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Stress Wave Propagation in a Gradient Elastic Medium *
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The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine
the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation
of motion, together with the internal material length, has been derived. Various dispersion relations have been
determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and

internal material length.

PACS: 46.40.Cd, 62. 30. +d

There is abundant and increasing evidence that
microstructures of materials have a major influence
on wave propagation if the wavelength is of the same
order as the characteristic size of the microstruc-
ture. This is of importance in applications of mi-
croelectromechanical systems (MEMS) for the de-
tection of material internal defects or other related
purposes. Suhubi and Eringen[!! have studied the
Rayleigh waves in micropolar theory, in which the mi-
crorotations were taken as free variables in their anal-
ysis. Ottosen et all?! investigated the propagation of
Rayleigh waves in an elastic medium described by the
indeterminate couple-stress theory.

To predict the scale effect, the constitutive equa-
tions must include some material intrinsic length
scales. There are several means to introduce a length
scale into constitutive equations, i.e., non-local the-
ory, couple-stress theory, plastic strain gradient the-
ory, and addition of higher-order gradients. Mindlin!®!
proposed a linear theory for the description of solid de-
formation, in which the density of strain energy was
the function of strain as well as of its first and second
gradients. Considering the second gradient of strain,
Mindlin claimed the incorporation of both cohesive
forces and surface tension into the linear elasticity.
The corresponding modification of Hooke’s law reads

g=A (l —IV? — QVV) (trg) + 2u (1 — 03V2) E.
(1)
Here ¢y, ¢ and c3 are the three independent gradient
coefficients having the dimension of length squared; A
and p are the Lamé constants; o and ¢ are the elastic
stress and strain tensors, respectively; I is the unit

tensor; and V2 is the Laplacian operator. The tensor
order is here denoted by the number of underbars. By
taking ¢; = ¢3 = ¢3 = 0, the standard Hooke law is
retrieved. In the special case of c; = 0, ¢1 = c3 = [?,
using Poisson’s ratio v and A = u%, Eq. (1) reduces
to

Oij = 21 <5ij + —1,"2,,5%51‘3')
—2Vv2 [2;1 (Ei]’ + ﬁskkéﬁ)} s

where §;; is the Kronecker delta, and [ is the internal
material length that may be deduced from the result-
ing wave dispersion equation as compared with a cor-
responding dispersion relation of lattice dynamics.!*!
As a matter of fact, Eq.(2) was proposed by Aifan-
tis et all59] to eliminate the strain singularity at the
crack tip. They have also shown that, for a crystalline
lattice, the intrinsic material length is taken to be of
the order of the interatomic distance a, specifically
[ 2 a/4. Other estimates for [ are possibly dependent
on the lattice or atomic chain model used and the in-
teratomic potentials assumed. This model has been
successfully used to predict the scale-dependent phe-
nomena of dislocation, fracture, interfacial mechanics
and failure of solids.

Substituting the strain tensor e;; = % (usj +u ;)
into Eq.(2) and then into the equation of motion,
0;5.; = pl; yields

(2)

1 - 1
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where u; is the displacement component, p is the mass
density, and the superimposed dot denotes the time
derivative. For a longitudinal wave, Eq. (3) is reduced
to

3 (uzu — Pulnu) = 1, (4)

20 1 —v
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is the longitudinal plane wave speed in gradient-free
isotropic infinite elastic medium. For the transverse
wave, however, Eq. (3) reduces to

where
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i (wigj — Puijijg) = i, (5)

where cr = \/u/p is the transverse wave speed in the
gradient-free isotropic infinite elastic medium.

Here we consider a plane monochromatic longitu-
dinal elastic wave propagating in an infinite medium,
and we assume the following displacement vectorl”]

; (6)

where Re denotes the real part, a; is the constant vec-
tor representing the direction of u;, n, is the unit vec-
tor normal to the wave front, z is the position vector,
q is the wavenumber, and ¢y, is the phase speed of the
longitudinal wave in the gradient elastic medium. The
relation between the position vector z, the wavenum-
ber ¢ and the wave speed ¢y, makes this function ac-
tually satisfy Eq. (4). Substituting Eq. (6) into Eq. (4)
and noticing n;n; = 1, we obtain

u; = Re |a;e ig(nszstept)

& = (1+P¢%). (7)

For the plane monochromatic transverse wave
propagation in the elastic infinite medium, we seek
solutions in the form

U; = Re {aie iq(nsmsztETt):| , (8)

where ¢ is the phase speed of the transverse wave
in the gradient elastic medium. The relation between
the position vector =4, the wavenumber g and the wave
speed ér makes this function actually satisfy Eq. (5).
Substituting Eq. (8) into Eq. (5), we have

& =2 (1+P¢). (9)

Longitudinal waves in a thin rod (uniform over
any cross section) are simply extensively or compres-
sively propagated along its length, thus it is a one-
dimensional problem. The gradient constitutive rela-
tion of Eq. (2) reduces to

Opy = E (Ezz - Fszz,zz) ) (10)

for one-dimensional problem, and €., = Uy 5, With u,
being the displacement along the z-axis. Substituting
Eq. (10) into the equation of motion, pil, = 4u,., We
obtain the equation of motion in terms of displacement
u, and the material intrinsic length, i.e.
Fua:,zzzz) 9 (11)
where ¢; = y/E/p is the one-dimensional elastic wave
speed.

We consider the propagation of monochromatic
plane waves in the thin rod

.02
Ut = Cq (uz,zz -

Uz = Ug0€ iq(a:—Elt), (12)

where wu,o is some constant, ¢ is the wavenumber
again, and ¢; is the corresponding phase velocity. Sub-
stituting Eq. (12) into Eq. (11) we obtain

<c—1>2 = (1+P¢), (13)

C1

which is equivalent to

e =cl [1 + (2%[)2] , (14)

where A is the wavelength of the longitudinal wave.

The simplification of ¢ = 0 and ¢; = ¢35 = [?
in Eq. (1) results in a stable material model, while
¢1 = c3 = —I2 can lead to a destabilized model.[®!

It is obvious that the wave speeds in the Lapla-
cian gradient elastic medium are dispersive and al-
ways larger than the conventional wave speeds. We
also have the following relationship

c 1—v
— = =4/2 . (15)
cr cr 1—-2v

It is seen from Eq.(15) that the velocity of the
plane longitudinal waves is always greater than that
of plane transverse waves in the Laplacian gradient
infinite medium, as shown in Fig.1. We always have
er/er > V2. For comparison, Ottosen et al.l? stud-
ied the wave propagation in a couple-stress elastic
medium and found that, for plane wave in an infinite
medium, the longitudinal wave speed is the same as
the conventional theory, i.e. ¢;, = ¢, and exhibits no
dispersion. It is interesting that the transverse wave
speed is also given by Eq. (14) for a couple-stress elas-
tic medium. As a result, for couple-stress theory when
I?¢> > —L_ . the transverse waves move faster than

-2
the longitudinal waves. Moreover, diffuse wave mo-

tion may occur when [?¢® = 1—121/’ as illustrated in
Fig. 2.
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Fig. 1. Plane wave speeds in a Laplacian gradient elastic
medium.
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Plane wave speeds in a couple-stress elastic

From Egs. (7), (9) and (13) we know that the gra-
dient effect can be neglected if the wavelength satisfies
A > 27l. For a crystalline lattice, if A > 1.57a, then
the gradient effect can be negligible.

In conclusion, the gradient elastic constitutive
equation incorporating the second gradient of the
strains is used to determine the monochromatic elastic
plane wave propagation in a gradient infinite medium
and in a thin rod. Analytical results show that con-
sideration of the stable gradient coefficient (intrinsic

material length squared) enhances the phase speeds of
various waves. In the gradient elastic infinite medium,
the longitudinal wave speed is always greater than
that of the transverse wave speed. This differs from
the results predicted by the so-called indeterminate
couple-stress theory. For crystalline lattices, the gra-
dient effect should be considered when the wavelength
is of the same order of or less than the lattice size,
and this effect can be neglected when the wavelength
is much greater than the lattice size.

It is noted that the study of wave propagation
in the gradient medium is important for MEMS and
other applications./®! In order to have a better un-
derstanding of material failure at microscale, further
work on elastic—plastic wave propagation in the gra-
dient medium is to be done.
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