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ABSTRACT: The Perturbational Finite Difference ( PFD) method
is a kind of high-order accurate compact difference method, But is
idea is different from the normal compact method and the muls nodes
method. This method can get a Perturbational Exact Numerical Solu-
ton ( PENS)
(CD) equation. The PENS scheme is similar to the Finite Analytical
(FA) scheme and Exact Difference Solution ( EDS) scheme, which
are all exponential schemes, bu PENS scheme is simpler and uses
only 3, 5and 7 nodes for +, 2 and 3-dmensional problems, re-
spectively. The varbus approximate schemes of PENS scheme are a-
so called Perturbational High order-accurate Difference ( PHD)

scheme for locally lineadized Convection Diffusion

scheme. The PHD schemes can be got by expanding the exponential
terms i the PENS scheme into power series of grid Renold number,
and they are all upwind schemes and remain the concise stmucture
form of fist order upwind scheme. For + dimensional ( £D) CD e
quation and 2 D incompressible Navier Stokes equation, their PENS
and PHD schemes were constituted in this paper, they all gave highly
accurate resuks for the numerical examples of three +D CD equa

tions and an incompressible 2-D flow in a square caviy.
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1. INTRODUCTION

As the rapid development of computers and ntinu-
ing accumulation of computational experience, computa
tional fluid dynamics has got great evolutions, and many
highly efficient numerical methods were put forward. The
Perturbational Finite Difference ( PFD) method''! is a kind
of high order accurate compact difference method but its
idea is different from the normal compad method'?. The
PFD method has two basic points. Firstly, derivatives are
approximated by direct difference, i. e. the firstorder
derivative is approximated by forward, backward or central
difference and the second order derivative is approximated
by a second order central difference; secondly, in the

preamise of keeping both the strudure form and the node-

mumber of fist order upwind difference scheme, the accu
racy of perturbational difference scheme is raised by mod+
fying the contributions of diffusion quantities at upstream
and downstream nodes. We can deduce the PFD scheme
in two steps. First step, the comvective coefficient and
source term are expanded into power series of grid-size
( &) (here, for simplicity, +D problen is consid
ered) . Second step, the coefficients of A" ('m 21, 2)
are determined by using the relationship between first o
der-derivative and second order derivative given in the
Convection- Diffusion ( (D) equation, and by adopting re-
currence method to remove the truncated error terms in the
modified differential
scheme, we can work out all the coefficients of the power
series. Perturbational Exact Numerical Solution ( PENS)

schame can be got in the case that the convective coefft

equation of the perturbational

cient and source term are constants in grid interval (xi- 1,
xi+1) , 1. e. make a locally linearlized approximation.
PENS scheme’ s approximate schemes with various accura
cy can be got by expanding the exponential term in the
PENS scheme into the power series of grid Reynolds nun+
ber. For convenience, these approximate schemes are
called  Perturbationat High- order accurate  Difference
(PHD) schemes. We can choose to use the PENS or its
PHD schemes according to computational experience and
the characteristics problems. For example, the present re-
search shows that the PENS scheme can lead to relatively
precise results for constan-coefficient +D CD equation,
but the PHD scheme has higher resolution for the D
Burgers problem containing an abrupt change. The PENS
scheme is similar with the Finite Analytical ( FA)
method!*? and the Fxact Difference Solution ( EDS)
schemelsJ, which are all exponential schemes, but the
PENS scheme has notable advantages: it uses less nodes

and has simpler structure fom, and uses only 3, 5 and 7

* This research was.supported by the National Natural Science Foundation of China. (Grant No: 10032050)
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nodes for £D, 2D and 3D problems, respectively.
Compared with the FA and EDS scheme, the PENS
scheme also has other obvious advantages: there is no
“overflow” problem under the condition of high grid Re
number and its approximate schemes remain its upwind
property. In the contents followed, we will show how to
constitute the PENS and PHD schemes of +D CD equa
tion, and generalize it for 2D incompressible N-S equa-
tion to constitute the second order PHD scheme of 2-D
problem. Three D CD problems and a 2D cavity flow
problem prove the good properties of the PENS and PHD

schemes.

2.  PERTURBATIONAL EXACT NUMERICAL SG-
LUTION (PENS) SCHEME FOR THE CON
VECTION-DIFFUSION ( (D) EQUATION

2.1 D CD equation
u®= WPy S (1
Its first-order upwind difference scheme is
?[(1- l‘zauim)%l(% i e ) P
(1+ 29 n) @04 Si= 0 (2)
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Ui Si .
T Si = I Let the coeffi

cients u; of the first order derivative and source term S ; be

where a = signui, ui =

expanded into the power series of A :
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S, = S+ Sid+ Sy . (3)

Then we have the perturbational finite difference
scheme and its modified differential equation
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By using the relationship between the first and see-
ond-order derivatives, which is provided by the CD Eq.
(1), and supposing that u and S are constant in the grid
interval (xi-1, xi+1) , L e taking locally linearlized ap-

proximation, we get
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S
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Substitute up & and Sp with Eq. (8) in the scheme Eq.
(4), after simple depuction, we get the PENS scheme

#{[{1— Q)+ (1+ a)e “™] Px

[2+ (1+ @)e "%+ (1- a) ] P+

ulv

Si
®, .
T¥i+ 2u

[(1+ a)+ (1- a)e
[2a+ (1- a)e™ = (1+ a)e “*] =0 (9)

Let x;( i & ) be fixed and A tends to zero, the solu-
tion of difference Eq. (9) tends to the exact solution of the
linearlized CD Eq. (1). So that scheme Eq. (9) is a
PENS scheme. This is a three-nodes scheme with diage-
nally predominant wefficient matrix and upwind effect. It
remains the concise structure form of first-order upwind
scheme. Especially, the exponential terms of the PENS
schane have the form of exp(— | w x| ), sothere is no
“overflow” problem under the condition of high grid

Reymolds, number, , which happens, in normal exponential



scheme very often. It deserves to pont out that the central
difference scheme of the CD Eq. (1) does mot have the
TVD property when | w Ac | > 2, but the PENS scheme
which got from perturbations of central difference scheme,
has the TVD property for any value of | u A | " "he result
of D problem has been generalized to 2- and 3D prob-
lems, the PENS schemes of 2- and 3-D problems have the
same advantages mentioned above, and uses 5 and 7 nodes
respectively.

Expand the exponential term in PENS scheme Eq.
(9) into the power series of the grid Reynolds number,
the approximate schemes of first-order, second-order,
third-order .. of PENS scheme can be obtained, and they
are also called PHD scheme for convenience. The secone
order PHD scheme is

1 1-
—3{[1- zauﬁx(1+ gum)]@m
[2+ auix(1+ %u&)]q’i+
1+ a

[1+ =S Sum(1+ gubx)]cp,}ﬂ-

S(1+ %u&) =0 (10)

The PHD scheme of higher order accurate can be ob-
tained by keeping more tems of the powerseries. For ex

ample, the third-order PHD scheme is

1 1- a a (utx)’
— A= Suk(ls Suses SE )]

2
Oni[2+ auie(1+ T+ L?L)]%
2
[ 5 une(1e Sums B0y

2
S(1+ %u&+ L2‘“): 0 (11)

The other higher order PHD schemes can be deduced
as above. Various accurate PHD schemes all have upwind
property. In fad, the firstorder approximate scheme is
the same as the normal first order upwind scheme. Conr
pared with the nomal highorder accurate upwind
third-, ... and higherorder PHD

schemes have, obvious advantages: they need, less nodes

schemes, second-,
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inside, and near the boundary they do mot reduce the or
der of accuracy and also do not need any special treat

Other
2]

. 3
ments. multinode  schemes' > and compact

schemes! , which are multt node scheme substantially,
invokes additional physical contents and mathematical
treatments which are not used in the deduction of the int
tial CD equation, and near the boundary they need to re-
duce its accuracy, or need some special treatments to keep
the accuracy. Moreover, the secondorder PHD scheme
has an unusual advantage: not only the fomula of u,, S,
are the simplest, but they do not contain any derivative
tems of u, S ever before linearlization, so the formulas of
up and S, in the locally linearlized CD equation are the
same as those of nonlinear CD equation, that is, the see
ond-order PHD scheme contains the effects of nonlinearity.
Second order PHD scheme is used in this paper, and for
linear and nonlinear problems, good results are obtained
with it.
2.2 2D CD equation

By using result of +D CD equaion, a PFD scheme
for 2D incompressible Navier Stokes momentum equations
can be deduced directly. The following is the deduction of
the second-order PHD scheme of 2-D N-S equation. The
nondimensional vorticity-stream function equations are

uw + A R_el((*&xi' ("3))

W + I'I'{V)‘ =—- O (12)
Uing the time marching ADI method, the vorticity e-

quation can be split into two equations:

0w ~1
E"‘ u®w = Re Wy + Sx

0w -1

T Re @y + Sy (13)
where S, = R,'®,— v® and S, = R, '@y — u®, . Per
turbations are exerted on Eq. (13) , deduction is the same
as that of +D CD equation, the derivatives in Sy and Sy
are discretized with the central difference, and finally the
difference scheme of vorticity equation is given as

Re 1 1- a
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up M) *

T (24 oy i) 54
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n+ 1/2

1+
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Re n+ n+
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where

a= sign(u), B= sign(v),

up v = ul+ _(qu)

ﬂquc),

Sp = ReSi(1+ 5

Wiy = vy + Do)

Sp = ReS,(1+ gv Ny)
In addition, the stream function equation is dis-

cretized with the central difference scheme and computed

with the relaxation iteration method, and the relaxation cs-

efficient is 0. 5.

2.3 Numerical Examples

Example. 1 constant coefficient problem

€+ 2z - (1+ €z=10 - 1< x< 1
z(- 1) = 1+ exp(- 2)
(1) = 1+ ey =2

(16)

s exact solution is ze =

8(1 T x ) . There is boundary-like steep change

nearx = — 1 in this solution (see Fig. 1) .

exp(x — 1) +

exp/ -
Since it is a
constant coefficient problem, the PENS scheme can be
used. Computations show that the PENS scheme is practi-
cable and gives highly accurate results. Fig. 1 gives a
comparison of the solutions the first upwind scheme, cen
tral difference scheme, and PENS scheme with the exact

solution as € = 0. 01 and Ax = 0.02 . Results show that

these three schemes can all simulate approximately bound-
but the PENS scheme can
the maxi mum error of the

ary layer like steep change,
give more accurate results,
PENS scheme is less by two orders- of multitude compared
with those of the other two schemes.
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Example. 2 Airpocket problem
& - [(1- %)z] = 0,

( ) (17)
O0< x< 1,z(0) = z(1) = 1
L x
Iis exact solution is ze(x) = exp[e(l_ x)]

From the exact solution we know that its maximum value
can be very large in the interval (0, 1) if €is small e
nough,
Fig. 2 gives a comparison of the solutions of the first up-
PHD
schemes with the exact solution as €= 0. 1 and & = 0.
0l . From Table 1, we can conclude that the central dif
ference scheme gives only intolerable results though it is of

then its numerical simulation is very difficult.

wind, central difference-, and second-order

seconé- order while highly accurate results are obtained
with the second order PHD scheme.
Example. 3 steady burgers problem

”

z
Ret T 1< x< 1,
(18)

(- 1) = th(%),z(]) - - th(%)



precise

Fig. 2 Aipocket problem
This is one of the classical problems in simulating

XIte
shock wave, and its exact solution is zec () = = th( —5~)

. Fig. 3 gives a comparison of the solutions of the first up-
and second order PHD
0. land & = 0.

1. Table. 1 shows the maximum errors of the three

wind, central difference-,

shcemes with the exact solution as €=

schemes, from which we can see that the errors of the
PHD scheme is very small. As the Reynolds number in
creases, the secondorder PHD scheme can still capture
exactly “shock wave™like steep change and numerical so-
lutions are very precise even the Reynolds number is 107,
but resolutions of the first order upwind scheme and cer
tral difference scheme are very low.
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[ HJ)Example. 4 2-D flow in a square cavity

Here the second-order accurate PHD scheme was giv-
en in Section 2.2 and used to compute a square cavity flow
with one boundary moving, and computations were based
on the vorticity stream function equations of incompressible
fluid. The vorticity equation is discretized with the second-
order PHD scheme relevant with time, and the stream
function equation is discretized with the central difference
scheme. The implicit ADI method for the vorticity equa
tion and the relaxation iteration method for stream fundion
equation are combined to compute the strean function in a
square cavity with Re = 100 and Re = 1000 . In this ns+
merical simulation, the maximum iteration errors are less
than 10”° when convergent results are obtained. For Re
= 100, the ceneter of primary vortex is located at x = 0.
6172, y = 0.7344 , the maximum value of stream fune-
tion is — 0. 10325. For Re = 1000, the center of primary
vortex is located at x = 0.5313, y = 0.5703, and the
maximum value of stream function is — 0. 1109. All these
results are in good agreement with those of Ghia et al.!®!
and Charls-Henri et al.'”, they both use sewné order
accurate discretization, Fig. 4 and Fig. 5 are the stream-
line figures and vorticity cntours for Re = 100 and Re =
1000, respectively.

3. CONCLUSION

The PFD method'" is a kind of high-order accurate
compact difference method, but its idea is different from
multi nodes method"! and the nomal @mpact method!? .
In the PFD method the concept of difference approximation
of differential equations is expanded, and nom- derivative
tems (including coefficients) are also discretized besides
derivative tems in the differential equaion studied. On
the premises that the derivatives are approximated by d+
rect differences (i e. second order center difference, up-
wind and backward differences) and ¥, 2-, 3-D problem
we 3, 5, 7 nodes respectively, derivative wefficients and
source terms are expanded into the power series of grid-
size. By removing the truncated error terms in the modt
fied differential equation of the CI>-difference equation, a
PENS seheme of locally linearlized CD equation is ob-
tained. The approximate schemes of PENS scheme, in
cluding the first, second-, third- ..order accuracy are at
so called PHD scheme. They can be obtained by expand-
ing the exponential terms in the PENS scheme ito the
power series of grid Reynold number. Compared with other
high- order accurate difference schemes ( such as muli+
node’! high- order accurate schemes and compact differ
ence schemes'?!) | the most motable characteristic of the
PENS schane is that the physical considerations and math-
ematical treatments adopted in deducing them do mot go
beyond those in the deduction of the CD equat ions.
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The PENS scheme is similar to the FA scheme'®”! and
EDS”! scheme, which are all exponential schemes and
have some advantages in common: they all can refled cor
vective upwind effect; they have not problems of negative
dersity and pseudo numerical convection; they are unant-
mous convergent and steady for any large Re number. But
the PENS scheme has more advantages that can not be
seen in FA and EDS scheme: it does not have “ overflow”
problem in the case of high grid Reymolds number, and it
is much simpler than the FA scheme and uses much less
time and memories in computations.
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Fig. 5(b)

Vorticity contours
( Re= 1000, 128 x 128)

In the PHD schemes, the upwind effect and simple
structure form of the PENS scheme are remained. The
PHD schemes use only 3, 5, and 7 nodes for +, 2-, and
3D problems respectively, and for nodes near the bound-
ary, they do not need any special treatments to get the
same accuracy as the nodes inside. Three +D CD prob-
lems and a 2-D cavity flow problem proved the good prop-
erties of PENS and PHD schemes, and satisfactory numes
ical results are obtained.
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L UD scheme 2-CD) scheme PID scheme
Fx ample € Ax

m.a. e m.r.e m. a. e. m.r. e m.a. e m.r.e
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