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Abstract

The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same

multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor

model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness

experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with

experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a

stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip

much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary

crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established

for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading

during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the

experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734; Scripta Metall. Mater. 31

(1994) 1037; Interface Sci. 3 (1996) 169].

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Micro-indentation hardness experiments have

repeatedly shown that the hardness of metallic

materials increases by a factor of two or even three

as the depth of indentation decreases to microns
or sub-microns (e.g., Nix, 1989, 1997; de Guzman

et al., 1993; Stelmashenko et al., 1993; Atkinson,

1995; Ma and Clarke, 1995; Poole et al., 1996;

McElhaney et al., 1998; Suresh et al., 1999; Ty-

miak et al., 2001). Similar size dependence of

plastic behavior of materials at the micron scale

has also been observed in micro-torsion (Fleck

et al., 1994) and micro-bend experiments (Stolken

and Evans, 1998) of thin metallic wires and foils,
as well as in particle-reinforced metal-matrix com-

posite materials (Lloyd, 1994; Nan and Clarke,

1996; Zhu et al., 1997). Direct dislocation simula-

tions have also shown strong size dependence of

metallic material at the micron scale under various

loading conditions (van der Giessen and Needle-

man, 1995; Cleveringa et al., 1997, 1998, 1999a,b,

2000; Needleman, 2000).
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Classical plasticity theories do not possess in-

ternal material lengths and therefore cannot ex-

plain the observed size dependence of material

behavior. Accordingly, strain gradient plasticity

theories have been proposed (e.g., Fleck and

Hutchinson, 1993, 1997; Fleck et al., 1994; Gao
et al., 1999b; Huang et al., 1999, 2000a,b; Shu and

Fleck, 1999; Acharya and Bassani, 2000; Acharya

and Beaudoin, 2000; Dai and Parks, 2002) based

on the notion of geometrically necessary disloca-

tions (Nye, 1953; Cottrell, 1964; Ashby, 1970;

Arsenlis and Parks, 1999; Gurtin, 2000), and are

intended for applications to materials and struc-

tures whose dimension controlling plastic defor-
mation falls into the range of microns and

submicrons. There also exist earlier works on

strain gradient plasticity that were proposed to

avoid a spurious solution for the localized zone

and an excessive mesh dependence in classical

plasticity (e.g., Aifantis, 1984, 1992; Lasry and

Belytschko, 1988; Zbib and Aifantis, 1988; Muhl-

haus and Aifantis, 1991; de Borst and Muhlhaus,
1992; Sluys et al., 1993). One strain gradient

theory, namely mechanism-based strain gradient

(MSG) plasticity (Gao et al., 1999b; Huang et al.,

1999, 2000a,b), is established from a multiscale,

hierarchical framework to connect with the Taylor

model in dislocation mechanics (Taylor, 1934,

1938). It agrees well with McElhaney et al.�s
(1998)�s micro-indentation experiments of bulk
copper (see Huang et al., 2000b) and Saha et al.�s
(2001) indentation experiments of aluminum thin

film on a glass substrate, with Fleck et al.�s (1994)
micro-torsion and Stolken and Evans� (1998) mi-
cro-bend experiments (see Gao et al., 1999a), and

with Lloyd�s (1994) metal-matrix composite (see
Xue et al., 2002a). It has also been successfully

applied to study a few important problems at the
micron and submicron scales, including micro-

electro-mechanical systems (Xue et al., 2002b),

plastic flow localization (Hao et al., 2000; Shi et al.,

2000b), and fracture (Shi et al., 2000a; Jiang et al.,

2001). However, the present MSG plasticity theory

is a deformation theory which has not accounted

for elastic unloading nor for non-proportional

deformation as in crack propagation.
The purpose of this paper is to develop the flow

theory of MSG plasticity. The flow theory is estab-

lished in Section 2 following the same multiscale,

hierarchical framework to connect with the Taylor

model in dislocation mechanics (Taylor, 1934,

1938). Numerical methods for the flow theory of

MSG plasticity have been developed and used to

study the strain gradient effect in micro-indenta-
tion hardness experiments and in the asymptotic

field around a stationary crack tip in Sections 3

and 4, respectively. The quasi-static, steady-state

propagation of a mode-I crack is investigated in

Section 5.

2. The flow theory of MSG plasticity

Fig. 1 shows the multiscale, hierarchical frame-

work adopted by Gao et al. (1999b) to construct

the theory of MSG plasticity from the Taylor

model in dislocation mechanics (Taylor, 1934,

1938). We distinguish the microscale on which

dislocation activities are governed by the Taylor

dislocation model from the mesoscale on which
strain gradient plasticity theories are constructed.

On the microscale, the scale of analysis is small

compared with the length over which the strain

field varies, and dislocation activities are described

by the slip of statistically stored dislocations in a

background of geometrically necessary disloca-

tions which influence the microscale flow stress

Fig. 1. A schematic diagram of the multiscale framework to

connect the mesoscale theory of strain gradient plasticity to the

Taylor dislocation model on the microscale.
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according to the Taylor model. At this level of

analysis, the stress and strain tensors are defined in

the classical sense, and are denoted by ~rr and ~��,
respectively. Concepts associated with strain gra-

dient plasticity, such as the higher-order stress

tensor s and strain gradient tensor g, are intro-
duced at a higher level of analysis, which will be

referred to as the mesoscale analysis. Here the

terminology ‘‘mesoscale’’ is adopted because the

continuum strain gradient plasticity theory is for-

mulated based on dislocation activities on a sub-

scale which we have referred to as the ‘‘microscale’’.

The stress and strain tensors at the mesoscale are

denoted by r and �, respectively, while the strain
gradient tensor g is defined in terms of the dis-

placement u by

gijk ¼ uk;ij ¼ �ik;j þ �kj;i � �ij;k: ð1Þ

The microscale picture of Taylor hardening is

connected to the mesoscale picture of strain gra-

dient plasticity through the mesoscale cell shown

in Fig. 1. From kinematics analysis (Gao et al.,

1999b), the microscale strain tensor in the cell is
related to the mesoscale strain and strain gradient

by

~��ij ¼ �ij þ 1
2
ðgkij þ gkjiÞ~xxk; ð2Þ

where ~xxk denotes the local Cartesian coordinate
with origin at the mesoscale cell center (Fig. 1).

The right hand side of (2) can be viewed as the first

two terms in the power series expansion of mi-

croscale strain within the mesoscale cell. There-
fore, the mesoscale cell size l� (Fig. 1) must be
small compared to the internal material length in

strain gradient plasticity in order to ensure the

accuracy of (2).

From energetic considerations, equality of

total work at the two scales requires (Gao et al.,

1999b)Z
Vcell

~rrijd~��ij dv ¼ ðrijd�ij þ sijkdgijkÞVcell; ð3Þ

where integration is over the mesoscale cell Vcell,
and d stands for the virtual variation.
By substituting (2) into (3), we obtain the

mesoscale symmetric stress rij (¼ rji) and sym-

metric higher-order stress sijk (¼ sjik) in terms of
the microscale stress ~rrij in the cell,

rij ¼
1

Vcell

Z
Vcell

~rrij dv; ð4Þ

sijk ¼
1

2Vcell

Z
Vcell

ð~rrkixj þ ~rrkjxiÞdv: ð5Þ

It becomes clear that, once the microscale stress–

strain relation (~rr versus ~��) is known, the constit-
utive law of strain gradient plasticity is determined
since the mesoscale stress r and higher-order stress

s can be obtained from the mesoscale strain � and
strain gradient g via (4), (5) and (2). The micro-

scale stress–strain relation is discussed in the fol-

lowing.

2.1. Microscale analysis

The associative rule of plastic flow normality

holds on the microscale if dislocation slip is pro-

portional to the resolved Schmid stress (Rice,

1970, 1971),

_~��~��pij
_~��~��p

¼
3~rr0

ij

2~rre
if _~��~��p > 0; ð6Þ

where _~��~��pij is the microscale plastic strain rate,
_~��~��p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2=3Þ_~��~��pij _~��~��pij
q

the effective plastic strain rate, ~rr0
ij the

microscale deviatoric stress, and ~rre ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ~rr0

ij~rr
0
ij

q
the effective stress. The total strain rate is com-

posed of the elastic part _~��~��eij and plastic part
_~��~��pij,

_~��~��ij ¼ _~��~��eij þ _~��~��pij ¼
1

2l
_~rr~rr0
ij þ

1

9K
_~rr~rrkkdij þ _~��~��pij; ð7Þ

where the elastic strain rate is given in terms of the

stress rate _~rr~rrij via the linear elastic constitutive re-

lation, l and K are elastic shear and bulk moduli,
respectively.

The yield criterion on the microscale is (Nix and

Gao, 1998; Gao et al., 1999b)

~rre ¼ ~rr; ð8Þ
where ~rr is the microscale flow stress derived from
the Taylor model in dislocation mechanics to ac-

count for the effect of geometrically necessary

dislocations, and is given by

~rr2 ¼ r2reff
2
p ð~��pÞ þ 18a2l2bg: ð9Þ

[It is important to distinguish ~rr for (scalar) flow
stress from ~rr for stress tensor.] Here r ¼ rreffpð�pÞ
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gives the relation between stress and plastic strain

in uniaxial tension, rref is a reference stress;
~��p ¼

R t
0
_~��~��p dt is the non-decreasing accumulative

plastic strain at the microscale; b is the Burgers
vector; a is an empirical coefficient in the Taylor
model and is between 0.1 and 0.5 (Taylor, 1934,

1938); and g is the mesoscale effective strain gra-
dient, which is related to the density of geometri-

cally necessary dislocations, qG, by (Gao et al.,
1999b; Huang et al., 2000b)

g ¼ qGb=2: ð10Þ

Gao et al. (1999b) have developed dislocation

models to determine the effective strain gradient g
in terms of deviatoric strain gradient g0

ijk as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
g0
ijkg

0
ijk

q
; ð11Þ

where g0
ijk ¼ gijk � gH

ijk, and the volumetric part of

strain gradient is

gH
ijk ¼ 1

4
ðdikgjpp þ djkgippÞ: ð12Þ

The strain tensor is decomposed to the elastic and

plastic strains, and the plastic strain results from

the slip of statistically stored dislocations. The
strain gradient tensor, however, is not decomposed

in the same way because it reflects the effect

of geometrically necessary dislocations, and the

latter accommodate the non-uniformity of defor-

mation.

The critical difference between constitutive re-

lations (6)–(10) and those of classical J2-flow
plasticity theory is the microscale flow stress in
(9), which accounts for the effect of geometrically

necessary dislocations via the mesoscale strain

gradient term to increase the flow stress. Because

of the mesoscale strain gradient term in the mi-

croscale flow stress, (6)–(10) are not a self-con-

tained constitute model at the microscale. In the

following we derive the mesoscale flow theory of

MSG plasticity by averaging the microscale
constitutive relations (6)–(10) in the mesoscale

cell.

2.2. Mesoscale analysis: zeroth-order average

The average of any microscale variable ~pp in the
mesoscale cell is defined by

pð0Þ ¼ 1

Vcell

Z
Vcell

~ppdv;

which is also called the zeroth-order average of ~pp.
It is obvious from (2) and (4) that the zeroth-

order average of microscale strain ~�� and stress ~rr
are the mesoscale strain � and stress r, respec-

tively. It is straightforward to show that the ze-

roth-order average of (7) gives the mesoscale

strain rate

_��ij ¼ _��eij þ _��pij ¼
1

2l
_rr0
ij þ

1

9K
_rrkkdij þ _��pij; ð13Þ

where _rrij is the mesoscale stress rate, _rr0
ij ¼ _rrij �

ð1=3Þ _rrkkdij is the deviatoric part of _rrij, and the

mesoscale plastic strain rate _��pij is obtained from
the average of (6) as

_��pij ¼
3r0

ij

2re
_��p if _��p > 0: ð14Þ

Here r0
ij, re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þr0

ijr
0
ij

q
and _��p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ _��pij _��pij

q
are the mesoscale deviatoric stress, effective stress

and effective plastic strain rate, respectively. The

zeroth-order average of (8) gives the mesoscale

yield criterion

re ¼ r; ð15Þ
where the mesoscale flow stress r is obtained from
the zeroth-order average of (9) as

r2 ¼ r2reff
2
p ð�pÞ þ 18a2l2bg ð16Þ

and �p ¼
R t
0
_��p dt is the non-decreasing accumula-

tive equivalent plastic strain on the mesoscale. [It
is important to distinguish r for (scalar) flow stress
from r for stress tensor.]

The rate form of (15) and (16) during plastic

loading ( _��p > 0) gives

re _rre ¼ r2reffpð�pÞf 0
pð�pÞ _��p þ 9a2l2b _gg; ð17Þ

where

_gg ¼
g0
ijk

4g
_gg0
ijk ¼

g0
ijk

4g
_ggijk: ð18Þ

From (13), (14) and (17), the effective plastic strain

rate _��p is found in terms of the rates of mesoscale
strain and strain gradient,

_��p ¼ 1

1þ a
1

r
ðr0

ij _��ij � 3a2lb _ggÞ; ð19Þ
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where the mesoscale yield criterion (15) has been

used, _gg is given in (18), and

a ¼
r2reffpð�pÞf 0

pð�pÞ
3lr

: ð20Þ

The mesoscale stress rate is then given by

_rrij ¼ K _��kkdij þ 2l _��0ij

 
�
3r0

ij

2r
_��p

!
: ð21Þ

2.3. Mesoscale analysis: first-order average

In order to systematically obtain the constitu-

tive relation between strain gradient and higher-

order stress, we define the first-order average of

any microscale variable ~pp within the mesoscale cell
by

pð1Þm ¼ 1

Vcell

Z
Vcell

~pp~xxm dv;

where ~xxm denotes the local Cartesian coordinate
with origin at the mesoscale cell center. It can be

shown from (2) and (5) that the first-order average

of microscale strain ~�� and stress ~rr are propor-
tional to strain gradient g and higher-order stress
s on the mesoscale, respectively. The first-order

average of the yield criterion (8) and flow stress (9)

gives

3r0
ijðskij þ skji � sijkÞ ¼ r2reffpð�pÞf 0

pð�pÞ

�
Z t

0

r0
ij

r
l2�
12

ð _ggkij

"
þ _ggkjiÞ �

_sskij þ _sskji � _ssijk
l

#
dt;

ð22Þ

where l� is the mesoscale cell size (Fig. 1), and
is given by l� ¼ 10ðl=rYÞb, (Gao et al., 1999b;
Huang et al., 1999, 2000a,b), and rY is the yield
stress in uniaxial tension. The rate form of (22)

during plastic loading becomes

ð1þ aÞr0
ijð _sskij þ _sskji � _ssijkÞ

¼ acr0
ijð _ggkij þ _ggkjiÞ � ðskij þ skji � sijkÞ _rr0

ij þ egk _��p;

ð23Þ

where a is given in (20),

c ¼ ll2�
12

; e ¼
f 0
pð�pÞ
fpð�pÞ

þ
f 00
p ð�pÞ
f 0
pð�pÞ

;

gk ¼ r0
ijðs0kij þ s0kji � s0ijkÞ: ð24Þ

The first-order average of microscale strain rate in

(6) and (7), in conjunction with the mesoscale

higher-order stress in (5), gives the increment of

higher-order stress at the mesoscale,

_ssijk ¼ c _ggijk

	
þ 1
2
ð _ggkij þ _ggkjiÞ þ

2K
l



� 4
3

�
_ggH
ijk

�

� 3r
0
mn

2r2
c

1þ a
ðr0

ki _ggjmn þ r0
kj _ggimnÞ

� 3

4r2
1

1þ a
r0
kiðsjmn

h
þ sjnm � smnjÞ

þ r0
kjðsimn þ sinm � smniÞ

i
_rr0
mn

þ 3

4r2
3l
r



þ e
1þ a

�
r0
kigj

h
þ r0

kjgi
i
_��p

� 3l
r

sijk



� Kl2�
6

gH
ijk

�
_��p: ð25Þ

2.4. Summary of constitutive law and equilibrium

equations

The mesoscale constitutive relations (21) and

(25) provide the rates of stress and higher-order

stress in terms of the rates of strain and strain

gradient during plastic loading. In order to account

for elastic unloading, (21) and (25) are written as

_rrij ¼ K _��kkdij þ 2l _��0ij

 
� a0 3r

0
ij

2r
_��p

!
; ð26Þ

_ssijk ¼ c _ggijk

	
þ 1
2
ð _ggkij þ _ggkjiÞ þ

2K
l



� 4
3

�
_ggH
ijk

�

� a0 3r
0
mn

2r2
c

1þ a
ðr0

ki _ggjmn þ r0
kj _ggimnÞ

� a0 3

4r2
1

1þ a
r0
kiðsjmn

h
þ sjnm � smnjÞ

þ r0
kjðsimn þ sinm � smniÞ

i
_rr0
mn

þ a0 3

4r2
3l
r



þ e
1þ a

�
r0
kigj

h
þ r0

kjgi
i
_��p

� a0 3l
r

sijk



� Kl2�
6

gH
ijk

�
_��p; ð27Þ
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where _��p is given by (19),

a0 ¼ 0 if re < r; or re ¼ r and _��p ¼ 0;
¼ 1 if re ¼ r and _��p > 0:

ð28Þ
The equilibrium equations in the incremental form

are

_rrik;i � _ssijk;ij þ _ffk ¼ 0; ð29Þ

where _ffk is the increment of body force. The in-
crements of stress traction _ttk and higher-order
stress traction _rrk on the surface are

_ttk ¼ nið _rrik � _ssijk;jÞ � Djðni _ssijkÞ þ ninj _ssijkðDqnqÞ;
ð30Þ

_rrk ¼ ninj _ssijk; ð31Þ

where ni is the unit normal to the surface, and

Dj ¼ ðdjk � njnkÞ
o

oxk

is the surface gradient operator.

Gao et al. (1999b) pointed out that the flow

theory and deformation theory of MSG plasticity
become identical for an incompressible solid under

proportional deformation, i.e., the displacement

can be written as uðx; tÞ ¼ kðtÞu0ðxÞ. However,
proportional deformation does not lead to pro-

portional stressing in MSG plasticity, rðx; tÞ 6¼
k0ðtÞr0ðxÞ, because the flow stress r in (16) is non-
homogeneous with respect to the strain and strain

gradient. For pure bending, pure torsion and
growth of a microvoid in an incompressible solid,

deformation is proportional so that the flow theory

gives the same results as the deformation theory

does (Huang et al., 2000a). For micro-indentation

experiments, Huang et al. (2000b) used the defor-

mation theory of MSG plasticity to investigate the

depth dependence of indentation hardness, and

found excellent agreement between MSG plastic-
ity and experimental data. However, deformation

in micro-indentation hardness experiments is not

strictly proportional (even for monotonically in-

creasing loads). Therefore, we use the flow theory

of MSG plasticity to simulate micro-indentation

hardness experiments in Section 3. Similarly, we

use the flow theory of MSG plasticity to investi-

gate the asymptotic field around a stationary crack

tip in Section 4 and quasi-static, steady-state crack

propagation in Section 5.

3. Numerical studies of micro-indentation experi-
ments

Huang et al. (2000b) used the same indentation

model of Begley and Hutchinson (1998) to simu-

late micro-indentation hardness experiments with

the deformation theory of MSG plasticity. We

follow the same approach in the present study,

except the deformation theory of MSG plasticity is
replaced by the flow theory in Section 2. Accord-

ingly, we only briefly summarize the indentation

model, and refer readers to Begley and Hutchinson

(1998) and Huang et al. (2000b) for details.

We simulate an axisymmetric conical indenter

with the half cone angle of 72�, corresponding to a
Vickers indenter. Friction between the indenter

and indented material is neglected. Following
Begley and Hutchinson (1998) and Huang et al.

(2000b), the normal displacement is prescribed

over the contact area between the indenter and

indented material, while the higher-order stress

tractions vanish on the boundary. For a given in-

dentation displacement, the contact radius is ob-

tained iteratively to satisfy the requirement of

vanishing normal stress traction at the periphery
of contact. The hardness is defined by the ratio of

contact force to contact area, where contact force

is the total force of all nodes within the contact

area in the finite element analysis.

Finite element method for the flow theory of

MSG plasticity is established from the principle of

virtual work, and is the same as that for Fleck and

Hutchinson�s (1997) general theory of strain gra-
dient of plasticity (e.g., Begley and Hutchinson,

1998; Shu et al., 1999) except the constitutive law

is replaced by that of MSG plasticity. Several ele-

ments that have been used to study the strain gra-

dient effect (both rotation and stretch gradients of

deformation) include the C1 element (Begley and
Hutchinson, 1998; Huang et al., 2000b), hybrid

element (Shu et al., 1999; Huang et al., 2000b), and
higher-order element (Wei and Hutchinson, 1997;

Huang et al., 2000b). These elements are used in
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the present study of micro-indentation hardness

experiments.

We have taken the following material para-

meters from McElhaney et al.�s (1998) micro-in-
dentation experiments for polycrastalline copper:

Burgers vector b ¼ 0:255 nm, shear modulus l ¼
42 GPa, Poisson�s ratio m ¼ 0:3, plastic work hard-
ening exponent N ¼ 0:3, which is consistent with
the hardening exponent reported in prior experi-

ments (McLean, 1962; Fleck et al., 1994). The uni-

axial stress–strain relation for copper is

r ¼ 688�0:3 MPa ¼ 688 r
E

�
þ �p

�0:3
MPa; ð32Þ

where the total strain � is composed of the elastic
part, r=E, and plastic part �p, and E is the elastic
modulus. The above equation gives an implicit

relation r ¼ rreffpð�pÞ governing stress and plastic
strain

rreffpð�pÞ ¼ 688
rref
E

fpð�pÞ
h

þ �p
i0:3

MPa: ð33Þ

For a large depth of indentation, the strain gra-

dient effect is insignificant. The corresponding

hardness, denoted by H0, does not display any size
dependence and is consistent with predictions by

classical plasticity. Accordingly, H0 depends on the
uniaxial stress–strain relation, and has nothing to

do with the strain gradient effect. In fact, we have

determined the reference stress of 688 MPa in (32)

in order to fit the experimentally reported value of

H0 ¼ 834 MPa (McElhaney et al., 1998). It should
be pointed out that this value of 688 MPa is larger

than that reported by Huang et al. (2000b) because

the latter has neglected elastic compressibility of
the solid.

Fig. 2 presents the micro-indentation hardness

predicted by the flow theory of MSG plasticity,

ðH=H0Þ2, versus inverse of indentation depth, 1=h,
for polycrystalline copper, where H is the micro-

indentation hardness, h the depth of indentation,
and H0 ¼ 834 MPa the indentation hardness for
large h. The empirical coefficient a in the Taylor
model is taken as a ¼ 0:30, which is in the correct
range but is smaller than that reported by Huang

et al. (2000b) because the latter neglected elastic

compressibility of the solid. The difference between

the reference stress 688 MPa and Taylor coefficient

a ¼ 0:30 for a compressible solid and their coun-
terparts reported in Huang et al. (2000b) for an

imcompressible solid indicates that the elastic

compressibility, or equivalently, the volumetric

deformation, is important in the study of micro-

indentation experiments and must be accounted

for.

The micro-indentation hardness data reported
by McElhaney et al. (1998) for polycrystalline

copper are presented in Fig. 2 for comparison. The

micro-indentation hardness predicted by the de-

formation theory of MSG plasticity is also shown

in order to examine the difference between flow

and deformation theories. The same set of material

parameters (e.g., rref ¼ 688 MPa and a ¼ 0:30) is
used. It is observed that the difference between
flow and deformation theories of MSG plasticity is

rather small. This is not surprising since the

loading increases monotonically in micro-inden-

tation hardness experiments. Moreover, both theo-

ries agree very well with experimental data over a

wide range of indentation depth, from one tenth of

a micron to several microns, indicating that MSG

plasticity theories are capable of accurately char-
acterizing plastic deformation of metallic materials

at the micron and submicron scales.

Fig. 2. The square of micro-indentation hardness, H 2, versus

the inverse of indentation depth, 1=h, predicted by flow and
deformation theories of MSG plasticity and the experimental

data of McElhaney et al. (1998); shear modulus l ¼ 42 GPa,
Possion�s ration m ¼ 0:3, and the uniaxial stress–strain relation
r ¼ 688�0:3 MPa, which gives the indentation hardness

H0 ¼ 834 MPa for a large depth of indentation; the Burger
vector b ¼ 0:255 lm, and the Taylor coefficient a ¼ 0:30.
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4. Fracture analysis of a stationary mode-I crack

Jiang et al. (2001) used the deformation theory

of MSG plasticity to study the stress field around a

stationary mode-I crack tip. They established that,
at a distance close to crack tip but still more than

one order of magnitude larger than the average

dislocation spacing so that continuum plasticity

still applies, the stress level in MSG plasticity is

significantly larger than that in classical plasticity.

We use the flow theory of MSG plasticity to in-

vestigate the same problem in this section.

We have taken a circular domain of radius 103l
centered at the crack tip in our plane-strain finite

element analysis, where

l ¼ 18a2 l
rref


 �2
b ð34Þ

is the internal material length in strain gradient

plasticity (see (16)). Very fine mesh is used near the

crack tip, around which the size of the smallest
element is less than 10�3l. Mesh refinement and
comparison of results from different finite elements

have ensured that the numerical results are accu-

rate.

Crack faces remain traction-free. The classical

mode-I elastic K field is imposed on the outer

boundary of the domain (of radius 103l), with the
remote applied stress intensity factor increasing
monotonically such that there is no unloading.

Stresses are normalized by the yield stress rY
and depend on the following non-dimensional

parameters as

rij

rY
¼ fij

r
l
; h;N ;

rY
E

; m;
KI

rYl1=2


 �
; ð35Þ

where the distance r to the crack tip is normalized
by the internal material length l in (34), h is the
polar angle, material parameters include the plas-
tic work hardening exponent N , yield stress rY,
elastic modulus E, and Possion�s ration m, and KI is
the remote applied elastic stress intensity factor.

The normalized stresses do not depend explicitly

on the internal material length l, nor on the Taylor
coefficient a. Unless otherwise specified, we focus
on stresses ahead of the crack tip at the polar angle

h ¼ 1:0143�, and the following set of non-dimen-
sional material properties

N ¼ 0:2; rY
E

¼ 0:2%; m ¼ 0:3: ð36Þ

Fig. 3 shows the normalized effective stress, re=rY,
versus non-dimensional distance ahead of the

crack tip, r=l, at polar angle h ¼ 1:0143�. Results
are presented for both flow and deformation theo-

ries of MSG plasticity, as well as the classical flow

theory of plasticity (i.e., without strain gradi-

ent effect). Material properties are given in (36),

while the remote applied stress intensity factor is

KI=rYl1=2 ¼ 20. It is observed that the difference
between two theories of MSG plasticity is van-

ishingly small. Therefore, the deformation theory
of MSG plasticity characterizes the stationary

crack tip field as accurate as the flow theory does,

even though deformation near the stationary crack

tip is not strictly proportional. It is also seen that

all three curves intercept with the horizontal line

re=rY ¼ 1 at the same distance (slightly larger than
10l) to the crack tip, indicating that the plastic
zone size is basically independent of the strain
gradient effect. This is consistent with Wei and

Hutchinson�s (1997) observation in the study of
crack tip field by the phenomenological theory of

Fig. 3. The effective stress re normalized by the yield stress rY
versus the normalized distance ahead of the crack tip, r=l, at
polar angle h ¼ 1:014�, where l is the internal material length in
strain gradient plasticity; plastic work hardening exponent

N ¼ 0:2, Possion�s ratio m ¼ 0:3, ratio of yield stress to elastic
modulus rY=E ¼ 0:2%, and remotely applied elastic stress in-
tensity factor KI=rYl1=2 ¼ 20; results are presented for flow and
deformation theories of MSG plasticity, as well as for the

classical flow theory of plasticity.
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strain gradient plasticity (Fleck and Hutchinson,

1997). Outside the plastic zone, all three curves

become the same straight lines with the slope of

�1=2, corresponding to the elastic K field with

square-root singularity. Moreover, all three curves
coincide inside the plastic zone at a distance of

more than 0:3l away from the crack tip. With l
being 4 lm for copper (Fleck et al., 1994; Gao

et al., 1999a), this means that the strain gradient

effect is significant within a zone of more than 1

lm to the crack tip. This zone of 1 lm is still

significantly larger than the average dislocation

spacing around the crack tip (for a typical dislo-
cation density of 1014 m�2) such that continuum

plasticity still applies. Within 0:3l to the crack tip,
classical plasticity theory gives a straight line with

the slope �N=ðN þ 1Þ, corresponding to the HRR
field (Hutchinson, 1968; Rice and Rosengren,

1968) in classical plasticity. Both flow and defor-

mation theories of MSG plasticity show that the

effective stress in MSG plasticity is much larger
than that in classical plasticity. For example, at a

distance of 0:1l to crack tip, which is approxi-
mately 0.4 lm for copper and is within the in-

tended application range of MSG plasticity (Gao

et al., 1999b; Huang et al., 2000a), the effective

stress predicted by MSG plasticity more than

doubles that in classical plasticity. It is also ob-

served that the absolute value of the slope at each
point on the curve for MSGplasticity exceeds or

equals to 1=2, suggesting the crack tip field in
MSG plasticity is not only more singular than the

HRR field, but also more singular than the elastic

K field. This high stress singularity results from the
dominance of geometrically necessary dislocations

around the crack tip in MSG plasticity (Shi et al.,

2001).
Fig. 4 shows the distribution of normal stresses

rhh and rrr ahead of the crack tip (at polar angle

h ¼ 1:0143�) predicted by both flow and defor-

mation theories of MSG plasticity, as well as by

the classical flow theory of plasticity. Material

properties are given in (36), and the remote applied

stress intensity factor is KI=rYl1=2 ¼ 20. It is ob-
served once again that the difference between two
theories of MSG plasticity is very small. At a small

distance r to crack tip, normal stresses in MSG
plasticity are larger than their counterparts in

classical plasticity, and are more singular than the

HRR field or even the elastic K field since the

absolute value of the slope exceeds or equals to

1=2.
Fig. 5 shows the normalized effective stress,

re=rY, versus normalized distance ahead of the
crack tip, r=l, at polar angle h ¼ 1:0143� for ap-
plied stress intensity factor KI=rYl1=2 ¼ 5, 10, and
20. Results are presented for both flow and de-

formation theories of MSG plasticity, as well as

Fig. 4. The distribution of normal stresses rhh and rrr ahead of

the crack tip (at polar angle h ¼ 1:014�) for flow and defor-
mation theories of MSG plasticity and for the classical flow

theory of plasticity. All normalization and material and loading

parameters are the same as those in Fig. 3.

Fig. 5. The distribution of effective stress ahead of the crack tip

(at polar angle h ¼ 1:014�) for both flow and deformation

theories of MSG plasticity. The remotely applied elastic stress

intensity factor is KI=rYl1=2 ¼ 5, 10 and 20. All normalization
and material parameters are the same as those in Fig. 3.
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for the classical flow theory of plasticity. Material

properties are given in (36). It is observed once

again that the difference between flow and defor-

mation theories of MSG plasticity is vanishingly

small, and the effective stress in MSG plasticity is

significantly larger than that in classical plasticity
near the crack tip. Similar to Fig. 3, the transition

from the elastic K field through a plastic zone to
the near tip field in MSG plasticity is clearly ob-

served, and the near-tip stress singularity in MSG

plasticity is higher than the HRR field in classical

plasticity as well as the elastic K field. The plastic
zone size increases rapidly with the applied load,

as seen from the intercepts of all curves with the
horizontal line re=rY ¼ 1. Each curve within the
plastic zone can be separated to a relatively flat

portion and a portion that rises rather sharply

near the crack tip, and the latter represents the

dominance zone of the near-tip field in MSG

plasticity. Even though the point separating the

two portions is not rigorously defined, it is clear

that the dominance zone size of the near-tip field in
MSG plasticity increases much slower with the

applied load than the plastic zone size does.

Fig. 6 shows the effect of plastic work hardening

on the effective stress distribution ahead of the

crack tip (at polar angle h ¼ 1:0143�). The remote
applied stress intensity factor is KI=rYl1=2 ¼ 20,
and plastic work hardening exponent N ¼ 0:1, 0.2

and 0.3. It is observed that all curves seem to ap-

proach straight lines with the same slope at small

distances to crack tip. This means the crack tip

singularity in MSG plasticity, unlike that in the

HRR field, is independent of the plastic work

hardening exponent. The same conclusion has
been established in the deformation theory of

MSG plasticity (Jiang et al., 2001), and is consis-

tent with Shi et al.�s (2000a, 2001) asymptotic ana-
lyses of crack tip field in MSG plasticity. In terms

of dislocation terminologies, this means that the

density of geometrically necessary dislocations is

much higher than that of statistically stored dis-

locations near the crack tip.
The numerical studies in this section have con-

firmed the conclusion established by Jiang et al.

(2001) that, due to the strain gradient effect, the

stress level around a crack tip in MSG plasticity is

significantly higher than its counterpart in classical

plasticity. As discussed in detail in Jiang et al.

(2001) and also in the next section, this provides an

alternative approach to explain the cleavage frac-
ture in ductile materials observed in experiments

(Bagchi et al., 1994; Elssner et al., 1994; Bagchi

and Evans, 1996).

5. Steady-state propagation of a mode-I crack

Recent experiments on metal-ceramic interfaces
(Bagchi et al., 1994; Elssner et al., 1994; Bagchi

and Evans, 1996) showed quasi-static propagation

of interface decohesion cracks in presence of sub-

stantial plasticity in metals. The interface crack

tips remained atomically sharp during continuous

crack propagation even though the metallic con-

stituents undergo significant plastic deformation.

Elssner et al. (1994) measured both macroscopic
fracture toughness and atomic work of separation

of an interface between a single crystal niobium

and a sapphire single crystal, and found that the

macroscopic work of fracture was two to three

orders of magnitude higher than the atomic work

of separation. This large difference between the

macroscopic work of fracture and its counterpart

at the atomic level was attributed to plastic dissi-
pation in niobium. This, however, leads to a

‘‘paradox’’ for continuum plasticity modeling of

Fig. 6. The distribution of effective stress ahead of the crack tip

(at polar angle h ¼ 1:014�). All normalization and material and
loading parameters are the same as those in Fig. 3, except the

plastic work hardening exponent N ¼ 0:1, 0.2 and 0.3.
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cleavage or decohesion cracks. According to re-

sults from classical plasticity for growing plane-

strain cracks in mode I, the maximum normal

stress that can be attained ahead of the crack tip is

about 2.6 times the initial tensile yield stress rY for
an elastic-perfectly plastic solid (Drugan et al.,
1982; Hwang and Luo, 1989). For a strain hard-

ening solid, the stress level is higher, but the

maximum normal stress never exceeds four to five

times rY at relevant distances ahead of the crack
tip (Gao and Hwang, 1981). On the other hand,

atomic separation around a cleavage or decohe-

sion crack requires a stress level on the order of

theoretical lattice strength, which is roughly E=30,
or 10 times rY for typical metals. The maximum
stress (4–5rY) predicted by classical plasticity

clearly falls short to trigger atomic separation

(10rY) observed in experiments (Bagchi et al.,
1994; Elssner et al., 1994; Bagchi and Evans,

1996).

Suo et al. (1993) proposed a model that embeds

an elastic strip around the crack tip in order to
provide the high stress level needed for an atomi-

cally sharp crack tip in ductile materials. The

height of strip is on the order of dislocation

spacing such that dislocation activities within the

strip cannot be homogenized and characterized by

continuum plasticity anymore. Such an elastic

strip surrounded by a plastic zone indeed signifi-

cantly increases the stress level near the crack tip.
Beltz et al. (1996) extended Suo et al.�s (1993)
model to provide a self-consistent estimate of the

strip height based on dislocation analysis, and

confirmed that the strip height is indeed on the

order of dislocation spacing. Wei and Hutchinson

(1999) combined Suo et al.�s (1993) model with the
embedded cohesion surface approach (Needleman,

1987; Tvergaard and Hutchinson, 1992, 1993; Xu
and Needleman, 1994; Camacho and Ortiz, 1996)

to investigate the stress level around a crack tip.

Strain gradient plasticity may provide an alter-

native approach to explain the high stress level

around a crack tip, as already demonstrated in the

previous section for a stationary crack tip. In fact,

using the phenomenological theory of strain gra-

dient plasticity (Fleck and Hutchinson, 1997), Wei
and Hutchinson (1997) have already shown that

the normal stress traction ahead of a quasi-static,

steadily growing mode-I crack is significantly ele-

vated due to the strain gradient effect. The normal

stress traction is much larger than its counterpart

in classical plasticity, and has indeed reached the

cleavage stress level of 10rY. Follow Wei and

Hutchinson (1997), we use the flow theory of MSG
plasticity to investigate steady state, quasi-static

growth of a mode-I crack in this section. This is

also a good example for the flow theory of MSG

plasticity since the deformation theory is simply

not applicable due to significant unloading during

crack propagation.

The solution scheme for steady-state mode-I

crack propagation in MSG plasticity is identical to
that developed by Wei and Hutchinson (1997) for

the phenomenological flow theory of strain gra-

dient plasticity (Fleck and Hutchinson, 1997).

Therefore, we do not present the solution scheme

in this paper, and refer readers interested in the

numerical method to Wei and Hutchinson (1997)

for details. Similar to Wei and Hutchinson (1997),

we focus on the normal stress distribution r22ðxÞ in
the plane of crack propagation y ¼ 0 ahead of the
propagating crack tip, i.e.,

r22
rY

¼ f22
x
Rp

;
l
Rp

;N ;
rY
E

; m


 �
; ð37Þ

where N is the plastic work hardening exponent,

rY the yield stress, E the elastic modulus, m the
Possion�s ratio; x the distance to the propagating
crack tip, and the half height of plastic zone, Rp, is
related to the remote applied elastic stress intensity

factor KI by (Wei and Hutchinson, 1997)

Rp ¼
K2I
3pr2Y

: ð38Þ

The ratio of internal material length l to the half
height of plastic zone Rp in (37) is related to the
normalized remote applied stress intensity factor

KI=rYl1=2 in (35) by

l
Rp

¼ 3p KI
rYl1=2


 ��2

: ð39Þ

Fig. 7 shows the normalized stress distribution for

N ¼ 0:2, rY=E ¼ 0:33%, m ¼ 0:3, and l=Rp ¼ 0, 1
and 2, where the limit l=Rp ¼ 0 corresponds to
the classical plasticity theory. It is observed that
the strain gradient effect significantly increases the
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stress level ahead of the propagating crack tip,

consistent with the conclusion established by Wei

and Hutchinson (1997). Therefore, strain gradient

plasticity indeed gives a much higher stress level

than classical plasticity does, and provides an al-

ternative approach to model cleavage or decohe-

sion cracks in ductile materials. It should be

pointed out that, at distances much further away
from the crack tip, stresses in MSG plasticity drop

slightly below those in classical plasticity. This was

also observed by Wei and Hutchinson (1997), and

is consistent with the requirement of overall force

equilibrium that the higher stresses near the crack

tip be offset by lower values away from the tip.

6. Summary

The following objectives have been achieved in

this paper.

(i) The flow theory of MSG plasticity has been es-

tablished via a multiscale, hierarchical frame-

work to derive the mesoscale law of strain
gradient plasticity from the microscale Taylor

model in dislocation mechanics (Taylor, 1934,

1938).

(ii) Both flow and deformation theories of MSG

plasticity agree very well with micro-in-

dentation hardness experiments. The elastic

compressibility (volumetric deformation) is

important in the study of micro-indentation
experiments and must be accounted for.

(iii) The flow theory of MSG plasticity agrees well

with the deformation theory in the study of

stationary crack tip field in MSG plasticity.

The stress level around a crack tip in MSG

plasticity is significantly larger than that in

classical plasticity.

(iv) Crack propagation in elastic-plastic solids
cannot be investigated by any deformation

theories of plasticity because of significant un-

loading involved. The flow theory of MSG

plasticity shows that the strain gradient effect

significantly increases the stress level ahead of

a steady state, quasi-statically propagating

crack tip. This is consistent with Wei and

Hutchinson�s study (1997), and provides a
means to explain the experimentally observed

cleavage fracture in ductile materials (Bagchi

et al., 1994; Elssner et al., 1994; Bagchi and

Evans, 1996).
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