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Abstract

The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded
are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to
study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the
kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic
assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the
equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex
one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical
solution is obtained by using Galerkin discretization method and Newton–Rhapson iteration method. The analysis on the numerical
difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method
is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with
the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around
each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and
post-buckling are also investigated.

This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded.
The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of
seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that
the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which sym-
metric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection
magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both
the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is
available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural
deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic
assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite
laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different config-
urations are also studied and compared.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1965, shape memory alloys (NITINOL) derived
from Nickel and Titanium were first patented by Buehler
and Wiley [1] in Naval Ordnance Laboratory. Since then,
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Fig. 1. Cross-section of a composite beam with the SMA layer embedded
and the definitions of his (i = 1, 2, 3, 4).

Y. Zhang, Y.-P. Zhao / Materials and Design 28 (2007) 1096–1115 1097
tremendous effort has been infused to the utilization and
study of this smart material. Constitutive relations have
been theoretically developed or experimentally studied
by Tanaka [2,3], Liang, Rogers [4,5], Xue and Mei [6],
Cross et al. [7] and Jackson et al. [8]. In Liang’s model
[4], the stress in shape memory alloy (SMA) consists of
three parts mechanical stress, thermo-elastic stress and
the stress due to phase transformations. Xue’s model is
a 2D model and in his model the thermo-elastic stress
and the stress due to phase transformation are combined
together to be called recovery stress. Turner [9] averages
the recovery stress including both the thermo-elastic stress
and the stress due to phase transformation over the tem-
perature range to get the effective coefficient of thermal
expansion (CTE). Turner’s method is to use effective
CTE to simplify SMA nonlinear stress–strain relation,
which is caused by both temperature and phase transfor-
mation. Epps and Chandra [11] use Euler–Bernoulli beam
theory and model the effect of SMA in the composite
beam as an axial force or an elastic foundation. Com-
pared with the model of the beam under an axial load,
the elastic foundation model of Epps and Chandra [11]
has less bending stiffness. When the temperature goes
higher, the difference between these two models enlarges.
This may be due to the re-distribution of the stress due
to the constraint which is not included in their equation
of motion [12]. Baz and Ro [10] give the finite element
model, which combines heat transfer and dynamic
response together.

All the models mentioned above have one thing in com-
mon: SMA is implicitly assumed to be symmetrically
embedded or its effect is modeled as an axial force or an
elastic foundation. For the symmetric composite beam in
those models, the governing equation is a fourth order
equation of the transverse displacement without consider-
ing the coupling of axial and transverse displacements. A
more general form of governing equations is derived here.
For the symmetric composite beam, the governing equa-
tion is a set of equations consisting of a fourth order equa-
tion and a second order equation, which considers the
coupling effect of axial and transverse displacement. For
the uncoupling case, which only has the governing equa-
tion for the transverse displacement, only four boundary
conditions are needed. For the coupling case of the sym-
metric beam, six boundary conditions are needed to solve
such set of equations (two for axial displacement and four
for transverse displacement). While for the asymmetric
composite beam, two third of the derivatives due to the
asymmetry appear in each of the two coupled equations
of equilibrium for the transverse and axial displacement.
And for the symmetric composite beam, the coefficients
of the two third derivatives due to the asymmetry are zero.
Therefore, for the asymmetric case, seven boundary condi-
tions are needed. Mathematically, asymmetry increases one
order of the governing equations. Asymmetry also causes
the numerical difficulty of solving the equations, which is
also discussed in the paper. Another purpose of this paper
is to evaluate both the analytical and computational differ-
ence due to the different kinematic assumptions.

The shape memory effect (SME) is extensively used in
the structure for active vibration/structural acoustic con-
trol [13,14] and shape control [15]. SMA is usually embed-
ded in a composite laminate for such control functions.
Besides the equilibrium study, this paper also explores
the other topics closely related to the structure such as
buckling, post-buckling, free and forced vibrations. By
analyzing the difference caused by the different modeling
or computation methods, a very comprehensive study on
the modeling analysis and computation of the composite
beam with the SMA layer arbitrarily embedded is
presented.

2. Model development and analysis

2.1. Neutral axis and constitutive relation of SMA

The schematic diagram of the beam and its cross-section
are shown in Figs. 1 and 2. Fig. 1 shows the neutral axis
and coordinates of the composite beam cross-section.
Fig. 2 shows the dimensions of the different layers. The
beam studied here is a pinned-pinned beam. The pinned-
pinned beam can allow the beam to move back and forth
but not up and down. The beam length and width are L

and b, respectively. The SMA layer width is b1. In Fig. 1,
h1, h4 are the distances between the neutral axis and the
lower, upper edges of the beam, respectively, h2, h3 are
the distances between the neutral axis and lower edge of
SMA layer, respectively. The beam is under an axial
mechanical load of p. For the approach of mechanics of
materials, the first step is to find the neutral axis of the
composite structure. The neutral axis is dependent on the
configuration of the different layers and their elastic prop-
erties. For the cross-section of homogeneous material, the
neutral axis is the centroidal axis [16]. For a composite
beam with different material layers, the method of calculat-
ing the neutral axis is to convert different material proper-
ties inside the composite laminate into a ‘‘stressfully
equivalent’’ homogeneous material [17,18]. By using the
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formula of calculating the neutral axis of a composite
cross-section [17], the neutral axis position, h1, is calculated
as

h1 ¼
H1

2
þH 2 þH 3

� �
H 1bþ Es

Ec
b1 þ 2b2

� �
H 3 þ H2

2

� �
H 2 þ

H2
3

2
b

ðH 1 þH 3Þbþ Es

Ec
b1 þ 2b2

� �
H 2

.

ð1Þ
where His (i = 1,2,3) are the quantities indicated in Fig. 2,
Es and Ec are Young’s moduli of SMA and epoxy, respec-
tively. For the two moduli, they are generally temperature
dependent variables [19]. The stress–strain relation of SMA
given by Liang and Rogers [4,11] is

ðr� r0Þ ¼ EsðnÞð�� �0Þ þHðT � T 0Þ þ Xðn� n0Þ. ð2Þ
where the terms with subscript 0 are the initial conditions
of the beam, r and � are stress and strain, respectively, T

is Celsius temperature and H is thermo-elastic coefficient
[11], which can be expressed as �E(n)as. Here as is the
SMA coefficient of thermal expansion (CTE). The param-
eter n is the martensite volume fraction and defined as the
volume of martensite divided by total volume of martensite
and austensite. In Liang and Rogers’s cosine model [4], the
parameter n is different for the reverse (from martensite to
austensite) and the forward (from austensite to martensite)
transformations.

For the reverse transformation, the martensite volume
fraction is

n ¼ nM

2
cos½aAðT � AsÞ þ bAr� þ 1; ð3Þ

where

aA ¼
p

Af � As

; bA ¼ �
aA

CA

; ð4Þ

and

CA ¼
dAs

dr

� ��1

. ð5Þ

For the forward transformation
n ¼ 1� nA

2
cos½aMðT �M fÞ þ bMr� þ ð1þ nAÞ

2
; ð6Þ

where

aM ¼
p

M s �M f

; bM ¼ �
aM

CM

; ð7Þ

and

CM ¼
dM s

dr

� ��1

. ð8Þ

Here Af is austensite finish temperature, As is austensite
start temperature. Mf is martensite finish temperature, Ms

is martensite start temperature. These temperatures are
experimentally determined.

In Xue and Mei’s model [6], the stress–strain relation for
SMA is:

rs ¼ Es�þ rr ðT > T s1; SMA activatedÞ; ð9Þ

and

rs ¼ Esð�� asDT Þ ðT < T s1; SMA inactivatedÞ. ð10Þ
where Ts1 is the temperature at which the SMA is activated.
For the epoxy composite matrix, the following constitutive
relation holds:

rc ¼ Ecð�� acDT Þ. ð11Þ

where as and ac are CTEs of SMA and epoxy, respectively,
DT is the beam temperature difference with the ambient
environment. In Xue and Mei’s model [6], the recovery
stress includes both thermal stress and the stress due to
phase transformation. While in most cases, as shown in
Eq. (2) [4], the two different kinds of stress are differenti-
ated. And it is worth pointing out that for both SMA
and epoxy layer in Eqs. (9)–(11), there is only one strain
variable �. For the effect of one strain variable on the con-
straint due to the interlameller bonding, the discussion can
be found in the referred paper [12].
2.2. Kinematic assumptions

As the neutral axis and the constitutive relations are pre-
sented in the above section, another important thing for
modeling the composite beam is the kinematic assumption.
Three kinematic assumptions for Euler–Bernoulli thin
beam modeling are presented in this paper. The governing
equations derived from the three kinematic assumptions
are discussed. Before we give the kinematic assumptions
and derive the governing equation, we define the following
parameters first:

A ¼ EcbQ1 þ 2Ecb2R1 þ EcbS1 þ Esb1R1;

B ¼ 1

2
ðEcbQ2 þ 2Ecb2R2 þ EcbS2 þ Esb1R2Þ;

D ¼ 1

2
ðEcbQ3 þ 2Ecb2R3 þ EcbS3 þ Esb1R3Þ;

and Qi, Ri and Si are defined as
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Q1 ¼ h1 � h3; R1 ¼ h3 � h2; S1 ¼ h2 � h1;

Q2 ¼ h2
1 � h2

3; R2 ¼ h2
3 � h2

2; S2 ¼ h2
2 � h2

1;

Q3 ¼
2

3
ðh3

1 � h3
3Þ; R3 ¼

2

3
ðh3

3 � h3
2Þ; S3 ¼

2

3
ðh3

2 � h3
1Þ.

Though they have the complex forms, A, B and D have
the very specific physical meanings for the composite
beam. From Fig. 1, it is not that difficult to conclude
that A is the effective axial stiffness. A can be derived
if each layer of the different materials is modeled as a
spring and the springs are in a parallel configuration
[6,12,18]. The physical meaning of B and D will be dis-
cussed later.

Kinematic assumption 1 [20] is expressed as:

� ¼ �s þ �b ¼
p
A
þ ux � yvxx. ð12Þ

where u and v are the axial and the transverse displace-
ments, respectively, �s is the strain due to the stretching
of the axial load and �b is the strain due to the bending.
For all the three kinematic assumptions presented in this
paper, the bending strain is denned as �b = �yvxx. This
bending strain is derived from the linear moment–curva-
ture relationship [21] and it is sufficiently accurate even
for the large deflection case as far as I/SL2 < 0.001 (I, sec-
ond moment of area; S, cross-section area; and L, beam
length) [21,22].

Kinematic assumption 2 [20] is expressed as:

� ¼ �s þ �b ¼
p
A
þ ux þ

v2
x

2
� yvxx. ð13Þ

Kinematic assumption 3 [21,22] is expressed as:

� ¼ �s þ �b ¼
p
A
þ ½ð1þ uxÞ2 þ v2

x �
1
2 � 1� yvxx. ð14Þ

For the convenience of computation, the constitutive rela-
tion for SMA in Eqs. (9) and (10) is re-written in one as
follows:

rs ¼ Esð�� asDT Þ þ rp. ð15Þ

where rp is the stress due to phase transformation and is
dependent on temperature, which matches X(n � n0) term
in the Liang’s model [4]. rp is either computed by the com-
plex formula by Liang [4] or in practice supplied by the
experimental data. The stress in epoxy remains the same
as that of Eq. (11).

2.3. Derivation of equations of equilibrium

The potential energy in the SMA layer, which contains
both the stretching and the bending energies, is as follows:

U s ¼
1

2

Z L

0

Z
AM

½Esð�� asDT Þ þ rp��dAdx; ð16Þ

where AM is the SMA cross-section area of the beam. The
potential energy in the epoxy layers is
U s ¼
1

2

Z L

0

Z
Ac

½Ecð�� acDT Þ��dAdx; ð17Þ

where Ac is the epoxy cross-section area of the beam.
By applying the principle of minimum potential energy

(PMPE), i.e., d(Us + Uc) = 0, and plugging the different �s
of the different kinematic assumptions, the equations of
equilibrium are obtained. For kinematic assumption 1,
the equations of equilibrium are obtained in the following
two forms:
Bvxxx � Auxx ¼ 0; ð18Þ

and

Dvxxxx � Buxxx ¼ 0. ð19Þ

The two equations of equilibrium are obtained by re-
grouping the variables u and v after the variational oper-
ation and integration by parts. Let us first discuss what
are the physical meanings for B and D. To the authors’
knowledge, there is no name for B though it frequently
appears in the composite structure analysis. From the
expression of B given above, B is a parameter indicating
the asymmetry of the composite beam cross-section.
B = 0 is for symmetric cross-section. When B = 0, Eqs.
(18) and (19) are two uncoupled ordinary differential
equations, which is the scenario for many studies on
composite beam with SMA embedded [11]. From its def-
inition and Eq. (19), it is not that difficult to conclude
that parameter D is the effective bending stiffness of
the composite beam. For thin beam, D is much smaller
than A; therefore, the axial displacement u is much smal-
ler than v in the small deflection with the relatively low
axial loading scenario. So in many studies of small
deflection cases, u and its coupling contribution to the
deflection are small and thus ignored. Clearly, here u

and v are coupled by the asymmetry parameter B. For
the symmetric case of B = 0, the axial displacement u

and the transverse displacement v are coupled via the
kinematic assumption of large deformation as those of
kinematic assumptions 2 and 3 shown later. As it is no-
ticed that in Eqs. (18) and (19), there is no term associ-
ated with the axial load p. In the buckling study of
beam, p is shown in a fourth order governing equation
as a second order term pvxx. But this pvxx term is due
to the v2

x
2

term in the kinematic assumption of strain,
which is included in kinematic assumption 2 but not in
kinematic assumption 1. While it will be shown later that
the axial load effect of p is actually included in the
boundary conditions for kinematic assumption 1. The
boundary conditions can also be derived during the der-
ivation of governing equations by using PMPE. For the
seven boundary conditions, we will have detailed discus-
sion later in Section 3.

The two governing equations of equilibrium due to kine-
matic assumption 2 are
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2
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2
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Bvxxx � Auxx ¼ Avxvxx þ B vxv2
xx þ

v2
xvxxx

2

� �
ð20Þ

and

Dvxxxx�Buxxx� ðA�Esb1R1Þ g0�
acDT

2

� �
þEsb1R1 g0�

asDT
2

� ��

þ 1

2
b1R1rp

	
vxx¼A uxxvxþuxvxxþ

3v2
xvxx

2

� �
. ð21Þ

Here we define g0 as g0 ¼ p
A, which is the stretching strain

due to the external mechanical load p. So compared with
Eqs. (18) and (19), Eqs. (20) and (21) are much more com-
plex. Before we continue to derive the governing equation
for kinematic assumption 3, let us first make some simple
comparison analysis for these two sets of governing equa-
tions. As it is noticed, the right side terms in Eqs. (20)
and (21) are the nonlinear terms of vxvxx; vxv2

xx; v
2
xvxxx and

uxxvx which are at least one order of magnitude smaller
than those linear terms (vxxxx, vxxx, uxxx and uxx). If all
the right side terms of Eqs. (20) and (21) are set to be zero
for the approximation purpose, the difference of the two
sets of equations is only reflected in the ½ðA� Esb1R1Þ
ðg0 � acDT

2
Þ þ Esb1R1ðg0 � asDT

2
Þ þ 1

2
b1R1rp�vxx term in Eq.

(21). And this is due to the v2
x
2

term in kinematic assumption
2. ðA� Esb1R1Þðg0 � acDT

2
Þ þ Esb1R1ðg0 � asDTT

2
Þ þ 1

2
b1R1rp is

the effective axial loading including the mechanical,
thermal forces and the force due to the phase
transformation.

The two equations of equilibrium for kinematic assump-
tion 3 are the following:

Bvxxx � Auxx ¼ ðA� Esb1R1Þ 1� g0 þ
acDT

2

� ��

þEsb1R1 1� g0 þ
asDT

2

� �
� 1

2
b1rpR1

	
vxvxx

þ B vxv2
xx þ

v2
xvxxx

2

� �
; ð22Þ

and

Dvxxxx�Buxxx� ðA�Esb1R1Þ g0�
acDT

2

� �
þEsb1R1 g0�

asDT
2

� ��

þ 1

2
b1R1rp

	
vxx¼ ðA�Esb1R1Þ 1þacDT

2
�g0

� ��

þEsb1R1 1þacDT
2
�g0

� �
þEsb1R1 1þasDT

2
�g0

� �
�1

2
b1R1rp

	

� uxxvxþuxvxxþ
3v2

xvxx

2

� �
. ð23Þ

The linear parts of equations of equilibrium for kinematic
assumptions 2 and 3 are the same. The difference is in their
nonlinear parts. By comparing the nonlinear parts, the con-
clusion can be made that without the thermo-elastic stress,
the stress due to phase transformation and the mechanical
load (p), kinematic assumptions 2 and 3 get the same equa-
tions of equilibrium. When these three stresses increase, the
equations of kinematic assumptions 2 and 3 will enlarge
their difference in the nonlinear terms. The difference en-
larges as the loading or the deflection becomes larger, or
say, the nonlinear effect due to the large loading or the
deflection increases. The equations derived from kinematic
assumption 1 are the same as these derived by Vinson and
Sierakowski [23] if the hygrometric load, distributed stres-
ses and moments are ignored in their equation. The load p

is not shown in the equations of kinematic assumption 1,
but appears in boundary conditions, which will be dis-
cussed later. The mechanical load p (associated with g0)
and other axial loadings (due to thermo-mechanical stress
and phase transformation) are seen in both of the govern-
ing equation sets derived from kinematic assumptions 2
and 3. It should not be that difficult to conclude that the
governing equations derived from kinematic assumption
1 are not accurately enough even for the linear small deflec-
tion analysis because the linear term associated with the ax-
ial loading is not shown in the governing equations.

In Xue, Mei [6] and Turner’s [9] model, there is a 2D
plate for the beam with the SMA layer embedded. Here
the model is Euler–Bernoulli beam theory, which is
actually an, 1D model. King [24] notices that for the
‘‘ideal’’ composite material, in which the fibers are inex-
tensible, the inextensibility reduces the stiffness and the
stiffness predicted by the ‘‘ideal’’ composite beam theory
has less stiffness than that predicted by Timoshenko
beam theory. However, the difference between the
‘‘ideal’’ composite beam theory and Timoshenko beam
theory is relatively small [24]. Compared with Timo-
shenko beam theory, Euler–Bernoulli beam theory does
not consider the shearing effect. In kinematic assump-
tions 1, 2 and 3, the strain is normal strain, shear strain
is not included. The structural stiffness computed by
Euler–Bernoulli beam theory is larger than that of
Timoshenko beam theory. The applicability range of
these two theories is dependent on aspect ratio of the
thickness to the length of the beam. The rule of thumb
is the following: Timoshenko beam theory is applied to
the ‘‘thick’’ beam with the aspect ratio of the thickness
to the length larger than 1/7. For the ‘‘thin’’ beam with
the smaller aspect ratio, it is the applicability range of
Euler–Bernoulli beam theory. Euler–Bernoulli beam
theory is widely used to study the anisotropic composite
structure [11,23]. This paper focuses only on the study on
the kinematic assumptions influence on the computa-
tional results of Euler–Bernoulli beam. Among all these
three kinematic assumptions, kinematic assumption 3 is
the most accurate. Kinematic assumption 2 is actually
an approximation of kinematic assumption 3. To show
this, we give the following:

� ¼ p
A
þ ½ð1þ uxÞ2 þ v2

x �
1
2 � 1� yvxx

p v2
x p v2

x
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2.4. Nondimensionalization of equations of equilibrium

In order to nondimensionalize, the following dimension-
less numbers are introduced:

f ¼ x
L
; V ¼ v

L
; U ¼ u

L
.

The dimensionless equations of Eqs. (22) and (23) are ob-
tained as follows:

bV fff � a1U ff ¼ gV fV ff þ b V fV 2
ff þ

V 2
fV ff

2

 !
; ð24Þ

and

V ffff � bU fff � aV ff ¼ g U ffV f þ U fV ff þ
3

2
V 2

fV ff

� �
. ð25Þ

Here a1, a, b, and g are defined as

a ¼ a1 g0 �
acDT

2

� �
þ a2 g0 �

asDT
2

� �
þ a3;

with

a1 ¼
AL2

D
; a2 ¼

2L2Esb1R1

D
; a3 ¼

L2b1R1rp

D
;

and

b ¼ BL
D
; g ¼ �aþ a1 þ a2.

The linear parts of Eqs. (24) and (25) are the following:

bV fff � a1U ff ¼ 0; ð26Þ
and

V ffff � bU fff � aV ff ¼ 0. ð27Þ
The nonlinear parts of Eqs. (24) and (25) are the higher or-
der term. The two linear equations above, which include
the axial force influence, are relatively accurate for the
small deflection.

3. Solutions and results discussion for the equations of

equilibrium

3.1. Analytical solutions of linear equations of equilibrium

The boundary conditions need to be given to derive ana-
lytical solutions of Eqs. (26) and (27). As for all the governing
equation sets derived from the three kinematic assumptions,
the highest order of the derivative in one equation is 4th
order, the other highest in the other equation is 3rd order.
Thus, totally seven boundary conditions are needed to solve
the governing equations. These seven boundary conditions
are given by Vinson and Sierakowski [23] as

vð0Þ ¼ 0; vðLÞ ¼ 0; vð0Þ ¼ 0;

N xð0Þ ¼ p; N xðLÞ ¼ p; Mxð0Þ ¼ 0; MxðLÞ ¼ 0
ð28Þ

The first three are the geometric boundary conditions and
the last four are the natural boundary conditions. The
beam is pinned-pinned with a roller at x = L. Here Nx

stands for the axial load and Mx for the moment. As men-
tioned before, the boundary conditions can be derived dur-
ing the derivation of governing equations. For the different
kinematic assumptions, the expressions for Nx and Mx are
different. The boundary conditions due to the different
kinematic assumptions differentiate only in the natural
boundary conditions. Nx and Mx are expressed as

Nx ¼ Aux þ Bvxx � Nxt; Mx ¼ Bux þ Duxx �Mxt. ð29Þ
where Nxt is the thermo-elastic axial force and Mxt is the
moment due to both asymmetry and thermo-elastic stress.
Nxt and Mxt have the following expressions:

Nxt ¼ ðA� Esb1R1ÞacDT þ Esb1R1asDT

Mxt ¼ B� 1

2
Esb1R2

� �
acDT þ 1

2
Esb1R2asDT

ð30Þ

The analytical solutions of Eqs. (18) and (19) are
polynomials

va1 ¼ c4x3 þ c5x2 þ c6x; ð31Þ
and

ua1 ¼ c1x2 þ c2x. ð32Þ
cis can be solved by using the boundary conditions as
follows:

c1 ¼
BðMxt � Bc2 � 2Dc5Þ � DðNxt þ p � Ac2 � 2Bc5Þ

2LðB2 � DAÞ
;

c2 ¼
BMxt � DðNxt þ pÞ
ðB2 � DAÞ

;

c4 ¼
BðN xt þ p � Ac2 � 2Bc5Þ � AðMxt � Bc2 � 2Dc5Þ

6LðB2 � DAÞ
;

c5 ¼
BðN xt þ pÞ � AMxt

2ðB2 � DAÞ
;

c6 ¼ �c4L2 � c5L.

where c2 and c5 are the two independent coefficients. All
other coefficients are expressed by them. The reason to give
the solutions of Eqs. (18) and (19) is that they are the solu-
tions of Eqs. (26) and (27) when there is no axial load. The
detailed solution procedure on how to obtain the solution
of the linear equation set is given in Appendix. The analyt-
ical solutions of Eqs. (26) and (27) depend on the parame-
ter c and c is defined as c ¼ �a

1�b2

a1

. If c = 0, it indicates no

axial load. When there is no axial load, the solutions of
Eqs. (26) and (27) have the same form of Eqs. (31) and (32).

When c > 0 (also a < 0), which indicates that the beam is
under compression, the solutions of Eqs. (26) and (27) are

V a2 ¼ d1 þ d2fþ d3 sinðkfÞ þ d4 cosðkfÞ; ð33Þ
and

U a2 ¼
bk
a1

½d3 cosðkfÞ � d4 sinðkfÞ�d5f
2 þ d6fþ d7. ð34Þ

Here k is defined as k ¼ ffiffiffi
c
p

. dis (i = 1–7) are the constants
solved by using the boundary conditions as follows:
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Fig. 3. The deflection comparison of two different analytical solutions of
linear equations derived from two different kinematic assumptions at
DT = 10 �C and no mechanical loading of p = 0 N.
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d4 ¼
BðN xtþ pÞ �AMxt

A Bbk2

a1
þ Dk2

L

� �
�B Abk2

a1
þ Bk2

L

� � ;

d6 ¼
Bb
a1
þ D

L

� �
K2ðNxtþ pÞ � Ab

a1
þ B

L

� �
k2Mxt

A Bbk2

a1
þ Dk2

L

� �
�B Abk2

a1
þ Bk2

L

� � ;

d3 ¼
Bk3�Ak5

k2 sinðkÞ A Bb
a1
þ D

L

� �
�B Ab

a1
þ B

L

� �h i ;

d5 ¼
k3ðBb

a1
þDÞ � k5ðAb

a1
þBÞ

2 A Bb
a1
þ D

L

� �
�B Ab

a1
þ B

L

� �h i ;
d1 ¼�d4; d2 ¼�d1� d3 sinðkÞ � d4 cosðkÞ; d7 ¼�

bk
a1

d3;

with k3 and k5 defined as

k3 ¼ N xt þ p þ Ab
a1

þ B
L

� �
k2 cosðkÞd4 � Ad6;

k5 ¼ Mxt þ
Bb
a1

þ D
L

� �
k2 cosðkÞd4 � Bd6.

If c < 0 (also a > 0), which indicates the beam under ten-
sion, the solutions are now changed as

V a2 ¼ f1 þ f2fþ f3 sinhðkfÞ þ f4 coshðkfÞ; ð35Þ
and

U a2 ¼
bk
a1

½f3 coshðkfÞ þ f4 sinhðkfÞ� þ f5f
2 þ f6fþ f7.

ð36Þ
Now k is redefined as k ¼ ffiffiffiffiffiffi�c

p
. Constants fis (i = 1–7) are

also solved by using the boundary conditions as follows

f4¼ d4; f 6¼ d6; f 3¼
Bk03�Ak05

k2 sinhðkÞ �A Bb
a1
þD

L

� �
þB Ab

a1
þ B

L

� �h i ;

f5¼
k03

Bb
a1
þD

L

� �
� k05

Ab
a1

B
L

� �
2 �A Bb

a1
þD

L

� �
þB Ab

a1
þ B

L

� �h i ;
f1¼�f4; f 2¼�f1� f3 sinhðkÞ� f4 coshðkÞ; f 7¼�

bk
a1

f3;

with k03 and k05 defined as

k03 ¼ N xt þ p � Ab
a1

þ B
L

� �
k2 coshðkÞf4 � Af 6;

k05 ¼ Mxt �
Bb
a1

þ D
L

� �
k2 coshðkÞf4 � Bf 6.

To compare the solutions of the linear equations (va1 and
ua1) derived from kinematic assumption 1 and those of
the linear parts of the equations derived from kinematic
assumption 2 or 3 (Va1 and Ua2), the beam length L is taken
as 1 m for the statement convenience. Thus, the dimen-
sional and dimensionless deflections derived from the same
equations have the same values. Here the other related
parameters are taken as
Ec ¼ 3:78� 1010 Pa; Es ¼ 78:5� 1010 Pa;

ac ¼ 0:4� 10�6 �C�1; as ¼ 6:61� 10�6 �C�1.

b¼ 0:01 m; h1 ¼ 0:02 m; h2 ¼ 0:0 m;

h3 ¼ 0:02 m; h4 ¼ 0:02 m.

In this paper, we directly change the parameters his (i = 1–4)
to study the composite beam, which are determined by the
beam dimensions (b, b1, b2 and His). And the relationship
between Hi and hi is shown in Figs. 1 and 2. The normal
procedure is to give the beam dimensions first and then
compute his. But this will not be convenient for our study.
Because b1 and b2 are also the parameters to determine h1

in Eq. (1) and b = b1 + 2b2, once b and his (or His) are given,
b1 (or b2) can be computed from Eq. (1), correspondingly.

As shown in Figs. 3 and 4, the solutions of va1 are always
smaller than those of Va2 (because L = 1 m, dimensional
va1 and dimensionless Va1 have the same value). The reason
is that in the governing equations for va1, the axial compres-
sion, which reduces the bending stiffness of the beam, is not
incorporated. In Fig. 3, p = 0 N and DT = 10 �C, in which
only a small amount of thermal compression is exerted. In
Fig. 4, relatively much larger compression is exerted. The
mechanical compression force is p = �2000 N, which is
about 8% of the buckling load and DT = 30 �C the two ana-
lytical solutions of the linear equations, va1 and Va2, have
already shown very significant difference.
3.2. Numerical methods and results of the nonlinear

equations

To solve the nonlinear Eqs. (24) and (25), U and V are
assumed to have the following expansions:

U ¼
Xn

i¼1

ai sinðipfÞ þ U a2; ð37Þ
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Fig. 4. The deflection comparison of two different analytical solutions of
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DT = 10 �C and the compressive mechanical load p = �2000 N.
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and

V ¼
Xn

i¼1

bi sinðipfÞ þ V a2. ð38Þ

Here n is mode number, Ua2 and Va2 have two roles. First,
they are the solutions of the beam axial displacement and
the transverse displacement of the linear theory. The other
sine terms in the Galerkin series behave mathematically
like the perturbation terms to rectify Ua2 and Va2 for the
nonlinear governing equations. Second, their very existence
makes V and U to satisfy boundary conditions. Now if si-
n(ipf) times Eqs. (24) and (25) and integrates from 0 to 1,
the following equation is obtained after some simple
manipulations:
R 1

0
sinðpfÞ bV fff � a1U ff � gV fV ff � b V fV 2

ff þ
V 2

f
V ff

2

� �h i
df ¼R 1

0
sinð2pfÞ bV fff � a1U ff � gV fV ff � b V fV 2

ff þ
V 2

f
V ff

2

� �h i
df ¼

..

.

R 1

0
sinðnpfÞ bV fff � a1U ff � gV fV ff � b V fV 2

ff þ
V 2

f
V ff

2

� �h i
df ¼R 1

0
sinðpfÞ V ffff � bU fff � aV ff � g U ffV f þ U fV ff þ 3

2
V 2

fV ff

��
R 1

0
sinð2pfÞ V ffff � bU fff � aV ff � g U ffV f þ U fV ff þ 3

2
V 2

fV
��

..

.R 1

0
sinðnpfÞ V ffff � bU fff � aV ff � g U ffV f þ U fV ff þ 3

2
V 2

fV
��

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:
If plugging U and V expansions of Eqs. (37) and (38) into
Eq. (39), the previous nonlinear differential equations are
now transformed into the set of polynomials of ai, and bi.
It is a set of 2n equations for 2n unknowns (ai, and bi,
i = 1, 2 . . . n). The solutions are obtained by using New-
ton–Rhapson iteration method.

The nonlinear effect depends on how large the beam
deflects. One fact is also noticed that in both Eqs. (24)
and (25), all nonlinear terms are governed by one coeffi-
cient g. g is the parameter related to g0, temperature and
the coefficients of thermal expansion. Increasing the com-
pression load has two effects. The first is to reduce the
structural stiffness, thus to enlarge deflection. The other is
to increase parameter g, which increases the nonlinear
influence on the structural deflection. Increasing compres-
sion makes the difference enlarge between nonlinear and
linear solutions. In Figs. 5 and 6, we show how such differ-
ence between nonlinear and linear solutions enlarges as DT
0

0

0��
df ¼ 0

ff

��
df ¼ 0

ff

��
df ¼ 0

ð39Þ
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Fig. 6. The deflection comparison of linear and nonlinear solutions when
p = �25,000 N as DT changes.
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varies. The linear solution is Va2 (at n ¼ 1
2
) of Eq. (33) for

the compressive load case, which physically is the deflection
of the midspan. In Figs. 5 and 6, p is fixed as �15,000 and
�25,000 N, respectively.

3.3. The influences of the shift of SMA layer from the neutral

axis and SMA layer thickness on the deflection

If the SMA thickness is fixed, the SMA layer shift from
the neutral axis will increase the moment (both mechanical
and thermo-mechanical) exerted on the beam if the load-
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Fig. 7. The study of asymmetry influence on the beam deflection. The three
symmetric one, which has no deviation.
ings are keep unchanged. This makes the beam to bend
more. Keep the SMA layer thickness H2 fixed at 0.02 m.
The following three cases are compared. Case 1:
h2 = �0.01 m (SMA layer is in the center of the beam,
the symmetric beam). Case 2: h2 = �0.005 m, case 3:
h2 = 0 m. Cases 2 and 3 are the asymmetric beams. When
the SMA layer is in the center, the mechanical and
thermo-mechanical stresses are symmetrically distributed
on the cross-section; thus no moment is generated. As a
result, the beam remains straight. More the SMA layer is
shifted away from the neutral axis, more the moment due
to asymmetry is generated. Then the beam bends more.
In Fig. 7, this effect is well reflected. Mechanical load p

and thermo-mechanical load both enlarge the deflections
of the three cases.

If H3 = 0.02 m is fixed change the thickness of the
SMA layer (H2) from 0.005 m to 0.01 m to 0.02 m. The
increment of the thickness has two effects on the deflec-
tion. Because Young’s moduli of SMA and epoxy are dif-
ferent (here Es > Ec), the first effect of increasing the SMA
thickness is to increase the whole beam bending stiffness.
At the same time, it also makes the parameter B bigger.
So the second effect is that at the same temperature, more
moment is generated. These two effects compete to deter-
mine whether the beam bends more or less. For this com-
petition, the difference between epoxy and SMA Young’s
moduli is vital. For the first scenario we study here,
Young’s moduli for epoxy and SMA are taken as
Ec = 3.78 · 1010 Pa, Es = 78.5 · 1010 Pa, in which there is
a very large difference between Young’s Moduli of the
two materials. The result is that the case with
H2 = 0.02 m bends less than the case with H2 = 0.01 m
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cases have the different deviations from the neutral axis. Case 1 is the
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though it has larger bending moment, but its bigger bend-
ing stiffness counteracts for that. In a word, the increment
of the bending moment is less than the increment of the
bending stiffness as the SMA layer thickness increases.
The results are shown in Fig. 8 and hold for both
p = 0 N and p = �2000 N cases as DT increases from 0
to 50 �C. For this scenario of the very large difference
in Young’s moduli of the two materials, increasing the
thickness will not necessarily increase the deflection.
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Fig. 8. The study of SMA thickness influence on the beam deflection. For thi
epoxy.
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Fig. 9. The study of SMA thickness influence on the beam deflection. For this
epoxy.
If Young’s moduli for epoxy and SMA are Ec =
53.78 · 1010 Pa, Es = 78.5 · 1010 Pa, then the two materials
Young’s moduli are close to each other. For this scenario,
the results are shown in Fig. 9 for both p = 0 N and
p = �2000 N cases with DT increasing. For this scenario of
the materials with much less difference in Young’s modulus,
the bending moment increases faster than the bending stiff-
ness when the SMA layer thickness increases. Increasing
SMA layer thickness means more deflection for this scenario.
H2=0.005 m
H2=0.01 m 
H2=0.02 m

0 20 40 60
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
x 10

-3

D
im

en
si

on
le

ss
 d

ef
le

ct
io

n 
of

 th
e 

m
id

sp
an

p= - 2000 N
  Es=78.5e10 Pa

ΔT

s study, there is relatively large difference in Young’s moduli of SMA and

H2=0.005 m
H2=0.01 m
H2=0.02 m

0 10 20 30 40

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-3

D
im

en
si

on
 d

ef
le

ct
io

n 
of

 th
e 

m
id

sp
an

p= - 2000 N
  Es=78.5e10 Pa

ΔT

study, there is relatively a small difference in Young’s moduli of SMA and



1106 Y. Zhang, Y.-P. Zhao / Materials and Design 28 (2007) 1096–1115
The best way to analyze the influence of the competition
between bending moment and stiffness on the deflection for
the different SMA layer thicknesses is to analyze the deriv-
atives of Va2. As Va2 is the function with the multi-vari-
ables, the derivatives of Va2 with respect to thickness,
temperature and h2 are numerically computed and are
shown in Fig. 10, respectively. h2 is the parameter indicat-
ing the distance between the SMA layer lower edge and the
neutral axis. In Fig. 10, Ec = 3.78 · 1010 Pa, Es = 78.5 ·
1010 Pa, p = 0 N and H3 = 0.02 m. The first plot in
Fig. 10 shows that oV a2

oH2
, the deflection derivative with

respect to the SMA layer thickness (H2) goes from the neg-
ative to the positive numbers. Because the deflection of the
beam is a negative value, the positive derivative is to reduce
the magnitude of deflection. This positive derivative value
scenario is also reflected in Fig. 8. For both oV a2

oDT and oV a2

oh2

shown in the 2nd and 3rd plots of Fig. 10, the derivatives
are always negative, which means increasing either DT or
h2 can only increase the beam deflection magnitude.

4. Buckling, post-buckling analysis and finite element method

4.1. A brief discussion on the usage of Galerkin method in

buckling and post-buckling analysis of a composite beam

Compared with Rayleigh–Ritz method, Galerkin
method (also called method of weighting functions) is to
minimize the sequence consisting of admissible functions
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Fig. 10. The derivatives of Va2 with respect to H2, DT and h2, respecti
rather than comparison functions [25,26]. In Galerkin
method, the boundary conditions information is included
in the expansion series. The expansion series usually are
the mode shapes. Sine expansion series are actually the
mode shapes derived from the linear vibration equation
of the homogeneous pinned-pinned beam, which is a
self-adjoint system. As the expansion forms shown in
Eqs. (37) and (38), the sine function, which is derived
from the governing equation of a self-adjoint system, is
guaranteed to the admissible function. Eqs. (37) and
(38) are

U ¼
Xn

i¼1

ai sinðipfÞ þ U a2; ð37Þ

and

V ¼
Xn

i¼1

bi sinðipfÞ þ V a2. ð38Þ

For both Rayleigh–Ritz method and Galerkin method,
the expansion functions of comparison function or admis-
sible function are needed to satisfy the boundary
conditions. Without Ua2 and Va2 in U and V expansions,
the sine terms in U and V will lead to the boundary con-
ditions that the moments at the ends are zero, which is
only true for the symmetric beam case. With Ua2 and
Va2 in Eqs. (37) and (38), the boundary conditions of
both the symmetric and the asymmetric cases can be
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satisfied, which is discussed before. While Ua2 and Va2 are
the solutions of the linear equations, which become singu-
lar at buckling. The singularity of Ua2 and Va2 prevents us
from using Galerkin method for the post-buckling analy-
sis. In the text that follows, a discussion is made on the
singularity.

Eqs. (24) and (25) are well suitable for the buckling
and post-buckling analysis. While if the equations above
are discretized by Galerkin method as Eq. (39), then
there is some numerical difficulty in the post-buckling
analysis. Let us analyze the solution form to find out
why. For the buckling and post-buckling analysis, the
axial force in both Eqs. (24) and (25) is compressive,
i.e., c < 0. So for the transverse displacement V, the solu-
tion of Eq. (33) is the solution form for Va2 and Eq. (33)
is

V a2 ¼ d1 þ d2fþ d3 sinðkfÞ þ d4 cosðkfÞ. ð33Þ
The constant d3 is defined before as

d3 ¼
Bk3 � Ak5

k2 sinðkÞ A Bb
a1
þ D

L

� �
� B Ab

a1
þ B

L

� �h i
k ¼ ffiffiffi

c
p

. So if c = n2p2 (n is an integer), then d3 is singular.
For symmetric beam of B = 0, we can directly use the
above equation to find the buckling load. For symmetric
beam

c ¼ �a ¼ n2p2

where a as defined before is directly related with the
axial loads. This is the exact solution of the buckling
load values (here they are dimensionless) derived from
the classical buckling analysis for the pinned-pinned
beam under compression [27,28]. p2 is the lowest
buckling load value. The reason that the axial displace-
ment U does not affect the buckling load at all for the
symmetric beam is that when B = 0 (also b = 0), Eqs.
(26) and (27) are uncoupled. When b = 0, Eq. (27) is
the governing equation for the classical buckling analysis
[27,28]. For the asymmetric beam (b 6¼ 0), the singularity
condition is

c ¼ �a

1� b2

a1

¼ n2p2

The asymmetry here actually plays the same role as the
geometric imperfection plays in the classical buckling anal-
ysis though there is some difference in their governing
equations. For straight/symmetric beam, or say, the beam
without imperfection, the beam remains straight (no deflec-
tion) before and upon the buckling during the compressive
loading. For the asymmetric beam or say the beam with
imperfection (unstraight beam), the beam deflects instantly
once there is axial loading.

So it is clear now that as the compressive load reaches
the buckling value, Va2 becomes singular. This singularity
property can be used for buckling analysis to predict buck-
ling load. Va2 is a solution of linear equations and the lin-
ear analysis results in the singularity at buckling.
Physically, as exhibited by the nonlinear analysis, the buck-
ling beam continuously deflects in post-buckling region
with the finite magnitude. So the Galerkin method used
here cannot be applied to post-buckling region due to the
singularity of Va2. For the compressive load less than the
buckling load, Galerkin method used here performs well
and Galerkin method should be restricted in pre-buckling
region.

The way out is to seek other discretization methods.
As the analysis shown in Section 2, our approach actu-
ally is to model the composite beam as ‘‘stressfully
equivalent’’ [17,18] homogeneous beam and the numeri-
cal difficulty is due to the singularity of one expansion
term in Galerkin method. The mode shape of the com-
posite beam can be very different from that of the homo-
geneous beam due to coupling. Banerjee shows an
example of how complex and different the mode shapes
of a composite beam can be compared with those of a
homogeneous beam [29]. Those mode shapes of the com-
posite beam may avoid the singularity of the expansion
terms in Galerkin method. For such composite beam
mode shape analysis, it is beyond the scope of this paper.
In this paper, finite element (FE) method is adopted to
avoid such singularity problem in numerical
computation.
4.2. Finite element analysis for the composite beam post-

buckling analysis

Galerkin method used here needs Va2 as an expansion
term and it blows up at buckling load. As a discretiza-
tion method, FE method can avoid such numerical
problem. In Galerkin method, the boundary condition
information is included in the expansion functions. While
for FE method, it is to deal with the nodes at the ends
to enforce the boundary conditions. And for the linear
FE analysis, the boundary condition can be directly
enforced during the (stiffness, mass, damping, etc.)
matrices assembling. The interpolation function of FE
method is polynomial. The singularity due to enforcing
the boundary conditions in Galerkin method does not
exist in FE method. For FE method, the potential
energies in SMA layer and epoxy remain the same as
those of

U s ¼
1

2

Z L

0

Z
AM

Esð�� asDT Þ þ rp��dAM dx; ð16Þ

and

U c ¼
1

2

Z L

0

Z
Ac

Ecð�� acDT Þ��dAc dx. ð17Þ

By applying the principle of minimum potential energy
(PMPE, dU = dUc + dUs = 0) and plugging the � of kine-
matic assumption 2, the following integral equation is ob-
tained:



dU ¼ dU c þ dU s ¼
Ec

2

Z L

0

Z
Ac

2g0dux þ 2uxdux þ 2g0vxdvx þ v2
xdux þ 2uxvxdvx þ v3

xdvx � 2y g0 þ ux þ
v2

x

2

� �
dvxx



�2yvxxðdux þ vxdvxÞ þ 2y2vxxdvxx � acDT ðdux þ vxdvx � ydvxxÞ
�

dAc dxþ Es

2

Z L

0

Z
As

2g0dux þ 2uxdux þ 2g0vxdvxf

þv2
xdux þ 2uxvxdvx þ v3

xdvx � 2y g0 þ ux þ
v2

x

2

� �
dvxx � 2yvxxðdux þ vxdvxÞ þ 2y2vxxdvxx � acDT ðdux þ vxdvx � ydvxxÞ

�

dAM dx� Es

2

Z L

0

Z
AM

asDT ðdux þ vxdvx � ydvxxÞdAM dx þ
1

2

Z L

0

Z
AM

rpðdux þ vxdvx � ydvxxÞdAM dx ¼ 0 ð40Þ
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Unlike Galerkin method, which operates two more inte-
grations by parts procedures after the variational opera-
tion, the integral Eq. (40) for FE analysis is obtained
only after one variational operation. For FE method,
the following polynomial interpolation functions are
introduced [30]:

B1 ¼ 1� n; B2 ¼ n;

N 1 ¼ 1� 3n2 þ 2n3; N 2 ¼ Lenð1� 2nþ n2Þ;

and

N 3 ¼ n2ð3� 2nÞ; N 4 ¼ Len
2ðn� 1Þ.

with n ¼ x
Le
; Le is the element length. Now the axial and

transverse displacements H
!T ¼ ðu; vÞ (superscript T for

transpose) in one element are approximated as

~H ¼
u

v

� �
¼

B1 0 0 B2 0 0

0 N 1 N 2 0 N 3 N 4

� �
u1

v1

h1

u2

v2

h2

0
BBBBBBBB@

1
CCCCCCCCA

ð41Þ
ui, vi, hi (i = 1, 2) are the nodal axial displacement, trans-
verse displacement and rotation angle of the element,
respectively. Plug these interpolation functions forms of u

and v into Eq. (40), the FE equation of ui, vi, hi is derived.
For n elements (thus n + 1 nodes), there are 3 · (n + 1)
equations for 3 · (n + 1) unknowns of ui, vi, hi (i = 1,
n + 1); Newton–Rhapson method is also used here to solve
Eq. (40). If linear analysis that only constant and linear
terms are kept in Eq. (40), then LU decomposition method
is applied for this linear algebra problem solution.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.5

0

T/Tcr

Fig. 11. The comparison of FE linear, nonlinear solutions and analytical
solutions of the asymmetric beam. The beam parameters here are L = 1 m,
h1 = 0.00149 m, h2 = 0.00151 m, h3 = 0.002 m, h4 = 0.002 m.
4.3. Results and discussion of buckling and post-buckling

analysis

Here as the recovery stress is incorporated, we assume
that the ambient temperature is 0 �C and thus T = DT

for the statement convenience. In Fig. 11, a comparison
of FE linear and nonlinear solutions with the analytical
solution is made as T changes. The beam is asymmetric
with the parameters L = 1 m, h1 = 0.00149 m, h2 =
0.00151 m, h3 = 0.002 m, h4 = 0.002 m. In Fig. 11, it is
shown that both FE linear solution and analytical solution
blow up around the buckling temperature of the symmetric
beam (in Fig. 11, only the part of linear solution with the
small magnitude is shown). It is noticed that after buckling,
both FE linear solution and analytical solution change
signs, while the nonlinear solution changes continuously.
The sign change around the buckling point misses one solu-
tion of the composite beam as the linear analysis can no
longer be valid after buckling. That is also another reason
why the Galerkin expansion form cannot be applied in
post-buckling analysis. For all the analyses in this buckling
and post-buckling analysis section, Es = 20.5 · 1010 Pa and
Ec = 53.78 · 1010 Pa.

For comparison purpose, the fourth order differential
equation of classical buckling analysis is given as follows
[28]:

EIyxxxx � P eyxx ¼ 0 ð42Þ

where EI is the effective bending stiffness of the composite
beam, here it is D, Pe is the effective axial load, including
the mechanical, thermo-mechanical forces and the force
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Fig. 12. The relation of the buckling compression and temperature of the
symmetric composite beams with and without the SMA layer. The beam
parameters here are: L = 0.457 m, h1 = h2 = 0.0015 m, h3 = h4 = 0.002 m.
SMA is activated at T = 32.5 �C.
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Symmetric post-buckling case

T1/Tcr T2/Tcr T3/Tcr

Fig. 13. The post-buckling behavior of the symmetric composite beam
with the SMA layer. The beam parameters here are the same as those in
Fig. 12. Here Tcr = 23.1 �C is the buckling temperature when p = 0 N,
Pcr = �3388.65 N is the buckling compression load when T = 0 �C of the
same size beam with no SMA layer.
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due to SMA phase transformation, Pe > 0 is tensile and
Pe < 0 is compressive. Eq. (42) can be rewritten as

Dvxxxx � P �DT
2
ðEsasAMþEcacAcÞ þ

rpAM

2

� �
vxx ¼ 0 ð43Þ

The recovery stress rp (Pa) is taken from the experimental
data of Cross et al. [7] and approximated as the following

rp¼
3:5�106ðT �32:5Þ 32:5 �C6T <42:5 �C

6:57�106ðT �42:5Þþ3:5�107 42:5 �C6T <73:5 �C

0:884�106ðT �73:5Þþ2:3867�108 T P73:5 �C

8><
>:

ð44Þ
For different initial conditions and processing (heating or
cooling down), the recovery stress can be different.
Clearly the recovery stress given above has three stages
(different slopes) for the experimental data of the recov-
ery stress given by Cross et al. [7]. The multi-stage phe-
nomenon is one of the characteristics of SMA recovery
stress. It is a common phenomenon for the composite
beam with the SMA layer to get buckled, unbuckled
and rebuckled during heating process [9]. This multi-
stage change of the recovery stress and its competition
with the (compressive) thermal load are responsible for
this phenomenon. For the straight symmetric pinned-pin-
ned beam (beam without imperfection), the lowest buck-
ling load is [28]

P b ¼ �
p2D

L
. ð45Þ

By plugging in the expression of Pe and Pe = Pb at buck-
ling, we obtain

P e ¼ p � DT
2
ðEsasAM þ EcacAcÞ þ

rpAM

2
¼ P b. ð46Þ

which indicates the interaction and relation of the mechan-
ical, thermo-elastic forces and the force due to phase trans-
formation at buckling. Before we show the buckling,
unbuckling and re-buckling phenomenon as the tempera-
ture changes and the SMA layer recovery stress is acti-
vated, we show the competition between the tensile
recovery stress and compressive thermal stress of Eq. (46)
in Fig. 12. In Fig. 12, the beam has the following dimen-
sions: L = 0.457 m, b = b1 = 0.025 m, h1 = h2 = 0.0015
m, h3 = h4 = 0.002 m and it is a straight symmetric beam.
Tcr is the buckling temperature of the beam with no SMA
layer embedded and no mechanical loading exerted case.
Pcr is the mechanical buckling of the beam with no SMA
layer embedded and T = 0 �C case. The beam with no
SMA layer has the dimensions of L = 0.457 m,
b = 0.025 m and the thickness of 0.004 m. And Tcr =
23.1 �C and Pcr = �3388.65 N. P is the additional mechan-
ical load needed for the buckling. For the beam with no
SMA layer, it is a straight line with the slope of �1. For
the composite beam with the SMA layer embedded, the
curve is quite different because the SMA layer is activated.
As the nonlinear FE analysis shown in Fig. 13, the beam
with the SMA layer experiences buckling (post-buckling),
unbuckling, and buckling (post-buckling) again. In
Fig. 13, all the beam dimensions are shown which are the
same as those shown in Fig. 12 and the thermo- mechanical
load p is 0 N. From Eq. (46), three analytical ‘‘buckling’’
temperatures when p = 0 N can be easily calculated as
T1 = 28.78 �C, T2 = 39.66 �C, T3 = 167.34 �C, which are
exactly matched by our FE results. Here T1 and T3 are
the actual buckling temperatures and T2 is the unbuckling
temperature when the beam is heating up. If cooling down,
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T1 and T3 are the unbuckling temperatures and T2 is the
buckling temperature. The first buckling is an ordinary
buckling, it is purely due to the thermo-mechanical com-
pressive force. In Fig. 13, it is shown that after SMA is acti-
vated at T = 32.5 �C, the post-buckling curve begins to
drop down (the deflection magnitude reduces) because
the recovery stress is tensile. During the first two stages,
the recovery stress increases faster than the thermo-
mechanical compressive stress; the curve keeps dropping
down and reaches zero when the total force in the beam
is equal to the critical buckling compression load. The
beam deflection keeps zero when the total force in the beam
is less than the critical compression load. At stage 3, SMA
recovery stress increases slower than the thermal–mechan-
ical stress. The beam begins to accumulate compression
again. At T3, the force reaches the critical buckling com-
pression load again, then it buckles. This exact behavior
is also shown in Turner’s paper [9].

The buckling, unbuckling and buckling again phenome-
non may not take place for some composite beam configu-
rations. Whether the phenomenon takes place is dependent
on the competition between the compressive thermo-
mechanical stress and the tensile SMA layer recovery
stress. In Fig. 14, the beam dimensions are L = 0.457 m,
b = b1 = 0.025 m, h1 = h2 = 0.0015 m, h3 = h4 = 0.0022
m. Thus compared with the previous beam with the thick-
ness of 0.004 m, now the thickness is 0.0044 m. The dimen-
sions of the beam with no SMA layer are L = 0.457 m,
b = 0.025 m and the thickness of 0.0044 m, which buckles
at Tcr = 28.05 �C when p = 0 N and Pcr = �4510.3 N when
T = 0 �C. In Fig. 14, it is seen that the composite beam
without SMA layer
with SMA layer
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Fig. 14. The relation of buckling compression and temperature of the
symmetric composite beam with and without the SMA layer. The beam
parameters here are L = 0.457 m, h1 = h2 = 0.0015 m, h3 = h4 = 0.0022 m.
Tcr = 28.05 �C is the buckling temperature of the beam with no SMA layer
and no external compression of p = 0 N. Pcr = �4510.3 N is the buckling
compression load when T = 0 �C of the same size beam with no SMA
layer.
with the SMA layer can only buckle at T = 148.25 �C
(T/Tcr � 5.25) if no additional external mechanical load is
exerted on the beam. Fig. 15 shows is the beam buckling
and post-buckling plots as T changes and p is fixed as
0 N. For the different configurations, the composite beam
can have the dramatically different buckling and post-
buckling responses when the beam is heated and the
SMA is activated.

In Fig. 16, the asymmetric beam deflection as T

changes is shown. Two cases are shown for comparison.
In Fig. 16, the two asymmetric cases have the following
parameters:
Fig. 15. The post-buckling behavior of the symmetric composite beam
with the SMA layer. The beam parameters here are the same as those in
Fig. 14.
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Fig. 16. The comparison of two asymmetric beam cases with the SMA
layer. The beam has the same SMA and epoxy layer size as those in Fig. 14
but the different SMA layer locations.
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Fig. 17. The comparison of two asymmetric beam cases with the SMA
layer. The beam has the same SMA and epoxy layer size as those in Fig. 15
but the different SMA layer location.
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Asymmetric case 1: L = 0.457 m, h1 = 0.001496 m,
h2 = 0.00154 m, h3 = h4 = 0.002 m.

Asymmetric case 2: L = 0.457 m, h1 = 0.00149 m,
h2 = 0.00151 m, h3 = h4 = 0.002 m.

Compared with the symmetric case, there is one more
small peak in the asymmetric case. For the symmetric case,
as far as the compression load is less than buckling load,
there is no deflection. But for the asymmetric case, the
moment due to eccentricity/asymmetry is always there
and so is the deflection. When the beam is heated, the whole
beam is under compression. In this case, since the epoxy has
larger Young’s modulus, the compressive force in epoxy
layer is larger than that in the SMA layer. The bending
moment is pointing inside (clockwise). The beam bends
up. At this stage, moving the SMA layer more away from
the center will have more bending moment and less stiffness
for the beam. Because the SMA layer here has less Young’s
modulus than that of the epoxy, the configuration of having
the SMA layer with smaller Young’s modulus further away
from the center will have smaller stiffness for the whole
beam. At this stage, larger eccentricity produces larger
deflection. Before SMA is activated, the increase of the
bending moment and compressive thermo-mechanical force
drives the beam deflection to increase. When the SMA layer
is activated, the tensile recovery stress is generated. The
recovery stress reduces the compression forces in both
SMA and epoxy layers. As a result, the bending moment
is reduced, so is the deflection. After the beam is unbuckled,
the tensile recovery stress still increases faster than the com-
pressive thermo-mechanical stress. At this stage, the whole
structure is in tension. In the SMA layer, the tension is
larger. With the temperature increasing, the recovery stress
increases, so is the bending moment. After the deflection
reaches the minimum, the deflection keeps increasing again.
Soon the deflection is down again because the beam stiffness
also increases due to the contribution of the tensile recovery
stress. When the beam stiffness increases faster than the
moment, the deflection drops down. At the same time,
the recovery stress slows down and at last is surpasses by
the compressive thermo-mechanical stress. At the last stage,
the increase of bending moment surpassed the stiffness. The
deflection begins to increase again. Also at the last stage, the
deflections of the two asymmetric cases cross each other
around the second buckling temperature for the symmetric
beam. After the crossing, the beam with more eccentricity
has less deflection. More eccentricity means more bending
moment, but at this stage it also means more stiffness.
Unlike the case at the beginning, though SMA has less
Young’s modulus, now it has the large tensile recovery
stress. At this stage, the beam stiffness overcomes and sur-
passes the bending moment increment.

But in Fig. 17, it is seen that the beam stiffness over-
comes some increment of bending moment due to eccen-
tricity but does not surpass it. So for this scenario, more
eccentricity still means more deflection. The parameters
shown in Fig. 17 are
Asymmetric case 1: L = 0.457 m, h1 = 0.001496 m,
h2 = 0.00154 m, h3 = h4 = 0.0022 m.

Asymmetric case 2: L = 0.457 m, h1 = 0.00149 m,
h2 = 0.00151 m, h3 = h4 = 0.0022 m.

The configuration (and thus the volume fraction) of
SMA shown in Figs. 16 and 17 is different. It is noticed that
there are two peaks in Fig. 16 for each asymmetric case and
there is only one peak in Fig. 17 for each asymmetric case.

5. Dynamic properties: free and forced vibration

5.1. Equations of motion for free vibration and natural
frequency analysis

By adding the kinetic energy K K ¼
R L

0
mð _u2þ _v2Þ

2
dx

� �
and

by using Hamilton’s principle (d(K � Ut) = 0, Ut is the
total potential energy and Ut = Us + Uc), equations of
motion based on kinematic assumption 3 are derived.
The following is the dimensionless form of the equations
of motion:

U ss þ bV fff � a1U ff ¼ gV fV ff þ b V fV 2
ff þ

V 2
fV ff

2

 !
; ð47Þ

and

V ss þ V fff � bU fff � aV ff ¼ g U ffV f þ U fV ff þ
3

2
V 2

fV ff

� �
.

ð48Þ
Here s ¼ ð

D
mÞ

1
2

t

L2 ; t is the real time and m is the mass per unit
length of the beam and m = qs AM + qcAc. qs is the density
of SMA and qc is the density of epoxy. AM and Ac are the
SMA and epoxy layer cross-section areas, respectively.

The linear parts of Eqs. (47) and (48) are the undamped
coupled equations of motion. There are two ways of
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obtaining the natural frequencies from these two equa-
tions. One is to directly linearize the two equations, which
means that the nonlinear part of equations will not have
any influence on the system; thus the nonlinear hardening
effect due to the large deflection [20] is gone. The other is
to locally linearize the two equations at each equilibrium
with the different p and T. For the first approach, the gov-
erning equations are

U ss þ bV fff � a1U ff ¼ 0; ð49Þ
and

V ss þ V ffff � bU fff � aV ff ¼ 0. ð50Þ
For the second approach, let U ¼ Û þ U 0e; V ¼ V̂ þ V 0e and
substitute them into Eqs. (47) and (48), the linearized equa-
tions of (47) and (48) around the equilibrium are derived as
follows:

Û ss þ b 1� 1

2
ðV 0eÞ

2

� 	
V̂ fff � a1Û ff � ðgV e þ 2bV 00e V 0eÞV̂ ff

� ðgV 00e þ bV 00e þ bV 0eV
000
e ÞV̂ f ¼ 0; ð51Þ

and

V̂ ss þ V̂ ffff � bÛ fff � gV 0eÛ ff � gV 00e Û f � aþ gU 0e þ
3

2
gV 0e

� �
V̂ ff � ðgU 00e þ gV 0eV

00
e ÞV̂ f ¼ 0. ð52Þ
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Fig. 18. The comparison of the lowest three natural frequencies of transverse
(50).
Here Ue, Ve are the equilibria which are solved from
Eqs. (24) and (25). Physically, Û and V̂ are the small
perturbations from the equilibria of Ue and Ve. For
the pinned-pinned beam, Û and V̂ are expanded in sine
series. For both equation sets of Eqs. (49), (50) and Eqs.
(51), (52), it is the eigenvalue problem to obtain the nat-
ural frequencies. For the expansion with n terms, a
2n · 2n matrix is correspondingly obtained either from
Eqs. (49) and (50) or from Eqs. (51) and (52). There
are n natural frequencies for the transverse displacement
V and n natural frequencies for the axial displacement
U.

Fig. 18 shows the comparison of the lowest three nat-
ural frequencies obtained from Eqs. (49) and (50) when
the compression loads are p = 0 N and p = �20,000 N.
The beam is symmetric. For the free vibration studied
here, all the parameters are taken the same as those in
Fig. 7. The increase of compression or DT reduces the
system stiffness. As shown in Fig. 18, the natural fre-
quencies keep decreasing as the two parameters increase.
In Fig. 19, a comparison of the transverse frequencies
obtained from Eqs. (49) and (50); Eqs. (51) and (52) with
p = 0 N is shown. As expected, the transverse frequencies
obtained from Eqs. (51) and (52) are always higher than
those of (49) and (50) due to the nonlinear hardening
effect.
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Frequency response

Fig. 20. The frequency response of symmetric beam with and without the
SMA layer when T = 0 �C and T = 20 �C. fcr = 155.43 Hz is the resonance
frequency for beam with no SMA layer when T = 0 �C. For the beam with
the SMA layer, the parameters are L = 0.457 m, h1 = h2 = 0.0015 m,
h3 = h4 = 0.0022 m. The external driving force amplitude f is 2.4. At these
two temperatures, SMA is not activated.
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5.2. Forced vibration and system response

For the forced vibration, another term, the external
work W due to the external shaking force, is added

W ¼
Z L

0

f sinðxtÞdðx� x0Þdx. ð53Þ

where f is the external shaking force amplitude and x is the
shaking frequency, t is the real time. d(x � x0) here is Dirac
Delta function, x0 is the shaking force location. Now Ham-
ilton’s Principle is applied as follows:

dðK � U t þ W Þ ¼ 0. ð54Þ
Kinetic energy K and potential energy Ut remain the same
as before. In the forced vibration, we focus on the study of
the system response as the shaking force changes. FE meth-
od is applied here for this study. Young’s moduli for SMA
and epoxy are taken as Es = 20.5 · 1010 Pa and Ec = 53.78
· 1010 Pa, respectively. In Fig. 20, three response cases with
and without SMA layer and different temperatures are
shown. For the two cases with SMA layer in Fig. 20,
SMA is not activated, i.e., no recovery stress is induced.
For no SMA layer case, the beam has such dimensions of
L = 0.457 m, h1 = h2 = 0 m, h3 = h4 = 0.0022 m. For the
cases with SMA layer, the parameters are L = 0.457 m,
h1 = h2 = 0.0015 m, h3 = h4 = 0.0022 m. fcr = 155.43 Hz
is the lowest resonance frequency for beam with no SMA
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Fig. 21. The frequency response of symmetric beam with the SMA layer
at T = 20 �C and T = 80 �C. fcr = 155.43 Hz is the resonance frequency
for the beam of same dimensions with no SMA layer at T = 0 �C. For the
beam with the SMA layer, the parameters are L = 0.457 m,
h1 = h2 = 0.0015 m, h3 = h4 = 0.0022 m. The external driving force ampli-
tude is 2.4. At T = 80 �C, the beam is activated.
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reach steady state. The shaking amplitude f is taken as 2.4
and x0 is at the midspan. For the case with no SMA layer,
because the epoxy Young’s modulus is larger, the response
amplitude is smaller and the resonant frequency is higher.
And increasing temperature actually increases the compres-
sion, which reduces the system stiffness. This response com-
parison is clearly shown in the two cases with the SMA
layer at different temperatures in Fig. 20.

The temperature not only increases the compression but
also activates SMA, which generates tensile force. As
shown in Fig. 21, the SMA at T = 80 �C is activated and
the tensile recovery stress surpasses the compressive ther-
mal stress. As a whole, the system is stiffened. So at
T = 80 �C, the system has higher resonant frequency and
lower amplitude than those at T = 20 �C. In Fig. 21, it is
shown that the beam is symmetric. The related parameters
are L = 0.457 m, h1 = h2 = 0.0015 m, h3 = h4 = 0.0022 m.
It is worthy pointing out that though there is no damping
included, the response amplitude is finite in both Figs. 20
and 21. This is due to the nonlinearity of the governing
equations.

6. Summary

This paper gives a comprehensive study on the com-
posite beam with the SMA layer embedded. The study
covers the kinematic assumptions, modeling develop-
ment, equilibrium study, solution discussions (on both
linear and nonlinear ones), solution method (FE and
Galerkin), buckling, and post-buckling, free vibration
and forced vibration. This study uses many numerical
and analytical examples to show the influence of model-
ing and numerical solution method on the computation
of the composite beam. Many typical behaviors of com-
posite beam with SMA layer embedded are shown. By
analyzing the kinematic assumptions, which are the very
start of the mechanics of materials approach to study the
composite beam, we show the different kinematic
assumption results in different governing equations and
solutions. By analyzing the linear and nonlinear solu-
tions, the comparison is shown and the applicability
range of linear theory is suggested. We also point out
the numerical difficulty of using Galerkin method to
study post-buckling behavior by analyzing the expansion
terms in Galerkin method. The influence of the other
parameters like the SMA layer thickness, shift from the
neutral axis, SMA recovery stress on the composite beam
equilibrium, post-buckling is also shown. From this com-
prehensive analysis on the composite beam from the start
(the kinematic assumptions) to some typical behaviors
(equilibrium, buckling, post-buckling and vibration),
many possible reasons causing the difference between
the simulation and the real (experimental) data are also
explored.
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Appendix

For the two following equations derived from the kine-
matic assumption 1, the solution procedure is the same as
that of Vinson and Sierakowski [23]

Bvxxx � Auxx ¼ 0; ð18Þ
and

Dvxxxx � Buxxx ¼ 0. ð19Þ
Take one more derivative with respect to x for Eq. (18),
and vxxxx and uxxx can be solved by using simple algebra
as vxxxx = 0 and uxxx = 0. Thus u and v have the solution
forms of

va1 ¼ c4x3 þ c5x2 þ c6x; ð31Þ
and

ua1 ¼ c1x2 þ c2x. ð32Þ
c3 = 0 because of boundary conditions.

For the solution of linearized equations of equilibrium
derived from kinematic assumption 2 or 3, the procedure
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is very similar. The linear parts of the governing equations
derived from kinematic assumption 2 or 3 are the following

bV fff � a1U ff ¼ 0; ð26Þ
V ffff � bU fff � aV ff ¼ 0. ð27Þ

Take one more derivative of Eq. (26), Uff is then solved as
U fff ¼ b

a1
V ffff, and substitute this into Eq. (27), we have the

following equation:

1� b2

a1

� �
V ffff � aV ff ¼ 0.

The characteristic equation for the equation above is

k2 1� b2

a1

� �
k2 � a

� 	
¼ 0.

Now it is clear for different c ¼ �a

1�b2

a1

; the solution forms

change accordingly in Eqs. (33), (34) (35), and (36).
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