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Monte-Carlo Simulation of Surface Crack Growth Rate
for Offshore Structural Steel E36-Z35

DING Keqin~, LIU Chuntu” *, ZHAO Junyou™ "~ and GUO Aiju” """

Abstract — The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for
offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the
Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The
application of the method is demonstrated by use of four sets of fatigue crack propagation data for
offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface
crack growth rate shows the application of the simulation method to the fatigue crack pregpagation ‘ests is
successful.
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1. Inirod=aciion

Offshore steel structures ave widely used for explotation and exploration of offshore oil.
The environmental 1oads acting on offshore structures excite cyclic variation of stresses and re-
sult in fatigue and damage in structural components. In general, the design life of an offshore
platforrn is about 25 years experiencing about 100 million cycles of wave loads (Rao et al.,
1994). As well known, most fatigue failure in welded structures and components often develops
from surface flaws. Hence, surface fatigue crack growth analysis is one of the major tasks in the
fatigue life prediction of welded structures. However, owing to undeterminable factors from ran-
dom enviornmental loads, welding process which results in stress concentration and residual
stresses, micro-structural and mechanical properties of different components and materials, etc.,
the growth rates of surface cracks exhibit considerable statistical variability even in well-con-
trolled laboratory conditions. Therefore, statistical methods are usually applied to the analysis
of fatigue crack propagation (Virkler et al., 1979; Lin and Yang, 1983; Yang ef al., 1983; Itagak
and Shinozuka, 1972; Madson et al., 1987). However, fatigue crack propagation (FCP) testing
is very expensive and time-consuming as well, making it more difficult to implement a large
group of tests for statistical analysis. In such cases, the Monte-Carlo technique is considered to
be an effective method, which consists of repeated numerical random samplings of a given mod-
el with an objective of estimating the unknown statistical properties of the model. A large num-
ber of samples of random variables can be produced by the Monte-Carlo technique to replace
complicated and expensive experiments. Moreover, the mathematical concept of this method is
explicit, no matter how difficult the problems are. We can solve these problems once their
probabilistic models are constructed according to this method. Recently, different simulation
methods based on the Monte- Carlo technique have been widely applied to reliability analysis
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and life estimation of structures (Rubinstein, 1981; Harbitz, 1983; Ayyub and Lai, 1989;
Melchers, 1989 and 1990; Engelund and Rackwitz, 1992; Ding and Liu, 1996a, 1996b and
1997).

In this paper, the Monte-Carlo method is used to simulate the surface fatigue crack growth
rate for offshore structural steel E36-Z35, and to determine distributions and relevance of the
parameters in the Paris equation. The application of the method is demonstrated by use of four
sets of FCP data for offshore structural steel E36-Z35.

2. FCP Tests on Offshore Structural Steel E36-Z35

In order to investigate the surface fatigue crack growth of steel E36-Z35, experiients on
E36-Z35 steel (EZS) and welded plates (EZWP) are conducted and the results 2r2 compared
with Monte-Carlo simulation.

2.1 Material and Specimen

The tested material is Z-direction steel £34-Z335 provided by Shanghai Jiangnan Shipbuild-
ing Factory. The chemical composition of this material is given in Table 1, while the mechanical
properties shown in Table 7. The specimens are three-point bending ones of 28 mm in thickness,
85 mm in width 2ad 370 rum in length. By use of a spark discharge machine, all specimens are

pre-cracked to 1 mm depth and 2 mm width under constant amplitude loading at room tempera-
ture.

Table 1 Chemical composition of stee]l E36-Z35
C Si Mn P S Cu Al Nb
0.16 0.33 0.34 0.10 0.01 0.02 0.49 0.35
Table 2 Mechanical properties of steel E36-Z35
ags (MPa) 6, (MPa) 3 (%)
411.6 558.6 34

2.2 Testing Conditions

All FCP tests were conducted at room temperature in a servo-hydraulic material testing sys-

tem MTS810.12. The tests were load controlled at a frequency of 10 Hz in a three-point bending
load mode as shown in Table 3.

2.3 Crack Growth Monitoring

Taking into account the difficulty in direct measurement of the depth of surface fatigue
crack, the beach mark method was used in the tests. Beach marks were made on the fracture sur-
face by reducing the load amplitude by half but keeping the average load unchanged. It was

found that the beach mark was visible once there was a small propagation during the
reduced-load program.

Fs
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Table 3 Loading conditions

Specimen No. Specimen type Prux (k8) P... kg)
101 EZS 4700 336
103 EZS 5455 1091
104 EZS 7273 2909
105 EZS 8728 4364
107 EZS 4909.5 981.9
108 EZS 6546 1309.2
109 EZS 4364 872.8
301 EZWP 4700 336
302 EZWP 5455 1091
304 EZWP 713 T 2008
305 EZWP 6516 12052
307 EZWP ! 4905.5 981.9
308 EZWP Y 872.8
309 B EzZwe | " 5455 1091

3. Analysis of the Test Results
3.1 Stress Intensity Factors for Three Point Bending Specimens

As well known, the Paris equation is proved to be a universal law for fatigue crack propaga-
tion in both materials and structures. It is recently mathematically derived on the basis of dislo-
cation dynamics, thermal activation theory and rate process theory (Duan, 1995; Duan et al.,
1999). For a semi-elliptical surface crack in a three- point bending specimen, the propagation
along the depth and width can be described as

ax, m .
W =z, (AK)™, (=1,2), (1

where X; stands for a half crack length ¢ or depth a, AK; the corresponding stress intensity fac-

tor range, and &, m; test constants. The stress intensity factor ranges are given as follows

(Newman and Raju, 1981):

K, =Z SH M [T +3 (2a)
na
AK, =Z H, M |5 (2b)

where Z, is the bending stress amplitude in the load history, H,, H, are boundary correction
factors, a crack depth, ¢ half surface crack length, Q the shape factor for elliptical crack, and
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And B is the thickness ot the specimen.
Substitutizg Ba. (2) into Eq. (1) gives

—‘%=s, [ZHSHlM/%°az] , (3a)

(3b)

Q

3.2 Regression of the Test Data

The fatigue crack propagation data for all the specimens tested and presented in log-log
plots of AK; and dX,;/ dN as shown in Figs. 1 and 2. The crack growth rates are calculated by
use of seven-point polynomial fit and the stress intensity factors are given by Egs. (2a) and (2b).
The values of ¢; and m; in Eq. (3) are obtained by performing a least fit of the data. The
regression results are illustrated in Table 4 where the relative coefficient r and standard devia-
tion s are presented respectively.

Table 4 Regression results of the experimental data
E36-Z35 steel E36-Z35 welded plate
Material
Group 1 Group 2 Group 3 Group 4
m; 2.6291 2.6851 2.4791 2.5133
log ¢; -10.6814 -10.6437 -10.5777 —10.2846
r 0.9226 0.9385 0.9286 0.9278
s 0.5202 0.5517 0.5144 0.5546
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Fig. 1 Surface crack growth rate for E36-Z35 steel.

4. Monte-Carlo Simulation
4.1 Distribution Function of Stress Intensity Factor Range

In order to use Monte-Carlo simulation, we must first determine the distribution functions
of random variables before carrying out random sampling of the distribution functions. As
shown in Table 4, log da / dN and log dc / dN present a linear random function with constant
standard deviation, but its coefficient of variation cannot be used as a simulation parameter.
The coefficients of variation of logda /dN and logdc/ dN are large and larger than zero,
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Fig. 2 Surface crack growth rate for E36-Z35 steel plate.

therefore the error induced by the use of normal distribution is comparatively large. Usually,
the lognormal distribution and the Weibull distribution are used, and from the point of physics.
the Weibull distribution is more reasonable. However, it is convenient to use normal distribu-
tion to cope with practical problems. The values of these two kinds of distributions are nearly
the same in some of the distribution zones, therefore, the log-normal distribution is chosen to
process the data of log da / dN and log dc / dN in this paper. Newman and Raju (1981) esti-
mated K, around semi-elliptical surface cracks in rectangular beams of width 2B, and depth
B, under remote bending moment M for 2c 2 q;
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where H is a boundary correction factor; £ the complete elliptic integral of the second kind; Kk’
=1- a2 / c2, F a polynomial of a / B,,a/ ¢, ¢/ B), and a simple trigonometric function of

@, the parametric angle of the ellipse. Apparently, Eqs. (2a) and (2b) are the extremities of Eq.
(4)forp = 0°,0r ¢ = 90 ° . Because the variables in Eq. (4) are in normal distribution, AK al-
so takes normal distribution.

4.2 Distribution Function and Relevance of ¢ and m

As shown by the test results, the surface fatigue crack growth rate dX ; / @N exhibits con-
siderable statistical variability. Such variability should be taken into account ia reliability analy-
sis. In particular, the distribution functions of ¢ ; atd m; must be defined, because they are the
basis of life reliability analysis. Usually, statistical analysis of many grovups of experiments must
be conducted to gain the functions, although their sampie sizes 2r¢ small and the confidences are
low. Comparatively, the Monte-Carlo method 1s an ezcniomical and efficient numerical method,
reducing the amount of sxperiments by meass of calculation and simulation. First, ¢; and
m; can be obtained by leasi square fit of one set of test data. The coefficient of variation of ev-
ery variablc in ”, g (AKJ_) +log £ is smaller than 0.2, therefore m, log (AKJ,) + log €, can
be taken as the mean value of log dx] / dN. Furthermore, s in Table 4 is considered as the
standard deviation of log dX ; / dN, the distribution function of log dX ; / dN can then be de-
fined.

The coefficient of variation of AK can be calculated by (Zhang, 1989)

c (5)

According to observation of some experiments and their statistical analysis, the coefficients
of variation of load P, width B, and length B, of the specimen can all be taken as the same val-
ue (Zhang, 1989) marked by o. In general, the coefficients of variation are calculated according
to 36 = 5%, yielding

c, =¢C =C =0.017.

For a crack length in an experiment, the crack was measured by a travelling microscope thirty
times, obtaining the coefficient of variation C, as 0.013 which yields C, = 0.0346. Hence
k

the distribution functions of AK; and de / dN are as follows

AK ~N [(AK) ., C, (AK) ], (6)
7 ]t * Joi
dx
log—= ~N [loge, +m logBK),. s]. 7)
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dx
Sampling can be carried out according to this distribution. At every point of [(AK j)‘,, (_dTVL ) . ] R

we can sample five random two dimension numbers, and a least square fit is done to obtain the
values of &; and m; The sampling is repeated a hundred times and the statistical analysis is con-
ducted. The simulation results are listed in Table 5.

Table § Monte-Carlo simulation results for C v, = 0.0346.
Group 1 Group 2 Group 3 Group 4
Mean 2.5746 2.5573 2.3959 2.3996
m; tandard
eviation 1.6593 1.7417 1.4406 1.5074
Mean -10.7170 ~10.5634 ~10.6767 -10.2403
log \ S
tandard - ca
ancare 0.4274 0.762.1 0.0705 0.1580
Mean 09187 0.9220 0.9215 0.9218
, EW A AN
Standard \ |
deviation 0.06277 0.0£936 0.05983 0.05990
Mean 0.5196 .5404 0.5054 0.5464
s Stapaard o |
Ao | 0.3459 0.5895 0.3069 0.2799

It can be sezn froin the comparison of Table 4 with Table 5 that the results of Monte-Carlo

simulation and those of experiments show only a little difference. That is due to the randomness
of simulating experiments and the limited number of simulations. However, the difference has lit-
tle effect on the results.

According to the sample obtained, the distribution pattern of ¢; and m; can be determined.
Because ¢, and m; are statistically related, only one of them is taken for consideration. Here
¢; is taken, and ¥* inspection is used to inspect the normal and log-normal distributions of ¢ 7
The calculation results are shown in Table 6.

Table 6 Inspection results of xz forg;
Group 1 Group 2 Group 3 Group 4
Lognormal 8.7453 10.2148 9.1742 11.2132
Normal 10.7234 15.4728 13.2867 19.6275

The calculation method for ¥ is as follows:
Firstly, the statistic value x; (x; = (¢), in normal inspection, and x, =log (sj) , in
lognormal inspection) is hormalized as

)

Then the interval of [—4, 4] is divided into eight sub-intervals and the frequency of u; belonging
to the ith sub-interval is calculated, leading to
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where p;, is the theoretical probability belonging to the ith sub-interval.
Taking the significance level 2 = 0.05, freedom degree y = 8 — 1 = 7 gives

Xo9s (7) = 14.067 .

Compared with Table 5, the four groups of test data are in log-normal distribution, moreover,
z* value of log- normal distribution is smaller than that of normal distribution, therefore,

¢; takes a log-normal distribution.
The relation of ¢, and m, can be expressed as follows:

ax

_1¢ L
loge, =2 Z log(dN ) Xl }; log (AKj)i (10)

(=1

which illustrates that ¢; and m; are interrelated The experiments also attest that ¢ ; and m, are
negatively dependent. Iz general, &, and m; satisfy the following formula (Duan et al., 1997)

logsj =Am +B (11)

where 4 and B are constants. In our cases, 4 and B are obtained by least square process of
the test data and the results are listed in Table 7. It can be seen that r is approximately equal to
-1, indicating a very high correlation of the two parameters ¢ ; and m; Moreover, m ; follows a
normal distribution as seen from Eq. (11).

Table 7 Correlation of ¢, and m,
Group 1 Group 2 Group 3 Group 4
-6.9662 ~6.5266 -7.2509 -6.8312
-1.4558 -1.5786 -1.4287 -1.4244
r -0.9951 -0.9952 -0.9940 -0.9947
s 0.2382 0.2701 0.2249 0.2204

5. Conclusion

The Monte-Carlo technique as a practical engineering method is presented for simulating
the surface fatigue crack growth rate and determining distribution functions and relevance of
the parameters in the Paris equation. The technique is demonstrated by use of four sets of FCP
data for offshore structural steel E36-Z35. The comparison of the experimental data with theo-
retical predictions shows good agreement. The difference between the Monte-Carlo simulation
and experimental results could be minimized by increasing the number of simulations.
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