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The evolution of shear bands of saturated soil1
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Abstract

The development of the shear bands of saturated soil in coupling-rate- and pore-pressure-dependent simple shear has
been discussed, using a simple model and a matching technique at the moving boundary of a shear band. It is shown that
the development of shear bands are dominated by the coupling-rate and pore-pressure e!ect of the material. The strength
of the soil acts as a destabilizer, whilst pore pressure di!usion makes the band expand. The theory is discussed and some
computational solutions have been presented. ( 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The shear band is closely related with the failure
in saturated soils and it is assumed by analysis that
there is a critical state, beyond which instability
may develop and it is usually taken to be the
condition for the emergence of a shear softening
area. However, the analysis gives only a condi-
tion for the instability, and no indication of the
emergence of a softening area. It is desirable to
know the dynamics of the shear band of saturated
soil and the factors governing the process. In this
paper an analytical model is developed to achieve
this aim.

*Corresponding author. E-mail: wxli@hotmail.com.
1The project supported by the National Natural Science foun-
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2. The control equations

2.1. Two assumptions

(1) The shear volume strain and the increment of
pore pressure are adopted as follows [1]:
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(2) The deformation can only occur in one direc-
tion but may have a gradient in the other direc-
tions.

The geometrical con"guration and the deforma-
tion can be expressed as follows:
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Since water cannot be compressed which means
e
87
"0. At the same time, It is obvious that the

volume caused by shear is the sum of that caused by
of drainage *e

47
and that of resilience, which is [2]
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is decided by Darcy law:
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where p is the pore pressure, n the pore ratio, K the
obstraction coe$cient and K"k/k, where k the
penetration ratio and k the visco-coe$cient.

Substituting Eq. (4) into Eq. (3), we will get the
"rst control equation:
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The equations of motion imply
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Considering the assumption (2), Eq. (6) becomes
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Now, the control equations can be rewritten as
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where C
1

and E
3
are both functions of p.

Now give the dimensionless form of the control
equations, and they may be simpli"ed to

E
3
cR
k

q
k

LcRM
Lt

"

L2qN
Lx2

,

Lp6
Lt

!

L2p6
Lx2

"

qcRM
2

, (9)
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to Eqs. (10a)} (10g). From now on the over-bar
used to indicate a dimensionless quantity will be
omitted.

Therefore the approximate model for shear
bands is as follows:
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y"d(t), pd~"pd`, (10d)
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where R"v
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are the initial dis-

turbances of pore pressure and velocity, respective-
ly, <(t) is the dimensionless boundary velocity at
<"1 and t"0. Here, the constitutive equation is
assumed to be the one for pore-pressure-depend-
ence. Strain ratio, provided the e!ect of strain can
be neglected compared with strain ratio, is given by

q"q(cR , p). (11)

Outside the band, the material is assumed to re-
main rigid, no matter how high the pore pressure is.
The governing equation here is the one for homo-
geneous di!usion with

p(0, y)"B, (12)

where B is the assumed uniform initial pore pres-
sure.
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3. Analytical solution

Since the aim of this paper is to understand the
mechanics of shear band formation, and the factors
controlling the process, an analytical solution is
more preferable, although, in order to obtain one,
some approximations need to be made.

One of the simpli"cations is a linear version of
the constitutive equation:

q"cR#1!p. (13)

The linear relation of q and cR is consistent with
observations at some stage of deformation. More-
over, linear softening approximates the behaviour
of a variety of soils between statistic pore pressure
and liquefactional pore pressure.

Substitution of Eq. (13) into Eqs. (10a)}(10g)
leads to an inhomogeneous equation in p. The
solution to it then can be expressed as [3]
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To deal with the moving boundary d(t), we consider
the initial boundary conditions
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where d
4
is an imaginary "xed boundary chosen to

be greater than d(t), and S(t) is an arbitrary function

determined by matching the condition at y"d(t),
i.e. Eqs. (10d) and (10e).

The solution p to the problem, but with initial
boundary values (10f ), can be expressed as Fourier
cosine series:
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where m is an integration variable, and Eq. (10f )
requires that
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The solution for the rigid material outside the
band can be easily obtained as

p"P
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If it is assumed that B"constant and the edge
e!ect is neglected; p*(t) here is the pore pressure at
an imaginary boundary y"0.
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In all, there are four unknown functions: p*(t),
S(t), d(t) and q(t). They can be determined by solving
Eqs. (15), (18), (20) and (21), simultaneously.

4. Mechanics of shear band

Eq. (18) shows that three factors control a non-
uniform shear "eld, namely S(t), H(t) and a2

n
t. The

"rst one is related to the pore pressure di!using
out of the band, the second represents a cumula-
tive e!ect of the strength of soil, and the third
concerns the decaying mode of pore pressure
di!usion within the band. The second and the
third are both exponential, and so are much more
important than the "rst. Even at the early stage of
shear band development, the pore pressure di!u-
sion (accounted for by S(t)) to the surrounding soil
appears to be negligibly small, because Lp/LxDd0"0,
where d

0
"d(0). Therefore, H(t) and a2

n
t are

bound to be the governing factors in shear band
formation.

With the two assumptions, namely S(t)"0 and
c
n
"0 (nO1), which represent the most in#uential

part of pore pressure di!usion and the simpler case,
Eq. (20) becomes
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and a constant-velocity boundary

condition is introduced. It is clear from Eq. (22) that
shrinkage of the shear deformation "eld requires
a decreasing value of ¸, i.e.

d
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Therefore the shrinkage is because of the
strength q, whereas pore pressure di!usion tends to
smooth shearing.

For a material governed by the pore-pressure-
independent, constitutive relation q"q(cR ), the solu-

tion to Eqs. (10a)}(10g) is
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Unlike the solution (14), this solution shows that
the strength q will not be incorporated into a non-
uniform shear "eld. This case corresponds to simple
pore-pressure di!usion, whereas q"q(p) would
lead to a trivial solution. Therefore, one can con-
clude that only in the soil governed by a coupling-
rate- and pore-pressure-dependent constitutive
relation there can be a shrinking shear zone, with
the strength of the soil acting as a destabilizer.

With decreasing q(t), which usually happens in
the saturated soil under vibration load, a narrow-
ing shear band will be transformed into an expand-
ing one at a certain time, because the right-hand
side of the inequality (24) is constant. This means
that there is a stable phase deformation dominated
by pore pressure di!usion.

Fig. 1, based on the inequality (23), shows that
long-wave disturbances are more liable to cause
shrinkage than short-wave ones.

By introducing Eq. (15) and the condition
c5 D
y/d"0 into Eq. (20), Eq. (20) becomes
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d

0

(p!pd(t)) dx. (27)

Fig. 1. The changes of shear band d/d
0

with shear stress q/q
0
.
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Di!erentiation of Eq. (23) with respect to time
t under the constant-velocity boundary condition
leads to
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For Lp/LyO0 and d(t)O0, Eq. (24) becomes an
expression for shear band development:
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When cR'0, within the shear band, Lp/LyDd must be
negative. Moreover, Lp/LtDd"L2p/Lx2Dd. Then Eq.
(29) becomes
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It is obvious that the term qcRM /2 is always positive
and therefore governs shear band contraction.
However, there is usually a simple monotonically
decreasing pore pressure distribution,
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from which it is seen that pore pressure di!usion in
the shear band tends to expand the band.

5. Some computational examples and conclusions

Calculations are carried out for some situations.
The initial disturbance is supposed to be a pore-
pressure dependent one. For simplicity, p

0
is as-

sumed to consist of only the basic mode:
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We have seen that the terms H(t) and a2
1
t play

a more signi"cant role than others; two additional
assumptions are therefore introduced:
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in their corresponding extension region, instead of
accurate calculation Lp/LxDd~ and S(t)Dd0.

Fig. 2 shows the rising of the pore pressure with
time at di!erent boundary velocities. It is obvious
that pore pressure "rst rises slowly and then be-
comes fast under vibration load and the bigger the
value of R, the smaller the changes of pore pressure
between di!erent R. It is shown also that the initial
disturbances expand only if the amplitude of the
disturbance exceeds some limit. Fig. 3 shows the

Fig. 2. The rising of pore pressure.

Fig. 3. The band width and the pore pressure at the center of
band.
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relationship of pore pressure and the width of band,
the amplitudes span about one order but the curves
remain quite close, which indicates that the shear
bands have a strong intrinsic structure.

The analytical solution has been obtained in this
paper to understand the mechanism of the shear
band of saturated soil. It is shown that the pore
pressure di!usion generally caused the shear band
to expand while the shear strain rate acts on the
contrary.
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