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Abstract

In order to reveal the underlying mesoscopic mechanism governing the experimentally observed failure in
solids subjected to impact loading, this paper presents a model of statistical microdamage evolution to
macroscopic failure, in particular to spallation. Based on statistical microdamage mechanics and experi-
mental measurement of nucleation and growth of microcracks in an Al alloy subjected to plate impact
loading, the evolution law of damage and the dynamical function of damage are obtained. Then, a lower
bound to damage localization can be derived. It is found that the damage evolution beyond the threshold of
damage localization is extremely fast. So, damage localization can serve as a precursor to failure. This is
supported by experimental observations. On the other hand, the prediction of failure becomes more accurate,
when the dynamic function of damage is fitted with longer experimental observations. We also looked at the
failure in creep with the same idea. Still, damage localization is a nice precursor to failure in creep
rupture. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a large crack in a solid is predominate, fracture mechanics (linear elastic or elastic plastic)
are very successful to characterise the mechanical behaviour of the solid. However, for most
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Nomenclature

average growth rate of microdamage

current size of microdamage

initial size of microdamage

growth rate of microcracks

continuum damage

dynamic function of damage (DFD)

module of Weibull distribution

index of compound damage in DFD

number density of microdamage in phase space
number density of microcracks in phase space (c, ¢g)
annihilation rate density of microdamage

nucleation rate density of microdamage

number density of microdamage on sectional surface
cumulated number density of microdamage greater than c
independent variables describing the state of microdamage
rates of variables p;

time

time in Lagrangian coordinate

current specific volume

initial specific volume

particle velocity

macroscopic spatial coordinates of the element where microdamages locate

spatial coordinate in Lagrangian coordinate

Greek letters

p intrinsic Deborah number in DFD

u parameter in growth rate of microcracks
a nominal stress

T average failure volume of a microdamage
0 dilatation rate

Subscripts

] parameters on sectional surface

c critical values

Superscripts

characteristic parameters
rates of variables
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heterogeneous materials, such as alloys, ceramics, composites, etc., there might be distributed
microcracks or microvoids rather than a single macroscopical crack. In particular, it is well known
that the distributed microdamages usually dominate dynamic failure of solids under impact
loading, like spallation under plate impact. For example, the particulates in alloys can become
the sites of microdamages in spallation. Owing to the rate-dependent nature of spallation there
have been various efforts to formulate this process, such as the integral criterion [ 1], continuum
measure of spallation [2], microstatistical fracture mechanics [ 3], etc. All these approaches provide
progressively helpful means to reveal the essence of this rate-dependent failure process. In
particular, Curran et al. [3] gave a sophisticated description of the microscopic processes and their
link to continuum fracture mechanics. Meyers has provided a very comprehensive overview on
various aspects of spalling [4]. In this overview, he stressed on two aspects. These are the
quantitative/predictive models based on continuum measure of spalling and nucleation-and-
growth of microcracks and the utmost important microstructural effects on spalling. Clearly, these
offer us a real challenge.

In recent 10 yr, some new and informative studies relevant to spallation are made to have deeper
understanding of the process. These are the study of microscopic ductile rupture [ 5], the ultrasonic
imaging of spall damage under repeated plate impact with C-scan [6], the interpretation of integral
criterion for spallation in terms of damage measure defined by residual strength [ 7], crack straining
spall model [8] and a model on crack population [9]. All these works intended to link the
macroscopic spallation and the microdamage evolution inside the materials. This clearly demon-
strates that there is still an acute lack of quantitative/predictive models based on the dynamics of
nucleation-and-growth of microcracks and their continuum measure in the study of spallation, as
reviewed by Meyers [4].

Then, what is the alternative to fracture mechanics, continuum damage mechanics or other
previous approaches to deal with the problem. As mentioned above that the accumulation of
microdamages has significant effect on the failure of materials, like spallation. Roughly speaking,
microdamages are in the size of particulates or grains, like micrometres, and the total of such
microdamages on the surface of metals is in the range of 10>°~10*/mm?, [10,11]. So, the main issues
in microdamage evolution are nucleation, growth and coalescence of microdamages [3,4,10,11].
This means that a trans-scale (from meso- to macro-scopic) understanding of damage evolution is
badly needed.

For this sake, a fundamental equation of microdamage evolution has been established in the
light of statistical mesoscopic damage mechanics, [12,13]. This is the evolution equation of
microdamage in phase space

on L on-Py)
R o

where n is the number density of microdamage in phase space and ¢ is time. p; are the independent
variables describing the state of microdamages. For example, p; can be the current size of
microdamage c, the initial size of microdamage c,, the macroscopic spatial coordinates x of the
element where the microdamage locates, etc., P; = p; are the rates of variables p;. ny and n, are
nucleation and annihilation rate densities of microdamage, respectively.
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It has also been found that the population of microdamages has a tendency to form macroscopi-
cally localized damage, a precursor to failure. This can be linked to a special feature of the dynamic
function of damage, which is a macroscopic representation of the nucleation, growth and coales-
cence of microdamages [14,15].

According to the above-mentioned knowledge, in this paper we intend to reveal the link between
mesoscopic mechanisms and macroscopic formulations of spallation in terms of the experimental
observations. Then, we shall provide some tool for the prediction of the dynamic failure.

2. Outline of experimental observations of microcrack evolution

For experimental observation of microcrack evolution in spallation, we use one stage light gas
gun to establish a uniaxial strain state in the specimen. The testing material we used is an
aluminium alloy similar to 2219-T6 Al (with 6% Cu, etc.), for more details see [16]. A short stress
pulse of about 0.1 us duration was used to investigate the nucleation [10] and a multi-stress
pulse technique to study the successive nucleation, growth and coalescence of microcracks [11].
A case study of microdamage evolution in the Al alloy was carried out with the multi-stress
pulse technique under impact velocity of 172 m/s, corresponding to about 1470 MPa tensile stress,
[11]. In all these studies, we combined the transient recording of stresses and the counting of
microdamages in specimens after recovery.

In order to investigate the evolution of microcracks, proper counting of microcracks in tested
specimens is a key step. After impact, specimens should be carefully recovered by a specially
designed catcher in the gun to prevent secondary damage. Then the tested specimens were
sectioned and polished carefully. Microscopic observations and counting of microcracks were
conducted with an S-570 scanning electron microscope and a Q-520 image analysis system with
Polyvar-Met microscope. The details of the counting procedure can be referred to [10,11].
Fig. 1 shows a typical microscopic picture of microdamages on the section of an impacted
specimen.

The followings are some main points of experimental observations of microcracks in the
impacted Al alloy [10,11].

1. The nucleation size distribution of microcracks on the sectional surface of specimen can be
fitted to Weibull distribution, similar to the size distribution of second phase particles in the
specimen

() oo ()] >

where ¢, is the size of microcracks at nucleation and ¢* = 4.27 um is a characteristic size of the
material, roughly the size of the second-phase particles of the alloy. Fitting parameter k is Weibull
module and k = 2.33.

2. The total of microcracks under constant tensile stress appears to be proportional to loading
duration. The rate of nucleation on sectional surface Ny, ; appears to be independent of existing
microcracks and its average is about 928/(mm? ps) under tensile stress of 1470 MPa.
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Fig. 1. Microcracks on the section of an impacted aluminium alloy specimen (impact velocity: 593 m/s, tensile stress:
7460 MPa, time duration: 142.2 ns).

3. The nucleation rate of microcracks can be approximately correlated to tensile stress by
a linear function, i.e.

o)
o

where ¢ is nominal stress and ¢* = 450 MPa is the threshold of nucleation of microcracks,
respectively.
4. Above all, the nucleation rate of microcracks on sectional surface can be expressed by

o)) o] (3]
g C C

According to these data, a characteristic nucleation rate of microcrack density on sectional surface
ni s is calculated as 223/(mm? pm ps), according to the following integration:

ce] *
NN s — NN sch = nffl sc_ i — 1) (5)
’ o "k \o*
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5. The transformations from sectional to volumetrical distribution. In our impact tests of the Al
alloy, due to the uniaxial strain state and the transverse isotropy, the microcracks are approxim-
ately parallel to each other and penny-shaped, also see [3]. For these randomly distributed
microcracks, the transformations from sectional to volumetrical distribution are

N(e) = an«:") de” = % f m% dc, (6)
2 (« c ng(c) 1dny(c) |, ,

where ng(c’) is the number density of microdamages with size ¢’ on sectional surface. n and N are the
number density of microdamages and the cumulated number density of microdamages greater than
¢, respectively, for more details of (6) and (7) see Appendices A and B in [11]. In fact, both spherical
voids and parallel penny-shaped cracks follow the same Egs. (6) and (7). Clearly, the sectional
distribution is usually different from the volumetrical one. But, for the case we described here
(Weibull distribution with k = 2.33), they are quite similar in their shapes, Fig. 2.

6. So, substitution of ny(c’) = ny and integration of (7) gives the nucleation rate of microcrack
density ny as

nN(CO’ 6) = nlﬁ(% - 1>F(EO)’ (8)
o

2 &
F(CO) - n\[co mé(x) dx (9)

E(x) = x¥ 732 — k + kxMexp( — x"), (10)
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51
S Sectional
% 4 - Volumetric
5 3
[
s 2]
a 11
=
2 0.0
o
-1
-2 ;
0 1 2 3 4

clc*

Fig. 2. Comparison of sectional and volumetric distributions (Weibull sectional distribution, with Weibull module
k =2.33).
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where ¢y = c¢o/c* and the characteristic nucleation rate of microcrack density n¥ =
ng. ¢/c* = 5.22 x 10*/(mm? pm ps). n§ is one of the most important parameters of microdamage
evolution in the material.

7. Apart from the nucleation rate, all other mesoscopic dynamic informations involved in the
experimental data (such as coalescence) are included in the growth rate of microcracks C = ¢, when
data fitting were carried out by means of the statistical equation of microdamage evolution [11].
The fitting gives the following formula,

Cle, co3 0) = Cg.g(a)<c ;f’”)“’ (11)

where u = 0.775 and Cg-g(o) = C* = 8.1 m/s at 1470 MPa in the case study.

Above all, the nucleation rate (8) and growth rate (11) of microcracks are the essential dynamics
of microcracks of the Al alloy under one-dimensional strain state impact. Then, what is their link to
macroscopical damage evolution and spallation?

Before going into the details of the present study, it might be helpful to have a look at
the difference between the prediction made by traditional fracture mechanics and the
experimental observation. One can estimate the critical crack size as ¢, ~ Kic/(rna?).
When K;c ~30 MPam'/? and ¢ = 1470 MPa, then ¢, ~ 100 um. But, from the growth
law of microcracks (11), one can integrate it to obtain the time ¢, to attain the critical
size c.,

o o Co — o |TW
Tl = pCEL e '

Assuming ¢, = c¢* and substituting the values of ¢*, C* and p into the expression, we obtained the
time t, for a microcrack to grow to the critical size ¢, is about 4 ps. In all the tests of the Al alloy,
there are no specimens, which can survive beyond 1 ps under 1470 MPa. Furthermore, no
individual cracks with such a length were observed in the impact tests. So, we suppose that there
should be another mechanism relevant to collective interaction between microdamages governing
the failure in spallation.

3. Inversion to evolution law of damage

Actually, the observations of microcrack evolution outlined in last section provide a statistical
description of number density of microcracks ny(t, ¢, co; o), where ¢ and ¢, are the current and
nucleation sizes of microcracks, respectively. According to statistical microdamage mechanics,
there is a statistical equation of microdamage evolution, Eq. (1). For a representative volume
element, the equation can be reduced to a equation governing the evolution of number density of
microcracks ny with independent variables ¢, ¢ and ¢y,

0710 6(n0C)_
o T ae T Mol —co), (12)
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where 6 is Dirac d-function and C is the growth rate of microdamages. Corresponding initial and
boundary conditions are

n0(07 C, Cos 6) = 05 (13)
no(t, ¢, co;0) =0, ¢ <cy. (14)

Now, we define the k-order damage moment in terms of the number density of microcracks n, as
follows [12]:

D= ocJ J c*ng deg de, (15)

0o Jo

where o is a geometric parameter, for spherical microdamage o = n/6. When x = 3, D is the
volumetric fraction of damage. In continuum damage mechanics, continuum damage is defined as
the reduction of load-supporting area. For uniformly random microvoids, the sectional fraction of
damage, i.e. the continuum damage, is equal to the volumetric fraction of damage according to
stereography. So, the above-defined damage moment D with x =3, Eq. (15), is actually the
continuum damage. For the penny-shaped microcracks formed in the Al alloy subjected to plate
impact, we assume that there is a stress release volume surrounding each microcrack. So, the
damage moment D is approximately the continuum damage in the examined case too.

Now, we are able to compute the evolution of continuum damage D, by integrating Eq. (12) and
calculating the integration (15) simultaneously, when the mesoscopic dynamics of nucleation and
growth of microdamages are known. To facilitate computation, we adopted an assumption of g(a),

(o) = (Gi* — 1>. (16)

Before going to the numerical result of the evolution of continuum damage D, we should introduce
a characteristic damage D* = angc*°/C* ~ 3.09 x 10°. This indicates how much the magnitude of
continuum damage would become during the characteristic period of t* = ¢*/C* ~ 0.527 ps. In the
following calculations, we always use dimensionless variables, for example, the dimensionless time
t is defined by the quotation of real time over the characteristic time t* and the dimensionless stress
a by threshold stress o*.

Another issue worth mentioning is that the above approach to the evolution law of damage is
based on the statistical equation of microdamage evolution. There is no need for any assumptions
of potential function or empirical form of evolution law of damage.

Fig. 3 shows the evolution law of continuum damage, i.e. D versus D, obtained from the
integration of Eq. (12) and the integral (15), in the case study with nominal tensile stress 1470 MPa.

4. Dynamic function of damage

Now we go on to the damage field and the dynamic function of damage. According to the
statistical microdamage mechanics, when we turn the equation of number density of microdamage
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Fig. 3. The evolution law of continuum damage, D = f'versus D, obtained from the integration of Eq. (12) and the integral
(15), with nominal tensile stress 1470 MPa and dynamics of microcracks, Egs. (8) and (11). D and f are dimensionless by
characteristic time t*.

n, Eq. (1), into the equation of damage moment D, there is a dynamic function of damage (DFD)
f defined as follows [14,15]:

f= anN‘L’ de + Jw(nAt’ —nua7) de, (17)

0 0

where 1t = 0t/dc, T being the average failure volume of a microdamage. This function includes all
mesoscopic dynamics of microdamage, such as, nucleation and annihilation rate densities of
microdamage ny and n,, the average growth rate of microdamage A = [C(c, ¢o)no deo/[no deo.

In this way, the damage field evolution equation, continuum and momentum equations describe
the evolution of deformation and damage field. In Lagrangian coordinates in one-dimensional
strain state, they are as follows [14,15]:

oD VO v

G_T + D7 0_Y =, (18)
oV ov

a7 Ny =0 (19)
ov oo

ot oy =0 (20)

where V, and V are the initial and current specific volumes of a continuum element, respec-
tively. v and ¢ are the particle velocity and the stress of continuum element, respectively.
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We define a dilatation rate

. VO av
0=——.
V oY
Actually, the term of D in the damage field equation is the difference between the evolution rate of
continuum damage D and the dynamic function of damage f. When damage D < 1, this term might
be much less than the dilatation rate 0 and then less than the evolution rate of continuum damage

D, if these two rates are in the same order. So, as an approximation, we can take the above obtained
evolution rate of damage D as the dynamic function of damage (DFD) f.

f=f(D,0) ~ D. (21)

Fig. 3 shows the dimensionless DFD f.

The experimental results outlined in Section 2 show that for the concerned spallation the
dynamic function of damage can be fitted to a binary function of damage D and stress o, as
suggested by Davison and Steven [2],

f=1D,0) = Gla))(1 + D"), (22)

where G is a dimensionless function of stress. y is a dimensionless parameter denoting the relative
nucleation rate. m and f are two parameters relevant to damage growth and coalescence. Davison
and Stevens have named the two terms in (22) as simple and compound damages, respectively [2].
Now, it is clear that the simple and compound damages are rooted to nucleation and growth (as
well as coalescence) of microdamage, respectively. Generally speaking, the DFD has m > 1 and
appears to be concave. In particular, f is the ratio of compound rate over nucleation rate of
damage, so it is an intrinsic Deborah number.

Fig. 4 demonstrates some fittings of DFD (22) in different ranges of damage, such as D*, 2D* and
3D*, under tensile stress 1470 MPa. It can be seen that the fittings are all quite well in comparison
with the original calculated data. For the convenience of the following calculation, the fitting
parameters and their standard deviations (in parenthesis) are given in Table 1.

Before going further, let us have a close look at these fitting parameters. Firstly, the introduction
of the dynamic function of damage (DFD), for example formula (22), reduces a number of
mesoscopic parameters governing microdamage evolution, at least the six o*, c*, k, n¥, C* and u,
into three D* (or Gy), m and f. This can simplify the formulation of damage evolution in
engineering. The value of Gy ~ (2.7-2.8) x 107> means that the damage due to nucleation attained
during the period of characteristic time ¢* is a bit less than the characteristic damage D* ~ 3 x 103,
Index m ~ (2.5-2.8) reflects the curvature of compound damage. More importantly, the intrinsic
Deborah number f3 is as high as 105-10°. This implies that the compound rate can become higher
than the nucleation rate around the characteristic damage D*. So, for further development of
damage, compound damage is truly decisive.

5. Damage localization in spallation

It has been found that damage localization may occur beyond a threshold and leads to
eventual failure. Instead of the complete derivation of the threshold, see [14,15], here we
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Fig. 4. Fittings of DFD f'in different ranges of damage, D*, 2D* and 3D*, with Eq. (22), under tensile stress 1470 M Pa:

(onnn ) original calculated; ( ) Dinax = D*; (= * =) Dpax = 2D*; (- = =) Dpay = 3D*.

Table 1

Fitting parameters and their deviations of DFD in Eq. (22)

D ax D* 2D* 3D*

Gy 2.818x 1073 2.719x 1073 2709 x 1073
(24x1079) (1.0x107%) (1.5x107%)

m 2.552 2.814 2.786
(4.1x1073) (22x1073) (21x1072)

B 2.282 x 10° 2.246 x 10° 2.010 x 10°®
(8.9 x 10%) (5.6 x 10%) (2.0x10%)

cite a simple lower bound to damage localization only. The lower bound can be easily explained
as follows.

Actually, once damage localization occurs, the damage in a local area is great, especially its
gradient becomes even greater. This implies that a characteristic relative length scale of damage
variation becomes shorter. According to this, we assume the reciprocal of relative gradient of
damage dD/0Y/D as such a length scale.

So, suppose that damage localization would occur, if the increase of the relative gradient of
damage becomes positive. That is to say,

%[@D/a Y/D] > 0, (23)

where T and Y are Lagrangian temporal and spatial co-ordinates, respectively. Inequality (23) can
be rewritten as

(57) (3)-(3)
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Fig. 5. A sketch of the lower bound to damage localization. The solid line is the DFD and the dashed line indicates the
coincidence of the gradient of DFD with respect to damage f, and its secant f/D. The circle O denotes the critical point,
beyond which damage localization may occur.

Substitution of the approximate expression of DFD (21) into the inequality (24) gives

(0g/0Y) f
>

.fD +fa (ﬁD/aY) D

Under quasistatic approximation, namely ignoring inertial term in Eq. (20), the Equation leads to
0ag/0Y = 0,1.e. ¢ = o(T) only. Then, the vanishing stress gradient will lead to a simple lower bound
to damage localization,

Jo > g. (25)

This means that heterohomogeneous damage distribution may evolve to localization when the
gradient of the DFD with respect to damage itself f, becomes greater than its secant f/D. Actually,
the quasistatic assumption, i.e. ignoring inertia effect, does lead to a lower bound, because inertia
retards damage localization, [14]. The lower bound to damage localization is sketched in Fig. 5.
Moreover, the damage localization appears to be a real dynamo for material failure. This looks like
the well-known Chapman-Jouguet condition for detonation front [ 17]. Because of the concavity of
DFD, damage localization perhaps is a very common phenomenon.

Now, we apply the lower bound to damage localization (25) to the case of spallation. For the
expression of DFD (22) deduced from the data of the mesoscopical observations in spallation, this
lower bound leads to a simple formula to calculate the critical damage

D, =[(m— 1]~ 1" (26)
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Table 2
Critical damage D, predicted life Tp. and T, as well as ratio of Tp./T;

Dax D* 2D* 3D* Original data
Gy 2.818x 1073 2.719%x 1073 2709 x 103
m 2.552 2814 2.786
p 2282 x 10° 2.246 x 10° 2.010 x 10°
D, 649 %1073 448 x1073 444 %1073 403x1073
Tpe 2.01 1.46 1.45 1.35

(1.06 ps) (0.77 us) (0.77 ps) (0.71 ps)
T, 3.68 2.53 2.52 2.52

(1.94 ps) (1.33 ps) (1.33 ps) (1.33 ps)
To./T 0.546 0.577 0.575 0.536

The lower bound (26) gives a critical damage D, = 4.03 x 10~ 3 for the case study of spallation. Very
importantly, this critical damage is an intrinsic material quantity. Noticeably, f denotes the
competition of growth and coalescence over nucleation of microdamage. Table 2 gives the
calculated critical damage D, in different fitting ranges D,,,,. Another significant aspect can be seen
from the comparison of the three quantities, the critical damage D, = 4.03 x 10~ 3, the character-
istic damage D* ~ 3 x 10% and Gy ~ (2.7-2.8) x 10~ 3 the damage due to nucleation during t*. Once
again, the minor difference between D. and Gy (and D*) clearly shows that the growth and
coalescence of microdamage, i.e. the compound damage, plays a key role in damage localizatiom
and then in the eventual spallation.
From the definition of DFD (21), we can go ahead to calculate the life of specimen as

dD
T = JT' 27)

When adopting the expression of DFD (22), we can calculate the life of materials due to damage
localization, in terms of the following formula:

1 (P dD
”:aﬁa?ﬁﬂ 28)

We may also calculate the maximum life T; by extrapolating (21) to the upper limit D = 1 in the
integral (27) as continuum damage mechanics usually do,

1 (Y dD
ﬂzaﬁﬁﬁﬁi )

Clearly, the predicted life T; can be taken as the upper limit of life of the material under the same
loading. Both predictions Ty, and T, are listed in Table 2. Corresponding real-time lives, i.e. those
multiplied by the characteristic time t* ~ 0.527 ps, are included in brackets too. It can be seen that
the time to damage localization Tp, is about 0.7 ps but the upper limit of life T, is greater than 1 ps.
But, in reality, the longest duration of the test is 0.8 ps.
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Table 3
Critical damage D., predicted lives Tp, and T, as well as ratio of Ty /Ty, calculated within shorter ranges of damage
Dmax

Dpax 0.8D* 0.6D* 0.4D* Original data
Gy 2.823x 1073 2.832x10°3 2.834x 1073
m 2.404 2.282 2.121
p 6.336 x 10* 1.677 x 10* 2.405 x 103
D, 8.73x1073 1.3x1072 24x10°2 403x1073
Tpe 2.63 3.72 6.88 1.35

(1.38 ps) (1.96 ps) (3.63 ps) (0.71 ps)
T, 481 6.96 13.2 2.52

(2.54 ps) (3.67 ps) (6.97 ps) (1.33 us)
Tpe/T: 0.547 0.534 0.521 0.536

Form the above results, we can notice that the damage accumulation before the lower bound to
localization possesses a large portion of the upper limit of life T, roughly half of it, though the
critical damage D, ~ 4 x 1072 is 4000th of the upper limit D = 1 only. So, damage localization
does be able to serve as a processor to failure. Interestingly, in experiments we did scarcely recover
and observe damaged but not failured specimens beyond the predicted loading duration of damage
localization. Other similar tests confirm the calculations. For example, the tests of the same
material under tensile stresses between 1125-1345 MPa and loading durations of 0.68-0.85 ps do
demonstrate microcracks or incipient macro-cracking, see [7]. Longer loading duration leads to
complete fracture. These data provide another evidence that the process beyond damage localiza-
tion is too fast to observe in experiments.

We asked ourselves if we could predict the damage localization or the life of material
according to its early data of damage evolution. In order to clarify this point, we carried out
the following calculations. We used the data of early damage evolution to predict damage
localization and life and then to see how accurate we can achieve in predictions in this way.
Table 3 demonstrates some of these results. Clearly, when the data of damage evolution are
limited to earlier stage, the prediction of damage localization becomes worse. For
meaningful prediction of failure, the data relevant to characteristic damage D* seem to be
necessary.

6. Damage localization in creep

Additionally, we applied the same idea to calculate the life of an Al alloy in creep rupture [18], at
the other extreme of loading spectrum, to testify the concept of damage localization. Hayhurst [ 18]
has given a fitting of the evolution law of damage in creep, which can be adopted as the dynamic
function of damage (DFD),

f=1o)/(1 — Dy, (30)



Y.L. Bai et al. | International Journal of Impact Engineering 24 (2000) 685-701 699

where ¢ is a parameter and y(o) is a function of stress ¢ given in [18]. For comparison, we fit (30)
into another DFD expression similar to Eq. (22),

f= G(o)1 + ¢D + pD™). (31)

We can apply expressions (30) and (31) to the calculations of critical damage D, for damage
localization, via Eq. (25):

1

De=11 g (32)

Noticeably, Eq. (31) does not change the expression (26) of critical damage for damage localization.
We can also derive the life Tp./T'1, via Egs. (27) and (30),

TDc B (/J) 1+¢
T1_1_<1+¢)> ‘ (33)

Table 4 gives the fittings and predictions for three materials in creep. The first line in the table gives
the estimations of the lifes according to Hayhurst’s experimental observations. From the values of
the life, one can see that the predictions made by the concept of damage localization, Eq. (33) are
qualitatively in agreement with the observations. Still, damage localization serves as a nice
processor to failure in creep rupture. In addition, the predicted D, from both fittings (30) and (31)
are nearly the same. Now, let us have a close look at the case of Al alloy. The obtained results are
D. ~ 0.1 and Tp./T1 ~ 0.65, with the fitting parameters m = 2.23 and § = 144. Compared to the
impact tests, the relative difference of the indices m of compound damage m in the two extremes are
one quarter only. But, the intrinsic Deborah number f of the impact tests is four orders higher than
that of creep and then the critical damage is about two orders lower. This reflects the essential
difference of the two kinds of tests. Surprisingly, although there is such a great difference in loading
time span, the proposed concept of damage localization can still provide a reasonable prediction.

As a general reference, Fig. 6 shows the variation of critical damage D, with the intrinsic
Deborah number f, when assuming m = 2.7, according to (26).

Table 4
Critical damage D., and relative damage localization Typ./T; in creep

Al Cu 316 steel
TDC/TI
Exp 0.96 0.83 0.71
DFD(30) 0.65 0.66 0.70
D,
DFD (30) 0.095 0.143 0.343
DFD(31) 0.098 0.147 0.345

¢ 9.5 6.0 1.914
m 2.23 2.66 2.39
p 144 60.8 9.12
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Fig. 6. The variation of critical damage D, with the intrinsic Deborah number f, when m = 2.7, according to Eq. (26).

7. Conclusions

A comparative study of statistical microdamage evolution to macroscopic failure was carried
out, in order to reveal the correlation between experimentally observed damage evolution and its
underlying mesoscopic mechanism.

A dynamic function of damage for an Al alloy is obtained under plate impact loading,
based on relevant experimental measurement of mesoscopic dynamics of microcracks of
the alloy as well as the statistical equation of microdamage evolution. The characteristic
damage is D* = anfc*°/V* ~ 3.09 x 107 3. Two parameters of compound damage, the index
m ~ 2.8 and the intrinsic Deborah number 8 ~ 2 x 10° play significant role in damage evolution.
According to the idea of damage localization leading to failure, a lower bound to damage
localization

fD>£

and the corresponding critical damage

D, =[(m—1p]"""

are derived. The predicted critical damage D, ~ 4 x 103 is a bit greater than the characteristic
damage D*. The corresponding life Tp, ~ 0.77 us is supported by experimental observations.
When the dynamic function of damage is fitted with longer experimental observations, the
calculated critical damage becomes more accurate.

Additionally, the concept of damage localization can also work for the prediction of creep
rupture approximately.
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