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Abstract: Based on the first-order upwind and second-order central type of finite volume
(UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV
and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the
mass fluxes of across the cell faces of the control volume ( CV) were expanded into power
series of the grid spacing and the coefficients of the power series were determined by means
of the conservation equation itself . The UPFV and CPFV scheme respectively uses the same
nodes and expressions as those of the normal first-order upwind and second-order central
scheme , which is apt to programming . The results of numerical experiments about the flow
in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity
field show that compared to the first-order UFV and second-order CFV schemes, upwind
PFV scheme is higher accuracy and resolution , especially better robustness . The numerical
computation to flow in a lid-driven cavity shows that the under-relaxation factor can be
arbitrarily selected ranging from 0.3 to 0.8 and convergence perform excellent with
Reynolds number variation from 10* 10 10*,
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Introduction

The finite volume (FV) method uses the integral form of the conservation equation as its
starting point and can utilize conveniently diversified grids (structured and unstructured grids) and
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is suitable for very complex geometry, which are why it is popular with engineering and has been
widely used in a great variety of commercial software of computational fluid dynamics. Relative
to the finite element (FE) method and the finite differential (FD) method, the disadvantage of
FV method is that it is not higher accuracy. FV method is of second level approximation,
namely, integral approximation and reconstruction approximation. If the integral approximation is
of n,-order accuracy and reconstruction approximation is of n,-order accuracy, the order
accuracy of FV method is the smaller one in n, and n, . Civil and foreign researchers have made

a lot of efforts to develop all kinds of practical FV schemes, for example, first-order upwind and
second-order center differential schemes!!!, center type FV scheme by Jameson'>*! and AUSM
by Liou and Steffen!*> . But its accuracy is lower than or equal to second-order accuracy. In
general, FV schemes whose accuracy is higher than second-order are multi-node scheme. Because
of multi-node scheme referring to more control volumes and corresponding to solve more
complicated algebra equations, it is very difficult to be used in the three-dimensional cases.

In recent years, Z. Gaot®'7! presented perturbation finite volume (PFV) method which is
different from conventional ones that improve scheme accuracy. Coventional methods separately
process convectional term and diffuse term in governing equations while PFV method considers
them as a whole and improves numerical scheme accuracy by means of inherent association in
them. In detail, the numerical mass fluxes of across the cell faces were expanded into power
series of the grid spacing and the coefficients of the power series were determined with the aid of
the integral conservation equation itself. Finally, upwind and central type of PFV schemes for
convection and diffuse equations were obtained. It retains the advantages of the first-order upwind
and second-order central FV scheme, however, its interpolation (or call it reconstruction)
approximation are of arbitrary order accuracy. Numerical tests of the problem of transport of a
scalar quantity in a known velocity field and several model equations with PFV scheme used show
that PFV schemes have higher accuracy and higher resolution, better stability and wider applicable
range of Reynolds number than those of the normal firsi-order upwind scheme.

In this paper, the PFV method for the Navier-Stokes equations for incompressible fluid flow
is developed. The cavity flow in a lid driven is compnted with the hybrid algorithm including
SIMPLER!®! and MSIMPLEC!’ used in structured grid and with the SIMPLEC!!®! algorithm used
in unstructured grid, which are used to predict the pressure-velocity coupling correction, sixth-
order upwind PFV and first-order upwind FV used. The problem of transport of a scalar auantity
in a known velocity field was solved numerically with second-order upwind PFV, forth-order
central PFV, second-order central FV and first-order upwind FV schemes respectively used.
Comparison in numerical results of the above-cited several schemes is given and discussed.

1 Perturbational Finite Volume (PFV) Scheme
The general form of a scalar transport integral equation is
d
a—tfvpsﬁdmfspséu-nds=fs,,¢v¢-nds, 0

where ¢ is the general scalar variable; p,u,¢ and p are the fluid density, velocity, time and
dynamic viscosity, respectivemy; V and S are respectively the volume and surface area of control
volume (CV); n is the normal unit vector of the cell face. The perturbational finite volume
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(PFV) method uses the first-order upwind and second-order central FV scheme for the
convective-diffusion integral equation as its starting point. The mass fluxes across each face of the
control volume are modified and expanded into power-series of the grid spacing. The coefficients
of the power-series are determined with the use of a space splitting technique and the relations
between the convective and diffusion fluxes. In the case of that the line connecting two central
nodes P, and P; of adjacent control volumes is nearly orthogonal to the common face owned by
control volume P, and control volume P;, the semi-discretized upwind and central type of PFV

scheme is deduced as

2-(Va,#5,) = Zé # Iddjsl L1 = sguin) > (k‘ DR (8 - ) -
Z (k i Ri (signmy)*, (3)

s e ®
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EP;SHZ e[ v 809, - - 0] - s)

where ¢,,0 is the value of ¢ at the central node of the control volume Py, Vpo is the volume of the

control volume P,,d; is the vector linking two adjacent control volume center with directional
being from P, to P;, §; is the area-vector of the jf- face on the boundary of control volume P, and
its directional agrees with the outer normal of that face, Ry = Fj +| d; 1*/(ud; - S;) can be
considered as the cell Reynolds number in the d;- direction, rhjf is the mass flux of across the cell
if-face. The continuity equation of fluid flow of across the cell gives as follows:

> my = 0. (7)

=1
The last term in the right-hand sidej of the PFV schemes (2) and (5), labeled old, is
computed in the previous iteration and it is usually very small because the line connecting two
adjacent control volume center P, and P; is nearly orthogonal to the common face. From the
treatment of deducing the PFV scheme, we know that the truncation-error of the modified
differential equation of the upwind PFV and central PFV scheme respectively is of (N +
1)th-order and (2N + 2)th-order. Therefore, the upwind PFV scheme (2) is a mixed one with
(N + 1)th-order interpolation and second-order integration approximations while the central PFV
scheme (5) is a mixed one with (2N + 2)th-order interpolation and second-order integration
approximations. If let N = 0 in the relations (2) and (5), the upwind PFV and the second
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central PFV schemes respectively is reduced to the normal first-order upwind FV and second-order
central FV scheme for the integral equation (1) . Remarkably, the UPFV scheme (2) inherits the
TVD character owned inherently by first-order upwind FV scheme and the second-order central
PFV scheme (5) is cell-centered positive one for any value of the grid Peclet number. In
addition, | d; | is the length of the vector pointing from the center of control volume P, to the
centre of adjacent control volume P;. The jf-face on the boundary of control volume P, is the
common face of the two adjacent control volumes Py and P; . If §; | d; | notes the distance from
the center node Py to the jfface and (1 - &;) | d; | notes the distance from the node P; to the
if-face, the PFV scheme with distance factor J; ¢ 1/2 is the same as that with distance factor
d; = 1/2. In general, the J; is often not equal to (1- 8,-) for the great majority of unstructured
and unstructured-structured mixed grids. This is a good property of the PFV schemes (2) and
(5), which cause terse expression and easy programming.

2 Perturbational Finite Volume (PFV) Scheme of N-S Equations

The integral form of the Navier-Stokes (NS) equations for the two-dimensional, steady,
incompressible flow are

Js pu-ndS =0, o @®)

Lp¢u~nd5 =-LpndS+LyV¢-ndS, 9)

where u = (u, v),u and » are respectively the velocity components in the Cartesian x- and
y- coordinate directions, p denotes the pressure.
2.1 PFV scheme of the NS momentum equation (9)

In the case of that the line connecting two center nodes of the two adjacent control volumes
P, and P; is nearly orthogonal to the common jf- face, the upwind and central PFV scheme for the
NS momentum equation (9) is respectively deduced is

"’. 1 dJ'S
;Ej[#ldj 12 mlf(l'S‘gnmzf)Z(( 1)1)|R1f](¢p - $p ) -
ke old
PS + Z [(#V¢ S) lddslg(¢p ¢Po)] - 0, (10)

i=
o 1 d 2N+1 _1)
j=1 —G—j['u I I2 m’fZ (k+l)lRf](¢P - %) -

n

| Z'lpjsj+z'lg-;[<#v¢-s)j- ) |2<¢p b >] 0, (1)

in which the term, labeled old, is computed in the previous iteration. The expressions of G; and

G} are respectively from the formulae (3) and (6). Above equation is finally expressed as

agbp = Za’j $p + bo, (12)
j=1 !

where
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The under-relaxation is always used in the numerical computation to avoid the divergence of

the iterative procedure!'!! . Therefore the following equation is to be solved:

By

o ]

(a—:)¢,,0 = Djaby + b+ (1= a) T, (16)
j=1

where a; is the under-relaxation factor for the variable ¢. It is equal to 0.6 for two velocity

components u and ». The under-relaxation factor for pressure is also set to 0.6.
2.2 The pressure-velocity coupling correction equation and its numerical
discretization

Regarded the pressure p; determined in the previous iteration as the initial value of the
present iteration, the initial velocity u ;D can be obtained by solving the discretized momentum

equation (16 ), which is not necessary to satisfy the continuity equation (7). To avoid
uncoupling between pressure and velocity, the initial velocity and pressure value must be
corrected. Here, the hybrid algorithm including SIMPLER and- MSIMPLEC thought is adopted
for siructured grid while SIMPLEC algorithm is used for unstructured grid. The following
discussion is emphasized on hybrid algorithm including MSIMPLEC and SIMPLER thoughts.
Based on the MSIMPLEC algorithm, the cell face modified velocity u} is defined as

. P, - P, S.

i _[ ag ao) ](—17—.—]1 51 a7)

J

&
lI

a,;, = o _ Zaj, (18)

a i1 v
where p;’ and p;) are the pressure corrections of the control volume (CV) P, and P;,
0 i
respectively. The linear interpolation of the initial velocity u ;0 is adopted to obtain the cell face
velocity u; . Then u; should make (#, + u; ) satisfy the continuity equation. Substituting above
equation into the continuity equation, we can reach the following discretized equation about the

pressure correction P,

0
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HF. A
. S p P
a%p, = ;a,p,,j + b5, (19)
where the superscript p denotes that the coefficients are in the pressure-correction equation. And
the coefficients are given by

(1, 03 1
rp _ - 7 7
a,_2[ao Pn+a0 , Ak (20)
af = Za}', (21)
i
bh = - F;, (22)

where b% denotes the sum of mass fluxes through the faces of the CV P,. After obtained the

pressure correction p; , the pressure and the velocity are corrected by

p”o = pPa + a,,pPo , (23)
Vp np’ IS
* [] ! * P
upo = upo - " VPP = uP - ju]’ (24)
a9 0 o j=1 @0

where «, is the under-relaxation factor for the pressure, which is given 0.6 here. Following that,
according to MSIMPLEC algorithm, velocity field will be explicitly corrected by means of
momentum equation.

up, = (Dahul - Vs, vp)"/at. (25)
=1

After that, according to SIMPLER thought, pressure will be solved directly. This is
corresponding to modify the predict pressure by MSIMPLEC. The equation computed directly
pressure in SIMPLER is the same appearance as one computed modified pressure in MSIMPLEC .
But coefficient and quality residual must be computed by up just corrected explicitly .

3 Numerical Tests

3.1 Flow in a lid-driven cavity

The viscous flow in a lid-driven cavity was computed for the case of Re = 1 000,3 200,
5 000 with the cell-centered sixth-order upwind PFV, second-order central FV and first-order
upwind FV schemes, the hybrid algorithm including MSIMPLEC and SIMPLER thought and
uniform structured grid used. For the case of Re = 1 000, the flow was again computed with
SIMPLEC algorithm, unstructured grid, sixth-order UPFV and first-order UFV used. Above the
two cases, the algebraic equation system is solved by the Gauss-Seidel method. The inner
iterations are set to four. The result is compared with those of the Ghia solution''2] .

Figures 3 ~ 10 gives the horizontal and vertical velocity components » and v at the vertical
and horizontal centerlines of the cavity with Reynolds number set 1000, 3200 and 5 000,
respectively. In the case of Reynolds number being 1000, the result of upwind PFV is nearly
coinciding with that of Ghia both structured grid and unstructured grid respectively used. The
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computational results of PFV schemes match the Ghia solution well for Reynolds number set 3 200
and 5000. But in the Ghia solution, the multi-structured grid techhique was used. From Fig.3 to
Fig.10, the accuracy of computation result of sixth-order upwind PFV is outstanding
improvement comparison with that of UFV. In general, convergence become more difficult with
grid refined. To avoid to lost generality, the global absolute mass fluxes residue and relative mass
fluxes residuel 3! convergence curves by different scheme were given out and compared with grids
equal to 320 x 320 and Reynolds number equal to 5 000. From Fig.11, the relative mass fluxes
residue curve by second central FV scheme is a great amplitude of oscillations when iterations are
less than 1 000 while upwind PFV performs steadily. From Fig.12, although there are oscillations
in convergences curves, amplitude correspond to UPFV is less and attenuate much faster. It is
obvious that when convergence was reached, upwind PFV scheme saved about 1500 outer
iterations relative to upwind FV scheme.
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3.2 The problem of transport of a scalar quantity in a known velocity field

The governing equation is Eq. (1) . The velocity field near a stagnation point (x = 0, y =
0) is given by u = x, v = - y. The following boundary conditions are to be imposed on: inlet
(y = 1), = 0; along the west boundary (x = 0),% = 1 - y; symmetry condition on the south
boundary (y = 0),3$/9y = 0; outlet (x = 1),3$/3x = 0.

The isoclines of ¢ calculated on 40 x 40 CV using second-order UPFV for the convective
fluxes with values of p = 1.0 and I' = 0.001 is presented in Fig.13. In computation, for I" =
0.001, if coarse grid is used, for example 10 x 10 CV, the second-order CFV will produce large
oscillations and can not produce a convergence solution, while the second-order upwind PFV and
forth-order central PFV scheme result in a meaningful solution with no oscillation. Although the
first-order upwind FV produce a smooth convergence solution on a coarse grid, it is a higher
error. The conclusions are visuvalized in Fig. 14,

The diffusion fluxes across west wall varying with grid refined are given in Fig.14. It is
apparent that second-order CFV scheme can not produce the meaningful convergence solution
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under the condition of coarse grid while second UPFV and forth CPFV can do. In the case of the
same grid numbers, the solutions by PFV scheme are higher accuracy and faster convergence
velocities than those by the UFV and CFV scheme.

4 Conclusions

Perturbation finite volume (PFV) scheme of the Navier-Stokes equations for incompressible
flow is a terse and efficient formulations . It uses the same nodes as those of the normal first-order
upwind and second-order central FV schemes. However, the reconstruction approximations of
PFV scheme are of higher order accuracy. Numerical results of using upwind PFV schemes, first-
order upwind and second-order central FV scheme to compute the flow in a lid-driven cavity show
that the resolution and efficient of PFV scheme is higher than that of first-order upwind and
second-order central FV scheme and the applicable range of Reynolds number of PFV scheme is
much wider than that of second-order central FV scheme. Especially, it is better robustness. In
numerical test with Reynolds number equal to 1000, 3200 and 5000, respectively,
underrelaxation factor is set to 0.6 and keep constant. In fact, the optional range for
underrelaxation factor is wide and when the factor is arbitrarily selected from 0.3 to 0.8,
convergence solution will also be obtained.
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