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ABSTRACT: We prepose a 5-bit lattice Boltzmann model for KdV equation.
Using Chapman-Enskog expansion and multiscale technique, we obtained high order
moments of equilibrium distribution function, and the 3rd dispersion coeflicient and
4th order viscosity. The parameters of this scheme can be determined by analysing
the energy dissipation.
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1 INTRODUCTION

In recent years, the lattice Boltzmann method (LBM) has attracted attention as an
alternative numerical scheme for the simulation of fluid flows(!™~3!. The main idea of lattice
Boltzmann methods are to get available macroscopic physical equations by using the dis-
creted BGK type Boltzmann equation. In general case, time, space and velocity are discreted
on one lattice, and then, choose the equilibrium distribution function to fits some require-
ments which can be obtained with multiscale technique and Chapman-Enskog expansion.
Recently, there are some studies about model equaﬁons by lattice Boltzmann method !4~
On the other hand, equation contained high order partial differential term, such as KdV, can
be recovered by modifying the equilibrium distribution function with some high moments,
and truncation error of the model controlled to high order.

We expand the distribution function to the third order by Chapman-Enskog expansion,
use the conservational law in time scale ty, get the error term of model equation of order
O(£?). ¢ is Knudsen number.

2 LATTICE BOLTZMANN MODEL

2.1 The Definition of Macroscopic Quantity

Consider a one dimensional model, we discrede the velocity of particles into four di-
rections, a lattice with unit spacing is used in which each node has four nearest neighbors
connected by four links. The distribution function f, is the probability of finding a particle
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at time ¢, node z, with velocity e,, here o = 0,1,---,4 (a = 0 is rest particle). The parti-
cles velocity are e, = (0, ¢, —c, k¢, —kc), k = 2 are given four neighbors node, see Fig.1. The
macroscopic quantity u(xz,t) (particles number) was defined by

w(z,t) =Y falz,t) 1)

The conservational condition was 4 2 0 1

< Py Py > >

Ea f&(z,t) = u(z,1) (2) Fig.1 Schematic of a 1D lattice

The particle distribution function satisfy the lattice Boltzmann equations

folo + east+1) = fule,t) = ~[fa(z,8) = (2, 1) (3)

where, f29(xz,t) is the equilibrium distribution function at time ¢,z and 7 is the single re-
laxation time factor.

2.2 A Series of Lattice Boltzmann Equations in Different Time Scales
Using ¢ as the small lattice unit in physical unit, £ can play the role of the Knudsen
number(!!], the lattice Boltzmann equation (3) in physical unites is

folz +ceq,t + &) ~ folz,t) = —%[fa - £ (4)
Expanding Eq.(4)
N en1d 8 1n
fa(w+€€a,t+€)_fa((v,t):n;_o;l-!{&“'ea%] f&(wit) (5)

and retaining terms up to O(e®) we obtain
R e R LA
et { 3

ot + €apg— } fa + 0(65) (6)

Next, the Chapman-Enskog expansion!” is applied to f, under the assumption that the
mean free path is of the same order of . Expand f, anout féo)

fa=3 e = fO 4 ef D + 2D + O 4 404, (7)
n=0
where, f57 is f,ﬁo).
To discuss changes in different time scales, we introduce tg, - - -, t3; thus

to=t, ti=c¢et, to=c¢e%t, t3=¢et

and 8 o @ ) )
—_ = _ 2 Y i 4
5= 55 ton TS a T B TOE (8)
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The equations to the order of ¢ is

8 f(O) 8 f(O)

{1) 9
ot T o f (9)
The equations to the order of €2 is
arsY o 8D 170 9120 1.0
ool Bl —_ =—-= 10
ato 8t1 + Co oz + 2 [ato tea Bw] fa Tfa ( )

The equations to the order of 3 is

of  of? of? aff oL 9

ato Btl 6t2 +€a oz + atoatl *ea Btlax

17 8 912,y , 17 0 1340 _ 13
[8t0+ “am] « +§[8—to+ea3a¢] fa© = Tfa (11)

+

The equations to the order of 4 is

8f© ay .3  of2 ol d 3140
o, +(5t_0+ “ax) « + ot, + t, t (8t0+ B ) fao+

%(%J” “aaac)a ‘5‘1)““217821( -+ “aax) &+ (a(z +e°’%)2f‘(‘2)+

8 /90 LAWY 8 70 0\ (0 18? f 1 (9
(L 2 s S 11
FT (3t0 +eagg &)+ (6t0 teags )1+ (11a)

From Eq.(9) it follows

9 912 17 0 0

—_ — | fO = 2| — | 1) 12
[ 0+ea8m] P [ 0+ea ]fa ( )

(o teage] 10 = —3 [+ eage] 1O (13)

Substituting Eq.(10) into Eq.(12), we get

a5 1y/9 9\ 1.
N I [ — == 14
o, -1 21')(8t0 +eagy) £ fa 14

+e i
* B

(2 rea) 2 (1o L) (2 vl )0 = -H(Zven )i 09

and eliminating fc(,2) by using Egs.(11), (11a), (14) and (15), we obtain

Multiplying by operator in Eq.(14),

9
Bto

ag(O)+(1—2 )( 3x)a£j>+( ‘T+1>(a{:0 e"%)sféo):'%féa) (18)
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i‘go)+(2 2—Er+1) 0 (a +eaai)2fé°)+

at3 2 8t1 ato
o /9 3\ .0 3 7
(1_2T)at (8t0+ "‘ax) @ +( 7? +2T 1" tn: )
9 9 \* o as 18279 1
(8t Te "‘ax) T T2 e T TFle (17)

Eqgs.(9), (14), (16) and (17) satisfy in all dimensional lattice Boltzmann equation gen-
erally, it is so-called a series lattice Boltzmann equations in different time scales. The
coefficients in Egs.(14)~(17) 7 — 1/2, 72 — 7 + 1/6 and —73 + 372/2 — 77/12 + 1/24 are
needed in the derivation and may be used to give the feature of macroscopic equations.

2.3 KdV Equation
Taking the summation in Eqgs.(9), (14), (16) and (17) about «, we obtain

L) (18)
gz (__T);( Feaps )f<°> (19)
(e d) 5 (3 +eane) 79 =0 (20)
g—Z+(1—2T)Za%(£O )f(°)+(1 ~)Z o |

(22 —2r 41 )Zai(aiﬁ Cagt) IO+

(23— mr e ) Z g r o) 270 2

(18)+(19)xe +(20)xe? +(21)x€® results in

5t S ) <°>+w2(—+ea )fff>+
53[2—2+(1—27)%28%(8%+ea;%)f“’)+( )Z St
(o S (S

3, 7 .1 ) A\ 0] _
( Y 12T+24)Z(523+e°52) fa ]_0 (22)
Under the assumption that
1
m® = Z O, = 5u2a (23)

= Z f0e2 = %u3a2 (24)
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where a is constant number, we have

Z(a(z teap, )f(0>—0 Z(a(zo”" )f(o)_o (25)

In fact, Eq.(25) is the conservational law of u and m9, this is so-called conservational law in
time scale £5. It playé an important role in the construction of lattice Boltzmann scheme of
high order precision. Equation (25) had also been shown in references [5] and [6], but those
are not conservational law in time scale tg.

Equation (22) become

ou

ot aa(“")+5“2(—+ea ) (°)+6n2( +eap )f(") 0 (26)

where u ::. 2—r4+1/6,n= (— T+ 37’ - 1757' + 24) The third term of Eq.(26)’s left
hand side is 5 513 9% rom0 8PP
2 2 0 — 2,9 [T 97 27
6”;( , T e m)fa E“am2[at0+am] 27)

where P? = Z F©e. Denote Lo = Z Ff®¢e?  and choose

P =¢u+ a‘q’lu‘1 L° = §zlauz + a4lu5 (28)
4 2 5
thus on0  apo 5
T u
D S S 29
o " or - 'as (29)
1
op oo _, ¥(3») 0
dty 8z 0 oz
Equation (26) becomes KdV equation!®~19], 25]
therefore ¥ \
2.0:"" .................................... E— SRS N— lr.,.’
u 8 (1 5\  0%u R N b iy
e~ (_ ) +rs5=0() (31) B N i e e S

The truncation error is

R=0() = 3‘94(1 ) 4 0(e?)

|
|
Here the coeflicent v is given as -0-_5| —! ' T

v=~¢162u=¢? (T2 -7+ ){1 (32) Fig.2 The curve of —éLz versus T

1€
From Eq.(32), the parameters £;, v and ¢ can be used to determine the relaxation
factor 7, and £ is chosen to satisfy
1 v

— 4+ —=>0
12+62£1'
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The 4th viscosity is given by

A1 9
and then 1 1
A=e(r-3) (72 Tt ﬁ)(4§1 - &) (34)

Equation (34) is written as

)‘=5(€11— %252)\/$+%(451 - &) (35)

where v = 1/02. Choosing A > 0, we get

eo < \/—2—? (36)

It is an important conclusion that Eq.(36) become stability criterion for lattice Boltzmann
equation. The parameters £; and £; are given by the model energy dissipation.
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Fig.3 The curve of the 4th viscosity Fig.4 The relationship between the 3rd dis-
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A= —(46—1———6—2—) versus T persion coeflicent v = Y and A
g8 £1e2
2.4 The Energy Dissipation of the Lattice Boltzmann Model
Assuming that particles satisfy energy conservation in the form
m=2faea:2f¢go)ea :mO (37)
« a

D> fPes=0 E>1

Equations (9), (14) and (16) multiplying by e, and taking the summation we get

om ond

el T 38
Bt T 0z ° (38)
om 1 u

b - _ Z = 39
5t (2 T)fl 52 = 0 (39)
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am

Back to the time scale t, we have

8m+871' 51( - )i—l»e (52—351)(7' —T+1) & (1 2)+0(53)—

ot Oz 0x?

Here, the remaining coefficients are determined by the positive condition of Eq.(41).

T (2= )6 360 g () =0

8z3

2.5 The Local Equilibrium Distribution
The moments of f,&") can be expressed as

Zf,io) =u=5

Y iPea
zaj FOe
i 1€
Z FOet =

1
= §u2a = cBy

139 2
= —u’a* =c“B
3 3

1
= Zu4a3 + £1U = 03B4

u5a4 + 52 u?a = c'By

We get the equilibrium distribution as

(0) '_ 1 k233 - B5 + k232 - B4
1 ==

2

k2 -1

(0) 1 k2B3 - Bs - szZ + B4

T2
o33
-

1 =

3 NUMERICAL EXAMPLE

k2-1
Bs—B;; B4—Bz)
— k2 K —k
Bs~B; B;—B;
K k2 k3—k)

( (0)+f(0) +f(0)+f‘£0))

1998

(40)

(41)

(43)
(44)
(45)

(46)

(47)
(48)
(49)
(50)

(51)

A test problem, the collison of two solitons/'%, with initial and boundary function

Ou +u§1—L +
ot oz #

-0 <z <00

u(z,0) = 3¢;sech?(kyz + dy) + 3cosech? (kgz + da)

Cc = 0.3 Co =

1
k= 5(01/#)1/2

Bu

555 =0

0<t<T

0.1 dy=-60 dy=-6.0

1
ke = 5(02/#)1/2
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was simulated by using this model. It shows that bigger soliton should reach and collide with
smaller soliton in the process. For the phenomenom of swallowing and spitting, see Fig.5.
In the process of the collision, all particles number is conserved, see Fig.6, but the total
particles energy has a bit dissipation see Fig.7. The Fig.5 shows the process of swallowing

and spitting when two solitons collide.
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Fig.6 All particles number

Fig.7 All particles energy, c = 3.0, u = 1.0
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4 CONCLUSION

There was a famous method, Grad-13 moments equations in the area of gas dynamics,
which was successful in the simulation of Navier-Stokes equations from Boltzmann equation.
In 1991, U. Frisch pointed out the possibility that the requirments of higher moments may
be used to construct lattice gas model for Navier-Stokes equation!'?. In this paper, we car-
ried out Chapman-Enskog expanson and multiscale technique on the distribution function,
obtained fo(‘s), and KdV equation with high order accuracy. The conservational law in time
scale tg, the equations of different time scales Eqgs.(9), (14), (16) and (17) are important
results in the lattice Boltzmann method.

The lattice Boltzmann model for KdV equation is simple, but Euler equations and
Navier-Stokes are more complex which is the next step of the authors.
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