粘性流动有限差分计算的新策略 *

高 智 申义庆

(中国科学院力学研究所,北京 100080)

摘要 对粘性流动计算,提出有限离散单元流动的流体分析(理论)和耦合离散流 体理论(CDFT)的差分格式.利用 CDFT 差分格式计算 Burgers 方程和计算激波边界 层干扰流动的数值实验表明:对计算精度和计算效率的提高,CDFT 格式比提高常用 差分格式(即离散流体力学方程得到的格式)精度和改选常用格式形式等更有效,且 运算量小.

关键词 粘性流体力学 计算流体力学 有限差分格式 流动离散的流体理论 耦合离散流体 理论算法 差分格式

近 30 多年来计算流体动力学得到了巨大的发展. 从力学的角度来看,流动计算最常用的 策略是求解某种流体运动微分方程组,例如在连续介质近似下,对全流场求解 Navier-Stokes (NS)方程组或求解 Euler 方程组或求解扩散抛物化(DP)NS 方程组(亦称抛物化 PNS 方程组和 简化 NS 方程组)^[1,2]. 另一种得到应用的策略是分区策略,亦称区域分裂方法(Domain decomposition methods)^[3],它把计算区域划分为彼此相邻或相互重叠的少数几个子区域,在不同子区 域既可求解不同的亦可求解同一个流体运动方程组.

由于粘性流动,特别是高 Reynolds(*Re*)数流动的非均匀和非线性特性,因此对流场的任一 空间离散划分,不同离散单元的流动特征并不相同.事实上,在常见的以及可能的流动计算 中,不同单元步长 *Re* 数的大小相差悬殊,同一单元在不同方向上(例如在边界层内离散单元 的流向和法向方向上)的步长 *Re* 数的大小同样相差悬殊(参见本文表 1),步长 Knudsen(*Kn*)数 亦有类似情况.常用计算策略中对流动特征不同的单元使用同样的离散模型,即作了笼统的 处理,在理论上和实践上都不能说最佳.避免上述缺陷是分区策略的一个重要目标,但分区策 略又出现了不同子区域解在子区域交界面上必需很好匹配的难题.因此需要研究离散尺度层 次上的流动规律(或流体理论),根据这种理论可构造与任一单元具体流动特征相匹配的该单 元的离散模型,从而在离散尺度层次上使计算恰到好处;再把所有的单元离散模型综合在一起 得到全域流场的离散模型.我们进一步深化了"高智"提出的上述理论思想和流动计算策 略^[4,5],得到一些很有意义的结果.

¹⁹⁹⁸⁻¹⁰⁻²⁸ 收稿,1999-01-25 收修改稿

^{*}国家自然科学基金(批准号:19772067;19393100)、中国科学院高温气体动力学开放实验室、科学与工程计算国家重点 实验室和中国科学院力学研究所所长择优基金资助项目

1 离散单元流动的流体理论

粘性流动最主要的一个物理过程是对流与扩散(即惯性力和粘性力)之间的竞争过程,为 了阐明对流与扩散在离散单元尺度上的竞争特性,弄清楚竞争特性对网格间距(步长)大小、对 步长 *Re* 数 *R* 、以及对步长 *Kn* 数 *K* 、数的依赖关系,我们考察不可压缩二维定常 NS 方程组动 量方程的如下有限差分方程^[6]

当 $x_i > R_c$,且 $y_i > R_c$ 时,方程(1)简化为

$$\frac{u_{ij}}{2} \frac{u_{ij}}{x_i} [(1 - 1) u_{i+1,j} - 2 u_{ij} + (1 + 1) u_{i-1,j}] + \frac{v_{ij}}{2 y_j} [(1 - 2) u_{i,j+1} - 2 u_{ij} + (1 + 2) u_{i,j-1}] = -D \left[\frac{1}{2} \frac{\partial p}{\partial x} \right], \quad (3)$$

这里 R_c 为扩散效应可忽略,确切地说扩散物理量在逆风方向下降到与它的初始值相比可近似 忽略的步长临界 R_e 数. 由于扩散物理量在逆风方向上随步长 R_e 数 R_x 的增加呈指数规律下降,所以 R_c 的取值具有"渐近"意义, R_c 取得稍大或稍小一点对解的影响不大,本文研究表明 取 $R_c = 2.3$ 比较合适,此时扩散量在逆风方向下降到初始值的 1/10. 根据上述分析和讨论,我 们提出如下离散单元流动的流体理论.

理论1 对离散流动满足连续介质假设的任一单元,若3个坐标方向上的步长大于或小

于中心格点物理量在各自方向上的迎风扩散特征距离,或者说3个坐标方向的步长 Re数都大于或都小于步长临界 Re数 R_c ,则该单元流动分别为对流效应或对流扩散竞争效应所支配.因此3个坐标方向 $R_{x_i} > R_e$ 的单元简称为无粘单元,而3个 $R_{x_i} = R_c$ 的单元简称为粘性单元.

理论 2 对离散流动满足连续介质假设的任一单元, 若 3 个坐标方向上的步长有的大于、 有的小于中心网格点物理量在各自方向上的迎风扩散特征距离, 或者说 3 个坐标方向上的步 长 *Re* 数有的大于、有的小于步长临界 *Re* 数 *R*_c, 则该单元流动在 *R*_{x_i} > *R*_c 的方向上为对流效 应所支配, 而在 *R*_{x_i} *R*_c 的方向上为对流扩散竞争效应所支配. 简称这种单元为部分无粘-粘性单元.

因此,对网格与流场特征相匹配(或相容)的任一空间离散划分,若所有单元的离散流动都 满足连续介质假设(若有单元不满足此假设的情况将在另文讨论),则任一单元流动的质量、动 量和能量守恒律可由定理1和2导出,不可压缩流质量和动量守恒律为

$$\int_{S} (\mathbf{u} \cdot \mathbf{n}) \, \mathrm{d}S = 0, \qquad (4)$$

$$\frac{\partial}{\partial t} \int_{V} u dt + \int_{S} [(u \cdot n) u + p \cdot n] dS = \int_{S} \cdot n dS, \qquad (5)$$

这里 *V* 和 *S* 分别是任一单元的体积和表面, n 为表面 *S* 的外法向单位矢量, 为作用在 *S* 表面 的应力张量. 对所有 3 个坐标方向上步长 *Re* 数 *R* _x > *R*_c(*R*_c = 2.3, *i* = 1,2,3) 的无粘单元

$$= 0. (6)$$

对所有 R_{x_i} $R_c(i=1,2,3)$ 的粘性单元

$$= (_{ij}), \quad _{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) ; \qquad (7)$$

对 $R_x > R_c$, $R_y = R_c$, 和 $R_z = R_c$ 的部分无粘粘性单元

$$= \mu \begin{bmatrix} 0 & 0 & 0 \\ \frac{\partial \mu}{\partial y} & 0 & \left(\frac{\partial \nu}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \frac{\partial \mu}{\partial z} & \left(\frac{\partial \nu}{\partial z} + \frac{\partial w}{\partial y} \right) & 0 \end{bmatrix}; \qquad (8)$$

对 $R_x > R_c$, $R_z > R_c$, 和 R_y R_c 的部分无粘-粘性单元

$$= \mu \begin{vmatrix} 0 & 0 & 0 \\ \frac{\partial \mu}{\partial y} & 0 & 0 \\ 0 & \frac{\partial w}{\partial y} & 0 \end{vmatrix}.$$
(9)

应当指出,对气体流动,离散气流满足连续介质近似要求 3 个坐标方向上的步长 Kn 数都 小于 1. 由于步长 Kn 数 K $x_i = \sqrt{\frac{2}{2}} \frac{M_{x_i}}{R_{x_i}} (i = 1, 2, 3)$,这里 为比热比, M_{x_i} 是计算网格点在 x_i 方向的 Mach 数,因此对 $M_{x_i}/R_{x_i} (i = 1, 2, 3)$ 不小于 1 的单元,需要计及离散分子运动的效应.

2 耦合离散流体理论(CDFT)的有限差分算法

如上所述,流动计算可通过求解离散守恒律(4),(5)式,同时利用粘性本构关系(6)~(9)

式来完成. 这样的离散方程已对不同单元的具体流动做到了具体处理,因此离散方程与所有 单元的具体流动特征均相一致. 故称这种算法为耦合离散流体理论(CDFT)的算法. CDFT算 法在离散尺度层次上使计算恰到好处. 另一方面,若速度对空间变量 2 次可微,由守恒律(4), (5)式可导出 NS 方程组. 对于这种情况,CDFT算法可通过在 NS 离散方程(即 NS 方程组的离 散方程)中增加开关函数 *F_d*来实现,我们以不可压定常 NS 方程组为例加以说明,设 NS 方程 组动量方程的差分格式为

$$D[(\mathbf{u} \cdot)\mathbf{u}] = -D(p) + D(\mu^{2} \mathbf{u}), \qquad (10)$$

相应的加开关函数的 CDFT 差分格式即为

$$D[(\mathbf{u} \cdot) \mathbf{u}] = -D(p) + F_{d}D(\mu^{-2} \mathbf{u}), \qquad (11)$$

$$F_{d}D(\mu^{-2} \mathbf{u}) = \begin{cases} D(\mu^{-2} \mathbf{u}), & \mathbf{\ddot{R}} R_{x}, R_{y}, R_{z} = R_{c}, \\ D\left[\mu\left(\frac{\partial^{2} \mathbf{u}}{\partial y^{2}} + \frac{\partial^{2} \mathbf{u}}{\partial z^{2}}\right)\right], & \mathbf{\ddot{R}} R_{x} > R_{c}; R_{y}, R_{z} = R_{c}, \\ D\left[\mu\left(\frac{\partial^{2} \mathbf{u}}{\partial y^{2}}\right), & \mathbf{\ddot{R}} R_{x}, R_{z} > R_{c}, R_{y} = R_{c}, \\ 0, & \mathbf{\ddot{R}} R_{x}, R_{y}, R_{z} > R_{c}, \end{cases} \end{cases}$$

其中 $D[(u \cdot)u], D(p)$ 和 $D(\mu^2 u)$ 分别表示 $(u \cdot)u, p$ 和 $\mu^2 u$ 项的差分近似. 应该指出,加开关的 CDFT 算法以 NS 离散方程(例如 NS 差分格式、NS 有限体积法等)的丰硕 成果为出发点,既省事又简捷. 因此本文首先研究加开关函数 F_d 的 CDFT 算法. 关于离散守 恒律(4),(5)式的计算将在另文给出. 此外,在 CDFT 差分算法中,数值解在相邻单元交界面 上"自然"相匹配. 关于边界条件,由于边界层内与流动特征相容的法向方向上的步长 Re 数 总小于 1,因此 CDFT 算法的固壁边界条件与 NS 方程或 DPNS 方程计算的固壁边界条件一致, 即固壁边界上为无滑移(u=0)条件. 在流向下游边界的邻域,若流向步长 Re 数大于步长临 界 Re 数 R_c ,则无需规定下游边界条件,若流向步长 Re 数小于 R_c ,则流向下游边界条件的处理 应与 NS 方程计算的处理一致.

3 理论的数值验证

今以 Burgers 模型方程和激波边界层干扰流动为算例检验上述理论的正确性.采用加开 关函数构造 CDFT 差分格式.计算中步长临界 *Re* 数 $R_c = 2.3$.利用一阶和二阶迎风差分格 式、2 种二阶精度 TVD^[8]、三阶 ENO^[9,10]和五阶 ENO 等 6 种差分格式(参见附录)以及它们的相 应 6 种耦合离散流体理论(CDFT) 差分格式数值计算了 Burgers 模型方程

$$u \frac{\partial u}{\partial x} = \frac{1}{Re} \frac{\partial^2 u}{\partial x^2}.$$
 (13)

对所有格式计算采用了同一个均匀网格体系. 典型的数值结果见表 2,3 和表 4,主要结论是:6种 CDFT 差分格式均比原始6种差分格式的数值结果更靠近准确解,且 CDFT 差分格式的运算量少. 6种原始差分格式中,精度最差和次差的一阶和二阶迎风格式之 CDFT 格式的数值结果分别比原始 2种二阶精度 TVD 格式和最好的原始五阶 ENO 格式的数值结果更靠近准确解. 6种 CDFT 格式数值结果之间的相对差异比原始 6种差分格式数值结果之间的相对差异比原始 6种差分格式数值结果之间的相对差异比原始 6种差分格式数值结果之间的相对差异

2

离散 Burgers 方程得到的差分格式) 精度和改进 Burgers 差分格式形式更有效.

	x = 0.53	34 98	<i>x</i> = 1.06	59 96	x = 1.31	6 87
v	<i>R</i> ,	R ,		R x	<i>R</i> , ,	R x
2. 277 2. $\times 10^{-4}$	2. 746 67 $\times 10^{-5}$	130,092.0	1 844 78 ×10 ⁻⁵	85.718.99	7 161 35 $\times 10^{-5}$	8,639,522
$1.428.6 \times 10^{-3}$	9.554 91 ×10 ⁻⁴	837.5493	5.635 64 $\times 10^{-4}$	548.4834	2.307 14 $\times 10^{-3}$	111.8144
3.275 3 ×10 ⁻³	8.615 27 ×10 ⁻³	2 138.001	4.092 31 ×10 ⁻³	1 336.993	1.916 56 ×10 ⁻²	456.627 4
6.112 6 ×10 ⁻³	5.965 09 ×10 ⁻²	5 136.930	2.184 51 ×10 ⁻²	2 919.547	0.107 30	1 410.622
1.046 6 ×10 ⁻²	0.22039	8 906.021	0.109 82	6 531.263	0.511 76	3 680.890
1.713 4 ×10 ⁻²	0.365 99	9 276.611	0.274 54	9 173.983	1.7592	8 766.472
2.169 0 ×10 ⁻²	0.457 42	9 283.391	0.34047	9 265.353	2.2200	9 411.724
2.731 6 ×10 ⁻²	0.57272	9 288.878	0.414 69	9 273.523	2.565 8	9 453.478
3.425 2 ×10 ⁻²	0.718 66	9 295.452	0.504 22	9 279.521	2.859 3	9 443.521
4.279 3 ×10 ⁻²	0.903 89	9 297.031	0.613 05	9 281.052	3.074 5	9 424.580
5.329 0 ×10 ⁻²	1.141 6	9 299.096	0.746 38	9 281.158	3.160 9	9 399.714
6.616 0 ×10 ⁻²	1.451 0	9 302.421	0.911 74	9 282.509	3.071 1	9 374.920
8.189 8 ×10 ⁻²	1.863 1	9 305.510	1.115 6	9 282.745	2.775 8	9 350.687
0.101 0	2.438 5	9 310. 595	1.363 6	9 283.453	2.282 0	9 332.409
0.112 1	2.826 8	9 314.052	1.506 9	9 283.807	1.953 0	9 326.233
0.124 3	3.325 9	9 318.652	1.666 6	9 284.220	1.557 4	9 323.276
0.137 7	4.005 1	9 325.478	1.842 4	9 284.976	1.038 4	9 323.759
0.152 4	4.981 9	9 335.786	2.035 4	9 286.049	0.34779	9 328.511
0.168 5	6.381 1	9 350.557	2.241 8	9 287.847	0.661 03	9 338.252
0.205 4	9.070 9	9 369.164	2.6517	9 292.413	4.4458	9 381.431
0.249 1	10.119	9 362.371	2.784 1	9 302.298	13.824	9 472.586
0.300 4	6.422 9	9 312.703	1.586 0	9 327.588	32.464	9 611.922
0.360 2	1.6137	9 263.827	4.384 1	9 396.148	49.550	9 706.289
0.428 7	0.254 77	9 252.116	25.264	9 576.689	62.547	9 754.487
0.506 2	6.783 83 ×10 ⁻²	9 250.821	52.248	9 750.683	71.466	9 781.236
0.5923	0.988 22	9 256.077	74.253	9 781.244	75.160	9 811.669
0.686 3	9.498 5	9 301.968	93.368	9 743.705	82.636	9 807.203
0.786 9	60.562	9 537.860	103.36	9 722.801	95.665	9 761.245
0.892 2	104.13	9 691.162	108.12	9 709.118	106.51	9 718.011
1.000 0	110.37	9 729.432	110.37	9 729.432	110.37	9 729.432
	x = 1.60)4 94	x = 1.851 85		x = 2.09	8 77
y	R _y	R_x	R _y	R _x	R _y	R _x
2.277 2 $\times 10^{-4}$	6.441 70 ×10 ⁻⁵	10.10672	8.090 51 ×10 ⁻⁶	30.617 18	4.56471 ×10 ⁻⁵	9.937 086
$1.428 6 \times 10^{-3}$	4.784 48 ×10 ⁻⁴	59.721 32	$1.772\ 50\ \times 10^{-4}$	160.386 8	1.412 44 ×10 ⁻³	20.394 21
3.275 3 ×10 ⁻⁵	1.564 87 ×10 ⁻³	104.567 6	3.612 44 ×10 ⁻⁴	258.600 1	1.006 89 ×10 ⁻²	98.138 38
6.112 6 ×10 ⁻³	9.911 80 ×10 ⁻⁴	88.717 18	4.976 15 ×10 ⁻³	201.270 8	4.56476 ×10 ⁻²	555.277 6
1.046 6 ×10 ⁻²	3.863 58 ×10 ⁻²	152.156 0	6.311 36 ×10 ⁻²	266.6167	0.179 35	1 747.374
1.713 4 ×10 ⁻²	0.318 95	1 142.250	0.432 50	1 857.157	0.906 68	6 476.253
2.169 0 ×10 ⁻²	1.123 49	3 762.446	1.387 6	4 695.698	1.562 5	8 770.020
2.731 6 ×10 ⁻²	3.2202	7 917.601	3.068 4	8 308.229	2.233 5	9 757.673
3.425 2 ×10 ⁻²	4.7137	9 557.988	4.441 6	9 630.725	2.9674	9 986.661
4.279 3 ×10 ⁻²	5.724 3	9 782.932	5.663 0	9 826.449	3.8878	10 009.57
5.329 0 ×10 ⁻²	6.5914	9 826.441	6.980 0	9 855.720	5.1202	9 998.879
6.616 0 ×10 ⁻²	7.1800	9 862.795	8.405 1	9 872.445	6.802 9	9 983.176
8.189 8 ×10 ⁻²	7.078 4	9 905.324	9.756 9	9 903.490	9.1084	9 962.316
0.101 0	5.7360	9 954.338	10.670	9 943.644	12.233	9 935.944
0.112 1	4.465 1	9 976.690	10.774	9 969.670	14.099	9 922.592
0.124 3	2.6778	9 993.755	10.486	9 999.972	16.140	9 909.870
0.137 7	0.275 09	10 005.01	9.8484	10 033.98	18.201	9 901.701

表 1 激波边界层干扰流动计算 (TVD 格式)的步长 Re 数 R_{γ} 和 R_{x}

表1(续)

4	3	8

	x = 1.	604 94	<i>x</i> = 1.851 85		<i>x</i> = 2.098 77	
у	R _y	R _x	R_{y}	R_{x}	R _v	R_{x}
0.1524	2.897 2	10 000.68	8.866 5	10 068.64	20.213	9 897.896
0.168 5	7.089 4	9 986.535	7.6672	10 100.33	22.134	9 897.644
0.205 4	19.183	9 912.457	6.371 1	10 136.83	25.689	9 906.099
0.2491	34.654	9 821.048	7.838 0	10 135.70	25.777	9 954.709
0.3004	47.889	9 775.915	14.648	10 090.91	18.095	10 059.35
0.3602	58.204	9 764.468	37.995	9 933.579	14.073	10 108.94
0.4287	67.202	9 763.828	61.772	9 804.446	18.629	10 092.80
0.5062	73.350	9 767.161	74.878	9 769.745	44.867	9 954.524
0.5923	82.037	9 773.356	83.436	9 764.286	76.926	9 798.374
0.6863	85.144	9 792.019	89.736	9 765.243	89.123	9 761.579
0.7869	88.316	9 795.940	91.775	9 772.344	94.545	9 750.910
0.8922	94.382	9 776.321	91.688	9 783.306	95.953	9 763.785
1.000 0	110.37	9 729.432	110.37	9 729, 432	110.37	9 729.432

表 2 CDFT 差分格式和原始一阶迎风(1-UW)、二阶迎风(2-UW) 差分格式数值结果及相对误差

(<i>Re</i> =	10 ⁴	$, R_{\rm c}$	= 2.	3)

xi	CDFT(1-UW) 1-UW		JW	CDFT(2-UW)		2-UW	
×1 000	u _i	R. E.	<i>u</i> _i	R. E.	<i>u</i> _i	R. E.	<i>u</i> _i	R. E.
- 5.00	1.000 000 0	0.0000000	1.000 000 0	0.0000000	1.000 000 0	0.0000000	1.000 000 0	0.0000000
- 4.75	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000	1.00000000	0.0000000	$1.000\ 000\ 0$	0.000 000 0
- 4.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 4.25	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 4.00	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000	1.00000000	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 3.75	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000	1.00000000	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 3.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000	1.00000000	0.0000000	$1.000\ 000\ 0$	0.000 000 0
- 3.25	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.9999999	0.0000001	1.00000000	0.0000000	$1.000\ 000\ 0$	0.000 000 0
- 3.00	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.99999996	0.0000004	1.00000000	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.0000000
- 2.75	1.000 000 0	0.000 000 0	0.9999988	0.000 001 2	1.000 000 0	0.0000000	0.9999999	0.000 000 1
- 2.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.999 995 7	0.000 004 3	1.000 000 0	$0.000\ 000\ 0$	0.99999996	0.000 000 4
- 2.25	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.999 984 9	0.000 0015 1	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.999 998 2	0.000 001 8
- 2.00	1.000 000 0	0.000 000 0	0.9999473	0.000 052 7	1.000 000 0	0.0000000	0.99999920	0.000 008 0
- 1.75	1.000 000 0	- 0.000 000 1	0.9998156	0.000 184 4	1.000 000 0	- 0.000 000 1	0.9999643	0.000 035 7
- 1.50	1.000 000 0	- 0.000 000 6	0.9993545	0.000 645 3	1.000 000 0	- 0.000 000 6	0.999 840 4	0.000 159 0
- 1.25	1.000 000 0	- 0.000 007 5	0.9977414	0.002 256 3	1.000 000 0	- 0.000 007 5	0.9992866	0.000 706 4
- 1.00	1.000 000 0	- 0.000 090 8	0.992 101 2	0.007 870 1	1.000 000 0	- 0.000 090 8	0.996 812 4	0.003 106 7
- 0.75	1.000 000 0	- 0.001 105 5	0.9724324	0.027 212 2	1.000 000 0	- 0.001 105 6	0.985 779 6	0.013 304 1
- 0.50	0.999999	- 0.013 385 6	0.904 463 8	0.090 827 8	1.000 000 0	- 0.013 385 7	0.937 010 8	0.052 938 0
- 0.25	0.762 049 7	0.113 160 5	0.677 032 7	0.2529433	0.7999999	0.0603547	0.729 801 3	0.162 348 7
0.00	0.000.000.0	0.000.000.0	0.000.000.0	0,000,000,0	0 000 000 0	0.000.000.0	0.000.000.0	0.000.000.0

对激波边界层二维干扰流动计算,采用可压缩二维 NS 方程组^[1].为了反映薄边界层和 提高计算精度,把物理坐标(x,y)变换到(,,),

$$= x, = 1 - \frac{\ln\left(\frac{+1 - y_1}{-1 + y_2}\right)}{\ln\frac{+1}{-1}}, \qquad (14)$$

其中 $y_1 = y/h$, h 为计算区域高度, 1 < <, 越接近于 1, 壁面附近的法向网格越密. 图 1 和图 2 分别给出壁面摩阻和压力分布, 实验⁽¹¹⁾条件是 M = 2.0, $Re = 2.96 \times 10^5$, T = 293K, 激波入射角 = 32.585 ; 原始 Roe 形式 TVD 格式⁽⁸⁾之数值结果以及相应 CDFT 差分格式的

2

数值结果均与实验点较好相符,CDFT格式所需计算时间约是原始 Roe TVD格式计算时间的 1/3~1/2. 表1给出 x方向6个位置上流向和法向步长 Re数R x和R y随法向坐标y的变

表 3	CDFT 差分格式和原始 2 种二阶	TVD 差分格式数值结果及相对误差

 $(Re = 10^4, R_c = 2.3)$

xi	CDFT(TVD-1)	TVI	D-1	CDFT(TVD-2)	TV	D-2
x 1 000	<i>u</i> _i	R. E.	<i>u</i> _i	R. E.	<i>u</i> _i	R. E.	<i>u</i> _i	R. E.
- 5.00	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 4.75	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 4.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 4.25	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 4.00	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 3.75	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 3.50	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 3.25	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 3.00	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 2.75	1.000 000 0	0.000 000 0	0.999 999 9	0.000 000 1	1.000 000 0	0.000 000 0	0.9999999	0.000 000 1
- 2.50	1.000 000 0	0.000 000 0	0.999 999 6	9.000 000 4	1.000 000 0	$0.000\ 000\ 0$	0.999 999 6	0.000 000 4
- 2.25	1.000 000 0	0.000 000 0	0.999 998 1	0.000 001 9	1.000 000 0	$0.000\ 000\ 0$	0.999 998 4	0.000 001 6
- 2.00	1.000 000 0	0.000 000 0	0.999 991 3	0.000 008 7	1.000 000 0	$0.000\ 000\ 0$	0.9999928	0.000 007 2
- 1.75	1.000 000 0	- 0.000 000 1	0.999 961 1	0.000 038 9	1.000 000 0	- 0.000 000 1	0.999 967 7	0.000 032 2
- 1.50	1.000 000 0	- 0.000 000 6	0.999 826 0	0.000 173 4	1.000 000 0	- 0.000 000 6	0.999 855 6	0.000 143 8
- 1.25	1.000 000 0	- 0.000 007 5	0.999 222 5	0.000 770 7	1.000 000 0	- 0.000 007 5	0.999 354 8	0.000 638 2
- 1.00	$1.000\ 000\ 0$	- 0.000 090 8	0.996 526 7	0.003 394 3	1.000 000 0	- 0.000 090 8	0.997 116 3	0.002 800 9
- 0.75	1.000 000 0	- 0.001 105 6	0.984 520 7	0.014 599 7	1.000 000 0	- 0.001 105 6	0.987 124 6	0.011 923 3
- 0.50	1.000 000 0	- 0.013 385 7	0.931 743 0	0.058 891 0	$1.000\ 000\ 0$	- 0.013 385 7	0.942 752 5	0.046 525 3
- 0.25	0.788 514 8	0.075 799 3	0.712 681 5	0.190 270 4	0.814 916 4	0.040 945 6	0.750 210 0	0.130 728 2
0.00	0.000.000.0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000.000.0

表 4 CDFT 差分格式和原始三阶 ENO (3- ENO) 和五阶 ENO (5- ENO) 差分格式数值结果及相对误差

 $(Re = 10^4, R_c = 2.3)$

xi	CDFT(3- ENO)	3 - E	NO	CDFT(5- ENO)	5- E	NO
× 1 000	<i>u</i> _i	R. E.	ui	R. E.	<i>u</i> _i	R. E.	<i>u</i> _i	R. E.
- 5.00	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0	1.000 000 0	0.000 000 0
- 4.75	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 4.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 4.25	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 4.00	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 3.75	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 3.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 3.25	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 3.00	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 2.75	$1.000\ 000\ 0$	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	0.000 000 0
- 2.50	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.999 999 9	0.000 000 1	1.000 000 0	$0.000\ 000\ 0$	$1.000\ 000\ 0$	$0.000\ 000\ 0$
- 2.25	1.000 000 0	0.000 000 0	0.999 999 5	0.000 000 5	1.000 000 0	0.000 000 0	0.999 999 8	0.000 000 2
- 2.00	$1.000\ 000\ 0$	$0.000\ 000\ 0$	0.999 997 2	0.000 002 7	1.000 000 0	$0.000\ 000\ 0$	0.999 998 8	0.000 001 2
- 1.75	$1.000\ 000\ 0$	- 0.000 000 1	0.999 986 1	0.000 013 8	1.000 000 0	- 0.000 000 1	0.999 993 3	0.000 006 7
- 1.50	1.000 000 0	- 0.000 000 6	0.999 930 2	0.000 069 2	1.000 000 0	- 0.000 000 6	0.999 962 4	0.000 037 0
- 1.25	$1.000\ 000\ 0$	- 0.000 007 5	0.999 648 5	0.000 344 2	1.000 000 0	- 0.000 007 5	0.9997893	0.000 203 3
- 1.00	$1.000\ 000\ 0$	- 0.000 090 8	0.998 229 8	0.001 682 3	1.000 000 0	- 0.000 090 8	0.998 819 7	0.001 090 8
- 0.75	1.000 000 0	- 0.001 105 6	0.991 090 7	0.007 873 9	1.000 000 0	- 0.001 105 6	0.993 391 2	0.005 539 9
- 0.50	$1.000\ 000\ 0$	- 0.013 385 7	0.955 304 1	0.032 775 1	1.000 000 0	- 0.013 385 7	0.963 059 4	0.024 458 4
- 0.25	0.839 087 9	0.010 959 2	0.779 422 3	0.088 349 2	0.848 649 5	- 0.000 431 2	0.791 271 6	0.072 051 2
0.00	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0	0.000 000 0

化,网格加密 10 倍,即取 650 ×650 时,表4 中的 R 和 R 分别约减少 10 倍. 表1 数据进一步 数值地说明离散流体理论在粘性流动计算中的意义和采用 CDFT 算法的必要性,值得指出在 NS 离散方程中加开关的 CDFT 算法,不仅实施方便,精度好,且可大大节省机时.此外,不论 对 Burgers 方程计算还是对激波边界层干扰流动计算, CDFT 格式的实际计算均没有出现区域 分裂算法^[3]中的边界匹配问题.

最后指出 .流动计算的 CDFT 算法提出了不少值得进一步研究的课题 .例如粘性本构关系 的完善化,部分单元满足、部分单元不满足连续介质近似的问题以及湍流问题等.

老 文 献

- 1 Anderson D A, Tannehill J D, Pletcher R H. Computational Fluid Mechanics and Heat Transfer. New York : Hemisphere , 1984
- 2 Ecer A, Periaux J, Satofuka N, et al. Parallel Computational Fluid Dynamics. North-Holland. Elsevier Science, 1996
- 3 Gowinski R, eds. In: Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations Philadelphia, USA, 1988
- 高 智. 流场计算中数值近似与力学近似相结合的几个问题. 中国学术期刊文摘(科技快报),1997,3(5):615~617 4
- 5 高 智. 流场离散单元流动的流体理论和耦合离散流体理论的算法. 中国学术期刊文摘(科技快报),1998,4(4):474 ~ 477
- 6 Gao Z. A higher-order accurate upwind compact difference scheme for the convective diffusion equation. In : Proceedings of Asia Workshop on Computational Fluid Dynamics, Sept. Sichuan, China, 1994, 18~24
- 7 高 智. 简化 Navier-Stokes 方程的层次结构及其力学内涵和应用. 中国科学, A 辑, 1988, (6): 625~640
- Roe PL. Some contributions to the modelling of discontinuous flows. In : Lectures in Applied Mathematics , 1985 , 22 : 163 ~ 189 8
- Harten A, Engquist B, Osher S, et al. Uniformly high-order accurate essentially non-oscillatory schemes III. J Comp Phys, 1987, 71: 9 231~303
- 10 Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J Comp Phys, 1989, 83: 32 ~ 78
- 11 Hakkinen R J, Greber I, Trilling L, et al. The interaction of an oblique shock wave with a laminar boundary layer. In: NASA Memo 2-18-59w March, 1959

440

文中使用的诸差分格式 附录 A

考虑如下双曲守恒律方程

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \qquad (A1)$$

其中 f(u) 为通量函数,可分裂为两部分, $f(u) = f^+(u) + f^-(u)$, $\frac{df^+(u)}{du} = 0$, $\frac{df^-(u)}{du} < 0$. 对方程(A1),半 离散化的守恒型差分格式如下:

$$\frac{\mathrm{d}\,u_j}{\mathrm{d}\,t} + \frac{\left(h_{j+\frac{1}{2}} - h_{j,\frac{1}{2}}\right)}{x} = 0, \tag{A2}$$

数值通量可分解为 $h_{j+\frac{1}{2}} = h_{j+\frac{1}{2}}^+ + h_{j+\frac{1}{2}}^-$.本文中,我们使用了以下差分格式:

(1) 一阶迎风格式

(1) 一阶迎风格式
(2) 二阶迎风格式

$$\begin{cases}
h_{j+\frac{1}{2}}^{*} = f_{j}^{*}, \\
h_{j+\frac{1}{2}}^{*} = f_{j+1}^{*}.
\end{cases}$$
(A3)

$$\begin{cases}
h_{j+\frac{1}{2}}^{*} = \frac{3}{2}f_{j}^{*} - \frac{1}{2}f_{j-1}^{*}, \\
h_{j+\frac{1}{2}}^{*} = -\frac{1}{2}f_{j+2}^{*} + \frac{3}{2}f_{j+1}^{*}.
\end{cases}$$
(A4)

(3) TVD 格式 1

$$h_{j+\frac{1}{2}} = \frac{1}{2} \left[f_j + f_{j+1} \right] + \frac{1}{2} \left[\int_{j+\frac{1}{2}}^{j+\frac{1}{2}} \overline{\phi_{j+\frac{1}{2}}} - \int_{j+\frac{1}{2}}^{j+\frac{1}{2}} J_{j+\frac{1}{2}} \right] u,$$
(A5)

其中

$$\begin{array}{c} \overbrace{j+\frac{1}{2}} = / \quad j+\frac{1}{2} / , \quad & -j + \frac{1}{2} = (j+\frac{1}{2}) , \\ \\ j+\frac{1}{2} = \begin{cases} f_{j+1} - f_j \\ j+\frac{1}{2} u , & j+\frac{1}{2} u & 0 , \\ \\ \left(\frac{\partial f}{\partial u} \right)_j , & j+\frac{1}{2} u = 0 , \\ \\ (z) = \begin{cases} / z / , & / z / , \\ \frac{2}{2} + z^2 \\ 2 \end{pmatrix} , & |z| < z \end{cases}$$

 $-\frac{1}{\phi_{j+\frac{1}{2}}} = \phi(r)$ 为限制器函数, $(z) \in z$ 的修正函数.

$$r = \frac{u_{j+1} - u_{j}}{j + \frac{1}{2}u}, \quad = \operatorname{sgn}(j + \frac{1}{2}),$$

$$\phi(r) = \min \mod(1, r)$$

(4) TVD 格式 2

$$\begin{cases} h_{j+\frac{1}{2}}^{+} = f_{j}^{+} + \frac{1}{2} ms \left(f_{j+\frac{1}{2}}^{+}, f_{j-\frac{1}{2}}^{+} \right), \\ h_{j+\frac{1}{2}}^{-} = f_{j+1}^{-} - \frac{1}{2} ms \left(f_{j+\frac{3}{2}}^{-}, f_{j+\frac{1}{2}}^{-} \right), \\ ms(a, b) = \begin{cases} a / a / / b /, \\ b / a / > / b /. \end{cases}$$
(A6)

(5) 三阶 ENO 格式

7

$$f_{j+2} = \left[f_{j+1} - \frac{1}{2} f_{j-\frac{1}{2}} - \frac{1}{6} ms(D_j^{-}, D_{j+1}^{-}), / f_{j+\frac{3}{2}} / 2 / f_{j+\frac{1}{2}} / 2 / f_{j+\frac{1}{2}} / 2 / 2 \right]$$

其中 $D_j^{\pm} = f_{j^{\pm}\frac{1}{2}} - j^{\pm}\frac{1}{2}$.

(6) 五阶 ENO 格式

由(A7)式中2式分别得到2个四阶通量

$$h_{j+\frac{1}{2}}^{1+\frac{1}{2}} = f_{j}^{+} + \frac{1}{2} f_{j+\frac{1}{2}}^{+\frac{1}{2}} - \frac{1}{6} \left(\begin{array}{c} & D_{j}^{+} + & D_{j+1}^{+} \end{array} \right), \tag{A9}$$

$$h_{j+\frac{1}{2}}^{2+\frac{1}{2}} = f_{j}^{+} + \frac{1}{2} f_{j-\frac{1}{2}}^{+} + \frac{1}{3} \left(\frac{1}{3} D_{j}^{+} + \frac{1}{4} D_{j-1}^{+} \right),$$
(A10,

其中

再由(A9),(A10)式得五阶 ENO 格式

$$h_{j+\frac{1}{2}}^{+} = {}_{1}^{+} h_{j+\frac{1}{2}}^{1+} + {}_{2}^{+} h_{j+\frac{1}{2}}^{2+}, \qquad (A11)$$

其中

$$\begin{array}{c} {}^{+}_{1} = \frac{1}{1+2}, \quad {}^{+}_{2} = \frac{2}{1+2}, \\ {}^{+}_{1} = \frac{C_{1}}{(1+W_{5}^{1})}, \quad {}^{-}_{2} = \frac{C_{2}}{(1+W_{5}^{2})}, \end{array}$$

这里

$$\begin{cases} IS_{0} = \frac{13}{12} (f_{j \cdot 2} - 2f_{j \cdot 1} + f_{j})^{2} + \frac{1}{4} (f_{j \cdot 2} - 4f_{j \cdot 1} + 3f_{j})^{2}, \\ IS_{1} = \frac{13}{12} (f_{j \cdot 1} - 2f_{j} + f_{j + 1})^{2} + \frac{1}{4} (f_{j \cdot 1} - f_{j + 1})^{2}, \\ IS_{2} = \frac{13}{12} (f_{j} - 2f_{j + 1} + f_{j + 2})^{2} + \frac{1}{4} (3f_{j} - 4f_{j + 1} + f_{j + 2})^{2}, \\ W_{1} = IS_{1}, W_{2} = IS_{2}, W_{3} = IS_{1}, W_{4} = IS_{0}, \\ W_{5}^{1} = IS_{2}, W_{5}^{2} = IS_{0}, \\ C_{1}^{1} = \frac{1}{2}, C_{2}^{1} = \frac{1}{2}, C_{1}^{2} = \frac{3}{4}, C_{2}^{2} = \frac{1}{4}, \\ C_{1} = \frac{3}{5}, C_{2} = \frac{2}{5}. \end{cases}$$

为一小参数,本文取 = 10^{-20} . $h_{j+\frac{1}{2}}^{-1}$ 与 $h_{j+\frac{1}{2}}^{+1}$ 关于 $j+\frac{1}{2}$ 对称,这里不再给出.

附录 B 可压缩二维 Navier-Stokes 方程

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = \frac{\partial F_y}{\partial x} + \frac{\partial G_y}{\partial y}, \qquad (B1)$$

其中

$$U = (\ , \ u, \ v, \ e_t)^{\mathrm{T}}, \qquad F = (\ u, \ u^2 + p, \ uv, (\ e_t + p) \ u)^{\mathrm{T}}, G = (\ v, \ uv, \ v^2 + p, (\ e_t + p) \ v)^{\mathrm{T}}, G_v = (0, \ _{xy}, \ _{yy}, \ u_{\ xy} + v_{\ yy} + q_y)^{\mathrm{T}}, \qquad e_t = e + \frac{1}{2} (\ u^2 + v^2) , _{xx} = \frac{\mu}{Re} \cdot \frac{2}{3} (2 \ u_x - v_y) , \qquad x_{yy} = \frac{\mu}{Re} \cdot (\ u_y + v_x) , \ _{yy} = \frac{\mu}{Re} \cdot \frac{2}{3} (2 \ v_y - u_x) , q_x = \frac{\mu}{Re} (\ -1) \ M^2 \ P_r \cdot T_x , \qquad q_y = \frac{\mu}{Re} (\ -1) \ M^2 \ P_r \cdot T_y .$$

 $X \lesssim 5\pi H$

(B2)

粘性系数采用 Sutherland 公式

$$\mu = T^{\frac{3}{2}} \frac{1+C}{T+C}, \quad C = \frac{110.4}{T}.$$
(B3)