the convective effects of the
convection—diffusion system,

3.4. A 3D homogenecous Helmholtz problem

Three-dimensional problems are usually not easy to deal with partly due to the expensive
effort in the mesh generation for mesh-dependent techniques and, more importantly, due to
the exponential increasing size of resulting analogous equations. This fact is the so-called
curse of dimensionality. The objective of the following experiment is to verify numerically
the accuracy and efficiency of the BKM in handling 3D case. Consider
Pu Pu u
Ox? T dy? + 0z?

with the Dirichlet boundary conditions
ulx, y,z)=R(x, y,2),(x, y,2) €Sy (35)

The two cases with analytical solution are given, respectively, by

+ 22u=0, (x,pz)e (34)

u(x, y,z) = sin(x)cos(y)cos(z) (36a)
for an unit sphere domain, and
u(x, y,z)= sin{x) + sin{y) + sin(z) (36b)

for a cube domain. The non-singular solutions of 3D homogeneous Helmholtz operator are

o () = sin{yr) (37)

}4

where i are chosen to be /3. The relative errors of the BKM solutions are tabulated in
Tables TV(a) and (b). It can be observed from the tables that the BKM worked equally well
for this 3D problem as in the previous 2D cases. Based on some numerical experiments
and theoretical analysis concerning the dimensional effect on the error bounds of the RBF
interpolation, Chen and He [25] conjectured that the RBF-based numerical scheme may cir-
cumvent the curse of dimensionality like the Monte Carlo method. To be more precise, the
computational effort in using the RBF on solving higher-dimensional problems only grows
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Table IV.

1943

(a) Relative errors for 3D homogeneous Helmholtz problem with sphere domain.

X Y Z Exact BKM (15) BKM (50)
0.0 0.0 0.0 0.0 —24e -3 —3.6e -5
0.2 0.0 0.0 0.199 1.8e — 2 22e — 4

—-0.4 0.0 0.0 —0.389 —27e -3 —29e — 3
0.5 0.0 0.0 0.479 1.3e -2 64e — 5

~0.6 0.0 0.0 —0.565 —8% —4 12e -5
0.8 0.0 0.0 0.717 1.5¢ -2 —1l.6c —4

—0.9 0.0 0.0 —0.783 79e — 3 23e-35

(b) Relative errors for 3D homogeneous Helmholtz problem with cubic dmﬁain.

X Y Z Exact BKM (14) BKM (22)
—~0.4 -{.5 —0.5 —1.348 36e—4 7.60e — 4
—0.5 -0.5 0.8 —0.241 83c—3 04e — 3
—0.6 0.99 0.5 —0.751 —13e-3 89¢ — 4
0.7 0.5 0.5 1.603 49e — 4 7.0e — 4
0.0 0.75 0.2 0.483 —1.1e—3 —8.2e —4
0.0 —0.25 0.8 0.470 —l4e -3 ~2.0e —3
0.0 0.0 0.0 0.0 82e— 14 —-7.le—15

linearly instead of exponentially. Kansa and Hon [26] in their numerica
that the RBE collocation method seems to enjoy this computational adva

] tests also observed
ntage. For numerical

verifications, it can be seen from Tables TV(a) and (b) that the BKM with only tens points
produced rather accurate solutions for the 3D problems. This indicates that the BKM may be
a new alternative to tackle high-dimensional problems with relatively much smaller number

of knots.

3.5. A 3D homogeneous convection~diffusion problem

We expand the previous 2D convection—diffusion problem to a 3D case:

0%u N Qiti N Pu_ O0u  Ou du
ox2 @y 82 ox  dy @z

sﬁbject to the Dirichlet boundary condition
u(x, y,2)=R(x, 3,2), (%1,2)€S
The analytical solution is
u(x, y,z)=e " +e v+ e "
and the corresponding non-singular general solution is given by

i sinh(rv/3/2)

!

ou(r)y=¢

(38)

(39)

(40)

(41)
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Table V. Results for 3D homogeneous convection—diffusion problem.

X Y V4 Exact BKM (14) BKM (22)
—~0.4 ~0.5 ~0.5 4.789 3.0c — 3 1.0E - 3
~0.5 —0.5 0.8 3.747 —2.0e — 3 ~1.1E—3
~0.6 0.99 0.5 2.800 —4.0e — 4 2.8E — 4
0.7 0.5 0.5 1710 L4e — 3 3.6E — 4
0.0 0.75 0.2 2.694 —5.8¢c— 4 1.6E — 5
0.0 —0.25 0.8 2.733 —T4c — 4 —6.7E —5
0.0 0.0 0.0 3.000 —6.0e—5 —6.0E — 5

where r is the distance vector between the source and response knots and v is the velocity
vector {1,1,1}T.

Table V lists the BKM solution errors against the analytical solutions. The BKM average
relative errors at some specified 7 inner knots with a total of 14 and 22 boundary knots are,
respectively, 1.2e —3 and 4.1e — 4. These accurate results numerically illustrate the superior
convergence speed and accuracy of the BKM. For comparison, the DRBEM was also applied
to solve the same problem with the use of the Laplace fundamental solution and the DRM
for the evaluation of the particular solution of convection terms [15]. Although a total of 74
boundary and 27 interior knots were used in these DRBEM methods, the accuracy of the
solution was inferior to that of the BKM with only 14 knots, the reason is that the Laplacian
does not take the convective terms into the boundary formulation and the BEM suffers from
its lower order accuracy. An interesting fact observed from Table V is that the more apart of
the inner knots from the boundary, the more accurate is the BKM solution.

4. COMPLETENESS, CONVERGENCE, AND CONDITIONING NUMBER

4.1, Completeness issue

The n-dimensional homogeneous Helmholtz equation is given by

AV
Viu 4 Alu= {O " in © (42)
where A, represents the Dirac delta function at a source point i corresponding to its funda-
mental solution versus zero for its general solution,

1 ){ 11/2—]
=3 (55)  Uapr (@) =i (1) (43)
is its complete fundamental solution [27-29], where J and Y are, respectively, the Bessel
function of the first and second kinds. The Bessel function J is C* smooth while the Bessel
function Y encounters a singularity at the origin. The non-singular general solution can be
interpreted as the non-singular imaginary part of the above complete complex singular funda-
mental solution. In practical computing of the BEM, the singular real part of (43) is usually
used as the fundamental solution. This raised the completeness issue of both the BEM and
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BKI\{I solutigns. Chen and Tanaka [12, 16] discussed this issue by comparing the BKM to the
multiple 1‘601p1:00ity BEM (MRM) with the Laplace fundamental solution ;ﬁus its high-order
Ferms, }Nh&l‘&, in contrast, only the singular real part of the complex fundamental solution (43)
is applied [28]. DeMey [30] also successfully employed the BEM with the singular real paft to
calculate the Helmholtz eigenvalue problems that circumvented any complex calculation and
had the advantage to circumvent any complex calculation. However, as was pointed out in
Re‘[’er_ences [31,32], the BEM with only the real part of the Helmholtz complex fundamental
solution may converge to spurious eigenvalues in some cases. Chen er al. [32] also provided
some remedies to cure this inefficiency. Kamiya and Andoh [28] pointed out that the MRM
w1t}1 the Laplacian fundamental solution does not satisfy the Sommerfeld radiation conditions
at infinity. Power [29] discussed the incompleteness issue of the MRM in performing the
Brinkman equation. )

The incompleteness concerns on the MRM and BEM with the real part of the Helmholtz
fundamental solution may also apply to the BKM solution of the Helmholtz problem. However,
we note that the eigensolutions of a practical Helmholtz problem can usually be expressed
only by smooth Bessel function of the first kind rather than singular Bessel function of the
second kind. For example, the exact Helmholtz eigenfunctions on the unit disk are series of
the Bessel functions of the first kind [33, pp. 378-379]. In other words, only the non-singular
_general solution is used to avoid the singularity at the origin in many practical computations
involving symmetrical circular and cylindrical domain problems. This provides some intuitive
explanations on the feasibility of the BKM. The BKM is therefore expected to be applicable
to a broader range of Helmholtz problems than the MRM and BEM. Although a thorough
theoretical analysis on this issue is not an easy task, more numerical experiments will be
beneficial to the early development stage of the BKM method.

On the other hand, in the case of the modified Helmholtz problems, we note that there is
no such completeness issue as in the Helmholtz problem. The non-singular general solution
[16] and singular fundamental solution [27] are, respectively,

" 1 /1 (H/?.)*-l
(1) =5 (ﬁ) Tjay—i(Ar), nz2 (44)
and
. 1 /1 (H/:)-—l

We could not even be sure of the completeness of the solutions (44) or (45). The same
difficulty occurs in the convection—diffusion case as shown in the previous formulas (11) and
(12). An immediate question in both cases is whether or not the singularity is essential to
attain the reliable solutions by the boundary-type discretization schemes.

4.2. Convergence and conditioning number

Like all global numerical schemes, the large dense interpolation matrix resulted from using the
RBF-based scheme usually suffers from severe ill-conditioning inefficiency [3,26]. To further
investigate this issue, Table VI displays the average relative errors and conditioning numbers
of the BKM solutions of the previous 2D homogencous Helmholtz and convection—diffusion
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Table VI. Average relative errors and conditioning num-
bers for 2D homogeneous Helmholtz with analytical solution
(22a) and convection—-diffusion problems.

L Erry Condy Erre Cond¢

17 74e — 1 5.6e+4 02 5.1e - 4 4 7e+15
21 3.9e -2 1.6e +03 l.1e — 6 2.0e-+19
25 7.1e — 3 8.8e + 04 4.7Je —7 l.le + 20
29 0le —4 2.2e+ 04 4.le—7 0.2e + 20
33 0.5¢ -5 7.4e+ 03 6.8¢ — 8 3.2e+ 21
37 6.0e —7 1.5¢+04 2.9e — 8 1.2¢+22
41 3.le—6 2.4e+404 47e — 8 1.2e +22

problems, with the columns under Err and Cond with lower case y and ¢, respectively; and
L is the total number of boundary knots. The average relative error is defined to be

u,-—ﬁ,'

(46)

|
en—NfZ

U

where N is the total number of inner knots, u; and i; are, respectively, the exact and BKM
solutions at these knots. The locations of these inner knots are the same as those indicated
in Tables I-I1I. All computations were done on a Dell-PC Pentium III computer using the
Microsoft Fortran Power Station 4.0 with double precision. The LU decomposition algorithm
was employed to solve the resulting discretised system of equations.

It can be observed from Table VI that the convergence of the BKM solution was fast and
stable. For a detailed numerical study of the BKM convergence behaviours see Reference [34],
It is also interesting to note that although the conditioning numbers of the convection—diffusion
problem were much larger than those of the Helmholtz problem, the former in general has
higher accuracy than the latter, In the case of the MFS, Golberg and Chen [3] has a similar
observation. They pointed out that the irrelevances between the ill-conditioning of interpolation
matrix and the high accuracy of the solution may be due to some inherent cancellation of
round-off errors. By far an explicit theoretical explanation for this is still not available. Very
interestingly, Fornberg and Wright [35] uses the complex shape parameter to significantly
improve the stability and accuracy of the ill-conditioning MQ interpolation matrix. This may
help ease the BKM ill-conditioning woe in the evaluation of the particular solution with the
MQ-type RBFs. In addition, we found that in both examples, the conditioning numbers did
not change rapidly with the increase of the boundary knots. In particular, unlike other global
schemes, the conditioning number of the Helmholtz problem unexpectedly remained stably
mild scale despite the increase of the knots. It is stressed here that we did not apply any
special treatment to solve the resulting BKM discretization equations.

5. CONCLUSIONS

This work validated that the BKM consistently produces very accurate solutions for the
2D Helmholtz and convection—diffusion problems with rather complex-shaped interior and
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exterior contours, which shows that unlike the MFS [10], the BKM is insensitive to geomet-

ric irregularity. The efficacy of the BKM to solve the 3D Helmholtz and convection-diffusion

problems ig also demonstrated. The BKM solutions are found to uniformly converge to the
exact solutions in all testing cases. The illustrative experiments also manifested that for in-
homogeneous problems, some inner knots were required to guarantee the stable convergence
and high accuracy in the DRM and RBF evaluation of the particular solution. i

The BKM is a new RBF-based boundary-type descritization technique with the remarkable
merits of efficiency, high accuracy and stability, fast convergence, and mathematical simplicity.
Similar to the domain-type RBF-based methods [23, 26], the essential meshless merit does give
the BKM an edge over the BEM to easily handle higher-dimensional cmnplicated.—geon;ctry
problems by using only scattered knots. Moreover, the numerical experiments showed that
the BKM could avoid the curse of dimensionality in the solution of the 3D problem. This
attractive advantage is endorsed by the theoretical analysis and experimental findings that the
use of higher order smooth radial basis functions can offset the dimensional affect [16,25,26].

The advantage of the BKM over the MFS is that the former eliminates the controversial re-
quirement on the artificial boundary. The arbitrariness in the choice of the ambiguous fictitious
boundary in the MFS may lead to some troublesome issues in the engineering computations.
The BKM is therefore comparatively much more promising in the real world computing.
Very recently, by analogy with the symmetric RBF Hermite interpolation scheme proposed
in Reference [36], one of the present authors {37] developed the symmetric BKM scheme
which has the symmetric interpolation matrix irrespective of boundary shape and conditions.
Nonetheless, the BKM is still at its early development stage. Some concerns on the com-
pleteness, singularity and conditioning of the BKM interpolations are discussed with some
open issues raised in this paper. Much more work will be needed to explore the full potential
and possible limit of the method. The applications of the BKM to solve time-dependent and
non-linear problems are presently under investigation.
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