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ABSTRACT:  The Perturbational Finite Difference ( PFD) method

is a kind of high-order- accurate compact difference method, But its

idea is different from the normal compact method and the mult-i nodes

method. This method can get a Perturbational Exact Numerical Solu-

tion ( PENS) scheme for locally linearlized Convection-Diffusion

( CD) equation. The PENS scheme is similar to the Finite Analytical

( FA) scheme and Exact Difference Solution ( EDS) scheme, which

are all exponential schemes, but PENS scheme is simpler and uses

only 3, 5 and 7 nodes for 1- , 2- and 3-dimensional problems, re-

spectively. The various approximate schemes of PENS scheme are a-l

so called Perturbationa-l High-order- accurate Difference ( PHD )

scheme. The PHD schemes can be got by expanding the exponential

terms in the PENS scheme into power series of grid Renold number,

and they are all upwind schemes and remain the concise structure

form of firs-t order upwind scheme. For 1-dimensional ( 1-D) CD e-

quation and 2-D incompressible Navier-Stokes equation, their PENS

and PHD schemes were constituted in this paper, they all gave highly

accurate results for the numerical examples of three 1-D CD equa-

tions and an incompressible 2-D flow in a square cavity.

KEY WORDS:  perturbational finite difference method, convec-

tion-diffusion equation, perturbational exact nemerical solution

scheme, perturbational high-order- accurate difference scheme

1.  INTRODUCTION

As the rapid development of computers and continu-

ing accumulation of computational experience, computa-

tional fluid dynamics has got great evolut ions, and many

highly efficient numerical methods were put forward. The

Perturbational Finite Difference ( PFD) method[ 1] is a kind

of high order accurate compact difference method but its

idea is different from the normal compact method[ 2] . The

PFD method has two basic points. Firstly, derivat ives are

approximated by direct difference, i. e. the firs-t order

derivative is approximated by forward, backward or central

difference and the second order derivative is approximated

by a second-order central difference; secondly, in the

premise of keeping both the structure form and the node-

number of firs-t order upwind difference scheme, the accu-

racy of perturbational difference scheme is raised by mod-i

fying the contributions of diffusion quantit ies at upstream

and downstream nodes. We can deduce the PFD scheme

in two steps. First step, the convective coefficient and

source term are expanded into power series of grid-size

( $x ) ( here, for simplicity, 1-D problem is consid-

ered) . Second step, the coefficients of $xm
( m \ 1, 2)

are determined by using the relationship between firs-t or-

de-r derivative and second-order-derivative given in the

Convect ion-Diffusion ( CD) equation, and by adopting re-

currence method to remove the truncated error terms in the

modified differential equat ion of the perturbat ional

scheme, we can work out all the coefficients of the power

series. Perturbational Exact Numerical Solution ( PENS)

scheme can be got in the case that the convective coeff-i

cient and source term are constants in grid interval ( x i- 1,

xi+ 1) , i. e. make a locally linearlized approximation.

PENS scheme. s approximate schemes with various accura-
cy can be got by expanding the exponential term in the

PENS scheme into the power series of grid Reynolds num-

ber. For convenience, these approximate schemes are

called Perturbationa-l High-order-accurate Difference

( PHD) schemes. We can choose to use the PENS or its

PHD schemes according to computational experience and

the characteristics problems. For example, the present re-

search shows that the PENS scheme can lead to relatively

precise results for constan-coefficient 1-D CD equation,

but the PHD scheme has higher resolut ion for the 1-D

Burgers problem containing an abrupt change. The PENS

scheme is similar with the Finite Analytical ( FA )

method[ 4, 5] and the Exact Difference Solution ( EDS )

scheme
[ 5]
, which are all exponential schemes, but the

PENS scheme has notable advantages: it uses less nodes

and has simpler structure form, and uses only 3, 5 and 7
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nodes for 1-D, 2-D and 3-D problems, respectively.

Compared with the FA and EDS scheme, the PENS

scheme also has other obvious advantages: there is no

/ overflow0 problem under the condition of high grid Re

number and its approximate schemes remain its upwind

property. In the contents followed, we will show how to

const itute the PENS and PHD schemes of 1-D CD equa-

tion, and generalize it for 2-D incompressible N-S equa-

tion to const itute the second order PHD scheme of 2-D

problem. Three 1-D CD problems and a 2-D cavity flow

problem prove the good properties of the PENS and PHD

schemes.

2.  PERTURBATIONAL EXACTNUMERICAL SO-

LUTION ( PENS) SCHEME FOR THE CON-

VECTION-DIFFUSION ( CD) EQUATION

2. 1  1-D CD equation

uU x= LUxx+ S (1)

Its firs-t order upwind difference scheme is

1

$x 2 [ (1-
1 - A
2
�ui$x ) Ui+ 1- ( 2+ A�u i$x ) Ui+

( 1+
1+ A
2
�u i$x ) U i- 1] + �S i = 0 (2)

where A= signu i , �ui =
ui

L
, �S i =

S i

L
. Let the coeff-i

cients�u i of the firs-t order derivative and source term �S i be

expanded into the power series of $x :

�up = �u + u1 $x + u2 $x
2
+ ,

�Sp = �S + S1 $x + S2 $x
2
+ , (3)

Then we have the perturbational finite difference

scheme and its modified differential equation

1
$x 2 [ (1-

1 - A
2
�up$x ) Ui+ 1- (2+ A�up$x ) U i+

( 1+
1+ A
2
�up$x ) U i- 1] + �Sp = 0 (4)

�upUx= Uxx+ �Sp + �Ep1 $x + �Ep2 $x
2
+ , (5)

where

�Ep , 2n- 1 =
A�up

(2n) !
52nU
5x 2n

�Ep , 2n = -
�up

(2n + 1) !
52n+ 1U
5x 2n+ 1 +

2
(2n + 2) !

52n+ 2U
5x 2n+ 2

( n = 1, 2, ,) (6)

By using the relationship between the firs-t and sec-

ond-order derivatives, which is provided by the CD Eq.

( 1) , and supposing that�u and�S are constant in the grid

interval ( xi- 1, xi+ 1) , i. e. taking locally linearlized ap-

proximation, we get

5n+ 2U
5xn+ 2 =

5n

5x n(�u
5 U
5x - �Sp - �Ep1 $x -

�Ep2 $x - ,) (7)

�up$x = �up$x = E
N

n= 1

(�ui$x )
2n- 1

(2n - 1) !
+ AE

N

n= 1

(�u i$x )
2n

(2n) !

N y ]
y

sinh(�u$x ) + A[ cosh(�u$x ) - 1] (8a)

�Sp =
�S
�u
�up (8b)

Substitute �up$x and �Sp with Eq. ( 8) in the scheme Eq.

( 4) , after simple depuction, we get the PENS scheme

2
1

$x 2 { [ (1- A) + (1+ A) e- �u$x ] Ui+ 1-

[ 2 + (1 + A) e- �u $x + (1- A) e
�u $x

] U i+

[ (1 + A) + ( 1- A) e
�u$x

] U i- 1} +
�S i

2�u$x
#

[ 2A+ (1- A) e�u$x - (1+ A) e- �u$x ] = 0 (9)

Let x i ( i$x ) be fixed and $x tends to zero, the solu-
tion of difference Eq. ( 9) tends to the exact solution of the

linearlized CD Eq. ( 1) . So that scheme Eq. ( 9) is a

PENS scheme. This is a three-nodes scheme with diago-

nally predominant coefficient matrix and upwind effect. It

remains the concise structure form of firs-t order upwind

scheme. Especially, the exponent ial terms of the PENS

scheme have the form of exp( - | �u$x | ) , so there is no

/ overflow0 problem under the condit ion of high grid

Reynolds number, which happens in normal exponential
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scheme very often. It deserves to point out that the central

difference scheme of the CD Eq. ( 1) does not have the

TVD property when | �u$x | > 2 , but the PENS scheme

which got from perturbations of central difference scheme,

has the TVD property for any value of | �u$x |
[ 1]
. The result

of 1-D problem has been generalized to 2- and 3-D prob-

lems, the PENS schemes of 2- and 3-D problems have the

same advantages mentioned above, and uses 5 and 7 nodes

respectively.

Expand the exponential term in PENS scheme Eq.

(9) into the power-series of the grid Reynolds number,

the approximate schemes of firs-t order, second-order,

third-order , of PENS scheme can be obtained, and they

are also called PHD scheme for convenience. The second-

order PHD scheme is

1
$x 2 { [ 1-

1 - A
2
�u$x (1 +

A
2
�u$x ) ] U i+ 1-

[ 2+ A�u$x (1+
A
2
�u$x ) ] Ui +

[ 1+
1+ A
2
�u$x (1 +

A
2
�u$x ) ] U i- 1} +

�S ( 1+ A
2
�u$x ) = 0 (10)

The PHD scheme of higher order accurate can be ob-

tained by keeping more terms of the power-series. For ex-

ample, the third-order PHD scheme is

1

$x 2 { [ 1-
1 - A
2
�u$x (1 +

A
2
�u$x +

(�u$x ) 2

6
) ] #

U i+ 1- [ 2+ A�u$x (1 +
A
2
�u$x +

(�u$x ) 2

6
) ] Ui +

[ 1+
1+ A
2
�u$x (1 +

A
2
�u$x +

(�u$x ) 2

6
) ] U i- 1} +

�S ( 1+
A
2
�u$x +

(�u$x ) 2

6
) = 0 (11)

The other higher-order PHD schemes can be deduced

as above. Various accurate PHD schemes all have upwind

property. In fact , the firs-t order approximate scheme is

the same as the normal f irs-t order upwind scheme. Com-

pared with the normal high-order accurate upwind

schemes, second- , third- , , and higher-order PHD

schemes have obvious advantages: they need less nodes

inside, and near the boundary they do not reduce the or-

der of accuracy and also do not need any special treat-

ments. Other mult-i node schemes
[ 3]

and compact

schemes[ 2] , which are mult-i node scheme substant ially,

invokes additional physical contents and mathematical

treatments which are not used in the deduction of the in-i

tial CD equation, and near the boundary they need to re-

duce its accuracy, or need some special treatments to keep

the accuracy. Moreover, the second-order PHD scheme

has an unusual advantage: not only the formula of �up , �Sp

are the simplest, but they do not contain any derivative

terms of�u , �S ever before linearlization, so the formulas of

�up and �Sp in the locally linearlized CD equation are the

same as those of nonlinear CD equation, that is, the sec-

ond-order PHD scheme contains the effects of nonlinearity.

Second order PHD scheme is used in this paper, and for

linear and nonlinear problems, good results are obtained

with it.

2. 2  2-D CD equation

By using result of 1-D CD equat ion, a PFD scheme

for 2-D incompressible Navier-Stokes momentum equations

can be deduced directly. The following is the deduction of

the second-order PHD scheme of 2-D N-S equation. The

nondimensional vorticity-stream function equat ions are

uXx + vXy = R
- 1
e ( Xxx + Xyy )

7xx + 7yy = - X (12)

Uing the time marching ADI method, the vorticity e-

quation can be split into two equations:

5 X
25 t

+ uXx = R
- 1
e Xxx + Sx

5 X
25 t

+ vXy = R
- 1
e Xyy + Sy (13)

where Sx = R
- 1
e Xyy - vXy and Sy = R

- 1
e Xxx - uXx . Per-

turbations are exerted on Eq. ( 13) , deduction is the same

as that of 1-D CD equat ion, the derivatives in Sx and Sy

are discretized with the central difference, and finally the

difference scheme of vorticity equat ion is given as

Re

2$t
( Xn+ 1/ 2

i , j - Xni , j ) =
1

$x 2[ (-
1- A
2
�up$x ) #

Xn+ 1/ 2
i+ 1, j - (2 + A�up$x ) Xn+ 1/ 2

i , j +
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(1 +
1+ A
2
�up$x ) X

n+ 1/ 2
i- 1, j ] + Sxp (14)

Re

2$t
( Xn+ 1

i, j - Xn+ 1/ 2
i, j ) =

1

$y 2[ (-
1 - B
2
�v p$y ) #

Xn+ 1
i, j+ 1 - (2 + B�v p$y ) X

n+ 1
i, j +

(1 +
1+ B
2
�vp$y ) X

n+ 1
i , j- 1] + �Syp (15)

where

A= sign( u) , B= sign( v ) ,

�u = u # Re, �v = v # Re,

�up$x = �u$x +
A
2
(�u$x ) 2,

�Sxp = ReSx(1 +
A
2
�u$x ) ,

�vp$y = �v$y +
B
2 (�v $y )

2
,

�Syp = ReSy(1 +
B
2
�v$y )

In addition, the stream funct ion equation is dis-

cretized with the central difference scheme and computed

with the relaxation iteration method, and the relaxat ion co-

efficient is 0. 5.

2. 3  Numerical Examples

Example. 1 constant coefficient problem

Ed
+ z

c
- (1 + E) z = 0, - 1 < x < 1

z (- 1) = 1 + exp(- 2)

z (1) = 1+ exp[
- 2(1 + E)

E
]

(16)

Its exact solution is z ex = exp( x - 1) +

exp[
- (1 + E)
E(1+ x )

] . There is boundary- like steep change

near x = - 1 in this solution ( see Fig. 1) . Since it is a

constant coefficient problem, the PENS scheme can be

used. Computations show that the PENS scheme is pract-i

cable and gives highly accurate results. Fig. 1 gives a

comparison of the solutions the first upwind scheme, cen-

tral difference scheme, and PENS scheme with the exact

solution as E= 0. 01 and $x = 0. 02 . Results show that

these three schemes can all simulate approximately bound-

ary- layer- like steep change, but the PENS scheme can

give more accurate results, the maxi mum error of the

PENS scheme is less by two orders-o-f multitude compared

with those of the other two schemes.

Fig . 1 Constant coefficient problem

Example. 2 Air-pocket problem

Ezd
- [ (1 - 2x ) z ]

c
= 0,

0 < x < 1, z (0) = z (1) = 1
(17)

Its exact solution is z ex( x ) = exp[
x

E(1 - x )
] .

From the exact solution we know that its maximum value

can be very large in the interval ( 0, 1) if E is small e-
nough, then its numerical simulation is very difficult.

Fig. 2 gives a comparison of the solutions of the first up-

wind- , central difference- , and second-order PHD

schemes with the exact solution as E= 0. 1 and $x = 0.

01 . From Table 1, we can conclude that the central dif-

ference scheme gives only intolerable results though it is of

second-order while highly accurate results are obtained

with the second-order PHD scheme.

Example. 3 steady burgers problem

zz
c
=

z
d

Re
, - 1 < x < 1,

z (- 1) = th(
Re

2
) , z (1) = - th(

Re

2
)

(18)
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Fig. 2 Air-pocket problem

  This is one of the classical problems in simulating

shock wave, and its exact solut ion is zex ( x ) = - th(
xRe

2 )

. Fig. 3 gives a comparison of the solut ions of the first up-

wind- , central difference- , and second order PHD

shcemes with the exact solution as E= 0. 1 and $x = 0.

1 . Table. 1 shows the maximum errors of the three

schemes, from which we can see that the errors of the

PHD scheme is very small. As the Reynolds number in-

creases, the second-order PHD scheme can still capture

exactly / shock wave0-like steep change and numerical so-

lut ions are very precise even the Reynolds number is 105,

but resolutions of the first order upwind scheme and cen-

tral difference scheme are very low.

Fig. 3 Steady burrgers equation

 [ HJ<Example. 4 2-D flow in a square cavity

Here the second-order accurate PHD scheme was giv-

en in Section 2. 2 and used to compute a square cavity flow

with one boundary moving, and computations were based

on the vorticity-stream function equations of incompressible

fluid. The vorticity equation is discret ized with the second-

order PHD scheme relevant with time, and the stream

function equation is discretized with the central difference

scheme. The implicit ADI method for the vorticity equa-

tion and the relaxat ion iteration method for stream funct ion

equation are combined to compute the stream function in a

square cavity with Re = 100 and Re = 1000 . In this nu-

merical simulat ion, the maximum iteration errors are less

than 10
- 5

when convergent results are obtained. For Re

= 100 , the ceneter of primary vortex is located at x = 0.

6172, y = 0. 7344 , the maximum value of stream func-

tion is - 0. 10325. For Re = 1000 , the center of primary

vortex is located at x = 0. 5313, y = 0. 5703 , and the

maximum value of stream function is - 0. 1109. All these

results are in good agreement with those of Ghia et al. [ 6]

and Charls-Henri et al. [ 7] , they both use second-order

accurate discretization, Fig. 4 and Fig. 5 are the stream-

line figures and vort icity contours for Re = 100 and Re =

1000 , respectively.

3.  CONCLUSION

The PFD method[ 1] is a kind of high-order accurate

compact difference method, but its idea is different from

mult-i nodes method[ 3] and the normal compact method[ 2] .

In the PFD method the concept of difference approximat ion

of different ial equations is expanded, and non-derivative

terms ( including coefficients) are also discretized besides

derivative terms in the differential equat ion studied. On

the premises that the derivatives are approximated by d-i

rect differences ( i. e. second order center difference, up-

wind and backward differences) and 1- , 2- , 3-D problem

use 3, 5, 7 nodes respectively, derivative coefficients and

source terms are expanded into the power series of grid-

size. By removing the truncated error terms in the mod-i

fied differential equat ion of the CD-difference equation, a

PENS seheme of locally linearlized CD equat ion is ob-

tained. The approximate schemes of PENS scheme, in-

cluding the firs-t , second- , third- ,order accuracy are a-l

so called PHD scheme. They can be obtained by expand-

ing the exponential terms in the PENS scheme into the

power series of grid Reynold number. Compared with other

high-order accurate difference schemes ( such as mult-i

node[ 3] high-order-accurate schemes and compact differ-

ence schemes[ 2] ) , the most notable characterist ic of the

PENS scheme is that the physical considerations and math-

ematical treatments adopted in deducing them do not go

beyond those in the deduction of the CD equat ions.
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Fig. 4( a)  Streamlines ( Re = 100, 128 @ 128 )

Fig. 4( b)  Vorticity contours

( Re = 100, 128 @ 128 )

The PENS scheme is similar to the FA scheme[ 4, 5] and

EDS
[ 5]

scheme, which are all exponential schemes and

have some advantages in common: they all can reflect con-

vective upwind effect; they have not problems of negative

density and pseudo numerical convection; they are unan-i

mous convergent and steady for any large Re number. But

the PENS scheme has more advantages that can not be

seen in FA and EDS scheme: it does not have / overflow0
problem in the case of high grid Reynolds number, and it

is much simpler than the FA scheme and uses much less

t ime and memories in computations.

Fig . 5( a)  Streamlines ( Re = 1000, 128 @ 128 )

Fig . 5( b)  Vorticity contours

( Re = 1000, 128 @ 128 )

  In the PHD schemes, the upwind effect and simple

structure form of the PENS scheme are remained. The

PHD schemes use only 3, 5, and 7 nodes for 1- , 2- , and

3-D problems respectively, and for nodes near the bound-

ary, they do not need any special treatments to get the

same accuracy as the nodes inside. Three 1-D CD prob-

lems and a 2-D cavity flow problem proved the good prop-

erties of PENS and PHD schemes, and satisfactory numer-

ical results are obtained.
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Table 1.  Maximum absolute errors (m. a. e. ) and maximum relative errors ( m. r. e. ) of firs-t order upwind difference (1-UD)

scheme, the second-order central difference (2- CD) scheme and the perturbational finite difference ( PFD) scheme for

1-D C- D equations ( examples 1-3) . Here the PFD scheme is substituted with the PENS scheme in Example 1 and with

second-order PHD scheme in Examples 2 and 3) .

Example E $x

1-UD scheme 2-CD) scheme PFD scheme

m. a. e. m. r. e. m. a. e. m. r. e. m. a. e. m. r. e.

1

0. 1

0. 01

0. 001

0. 1

0. 02

0. 02

0. 14

0. 20

0. 049

0. 30

0. 72

0. 36

0. 029

0. 13

0. 80

0. 080

0. 49

5. 8

0. 0030

0. 0011

0. 0033

0. 0082

0. 0031

0. 0089

2

1

0. 1

0. 05

0. 1

0. 01

0. 001

0. 0067

0. 26

17. 0

0. 0052

0. 021

0. 12

0. 49

8. 7

145

0. 38

0. 72

0. 98

0. 0016

0. 047

0. 16

0. 0012

0. 0038

0. 0011

3

0. 1

10- 3

10- 5

0. 08

0. 08

0. 08

0. 38

2. 0

2. 0

1. 9

2. 0

2. 0

0. 14

3. 28

2. 0

0. 72

3. 28

2. 0

0. 00151

6. 10 @ 10- 4

6. 25 @ 10- 8

0. 012

6. 10@ 10- 4

6. 25@ 10- 8
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