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Abst ract : Standing soliton was studied by numerical simulation of its governing equation ,

a cubic SchrÊdiger equation with a complex conjugate term , which was derived by Miles

and was accepted. The value of linear damping in Miles equation was studied. Calculations

showed that linear damping effects strongly on the formation of a standing soliton and

Laedke and Spatschek stable condition is only a necessary condition , but not a sufficient

one . The interaction of two standing solitons was simulated. Simulations showed that the

interaction pattern depends on system parameters . Calculations for the different initial

condition and its development indicated that a stable standing soliton can be formed only for

proper initial disturbance , otherwise the disturbance will disappear or develop into several

solitons .
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I nt rod uction

The standing soliton was discovered in 1984 by Dr. WU [1 ] , a Chinese visiting scholar in

U. S . A. from Nanjing University. He poured the water into a narrow and long rectangular

channel , then put the channel on a loudspeaker and vibrated it vertically or horizontally.

Controlling the vibration amplitude , a kind of non-propagating solitary water wave occurred in the

channel when the frequency is twice the character frequency of the fluid.

Since the first report of standing soliton by Wu , many theoretical and experimental studies

have been done to explain and explore the special soliton. Larraza and Putterman[2 ] derived a

cubic SchrÊdinger equation from the governing equation of water wave by the multiple scales and

got a standing soliton solution in 1984. At the same time Miles [3 ] made a more perfect theoretical

analysis on the standing soliton by variation method. He got a cubic SchrÊdinger equation with a

complex conjugate term , which was satisfied by a complex function r proportion to the amplitude

of standing soliton
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i ( rτ +αr) + BrXX + (β+ A | r | 2) r +γr 3 = 0 , (1)

where r 3 is the complex conjugate of r , αlinear damping , A , B the parameters related to the

geometry character of the system ,βandγ are related to the amplitude and frequency of the

vibration. Miles Eq. (1) is the governing equation accepted by most people up to now and

describes the physical model of a standing soliton better . He considered the forcing vibration of

the system and introduced a conjugate termγr 3 to represent vibrating excitation. This means that

the energy in the system increases by external drive continuously. He also introduced a dissipation

term iαr to balance vibration exciting , then a stable solution can be obtained. Actually dissipation

will exist in a real physical system.

Laedke et al . [4] considered the linear stability of a small disturbance solution for Miles’Eq. (1) ,

analyzed the stability of a soliton solution in each parameter region , and made a check numerically for

special case. They found that a stable soliton can be obtained in some parameters , but in many cases ,

a soliton solution of the equation will develop into other waves but not the soliton.

There are many research works on the standing soliton in China . Prof . WEI in the Acoustic

Institute of Nanjing University mainly studied the theory and experiment of the standing soliton.

They researched the chaos of the soliton height[5 ] and the standing soliton in two- layer fluid[6 ] and

granular material [7 ] . Prof . CUI[8 ,9 ] made serious experiments on the standing soliton. Prof .

ZHOU [10 ,11 ] considered the effect of the surface tension on the standing soliton carefully. Prof .

YAN studied the standing soliton in two- layer fluid by multiple scales[12 ] and analyzed the

interaction of two standing solitons [13 ] .

To sum up , the researches in the standing soliton mainly focused on the qualitative

explanation of the experimental study and theory. As I know , there is no reference for numerical

simulation. In the theory , there is no satisfactory explanation for the interaction between two

standing solitons . In the numerical simulation , the numerical solution of a nonlinear cubic

SchrÊdinger equation with a complex conjugate term is very difficult . ZHOU X. et al . [14 ] have

made a numerical calculation for it . Using the physical parameters that a stable standing soliton

could occur in experiments , letting linear dampingα = 0 which can not be determined in the

theory , and letting a soliton solution be an initial condition , they found that the solution of the

equation is unstable . So , to make numerical simulation of a standing solution is necessary.

This article started from Miles’theory and solved Miles’nonlinear cubic SchrÊdinger

Eq. (1) numerically to simulate a standing soliton. The value of dissipation coefficientα is

studied to calculate a stable standing soliton. Three patterns for the interaction between two

standing solitons are simulated. The relationship between the initial disturbance and the standing

soliton is calculated and analyzed.

1　Esta blis hme nt of N ume rical Model

As mentioned above , we used Miles’theory as a physical model , solved Eq. (1) and

simulated the standing soliton numerically. The initial condition and the boundary conditions are

as follows

r( X ,0) = r0 ( X) , (2)

rX ( - l ,τ) = 0 , (3)

rX ( l ,τ) = 0. (4)
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We adopted the following idea to solve Eq. (1) : finite difference was used for the differentiation

with respect to space variable and the integral was used for the time variable . This means that we

reduced original partial differential equation into an ordinary differential equation of time variable ,

the differentiation with respect to space variable was replaced by scattered difference . A complex

equation is reduced into two real equations . The final equations to be solved are

d pj

dτ = (γ - β) qj - αpj - B
qj +1 + qj - 1 - 2 qj

Δx2 - Aqj ( p2
j + q2

j) , (5)

d qj

dτ = (γ+β) pj - αqj + B
pj +1 + pj - 1 - 2 pj

Δx2 + Apj ( p2
j + q2

j) ,

j = 1 ,2 ,3 , ⋯, N . (6)

Where the spatial derivation pXX and qXX are replaced by difference of order 2 ,Δx is spatial step ,

N - 1 is the total number of the net . Integrating over the time variableτ, Eqs . (5) and (6) can

be solved. Gill method with variable step is adopted to integrate equations since it can cancel the

accumulative error and is more accurate .

2　N ume rical Res ults a n d A nalysis

211　The val ue ofα
Dissipation term is a key term in Miles’equation and has a very important effect on the

stability of the solution. Unfortunately , dissipation coefficientαcan not be determined in physics

in advance , but can only be given by people , whose value could be given to get a stable solution

and how is the stable solution related toα?How couldαbe determined in physics . These are the

problems to be solved. So , we are interested in the relationship betweenαand the solution.

Let A = 110 , B = 110 ,γ = 111 ,β= - 110 andαbe variable in Eq. (1) , and the initial

condition be a standing soliton. The calculation results show thatαcan not be given arbitrarily

and has an upper bound and a lower limit if you would like to get a stable standing soliton at last .

For parameters mentioned above , the system can maintain a stable standing soliton , only when

0146 ≤α≤1109 .

Laedke and Spatschek analyzed Miles’Eq. (1) for the stability in the case A = 1 , B = 1

and got the stability condition

β < 0 , 　α2 <γ2 <α2 +β2 . (7)

It can be written in the form

γ2 - β2 <α2 <γ2 . (8)

In the modelβ = - 110 andγ = 111 , from inequality (8) , 01458 <α < 1110 satisfied Laedke

and Spatschek stability condition. Obviously , our result is consistent with the analysis of small

disturbance theory in [4 ] . A real physical model was calculated. The channel is l ×b ×h =

20 ×215 ×2 cm3 . The drive is z = Aecos2ωt , where Ae is the driven amplitude , f =ω/ 2πis

the driven frequency. Experiments showed that stable standing soliton can occur in the channel .

Calculations showed that when 0164 <α< 11612 , stable standing can be produced. The stability

condition in [4 ] is 01632 <α < 11614 . So , they are fairly identical .

Though stability condition by Laedke and Spatschek came from small disturbance theory ,

there is almost no difference with our calculation. So , the stability condition in [4 ] can be used

to the nonlinear analysis . It can be recognized as a condition to restrict the dissipation term and
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excitation.

Notice that |β| < |γ| in the model mentioned above . If |β| > |γ| , the stable condition
(8) becomesα<γ, i . e . (8) can be satisfied even ifα= 0. It means that from stable condition

in [4 ] , the system can get and maintain the standing soliton only if |β| > | γ| even if there is

no dissipation term. It can not be believed in physics . If the exciting term in Miles’Eq. (1) is

not balanced by a dissipation term , the wave amplitude will increase and the system will lose the

balance at last . We regulate the linear resistanceαto calculate a model with parameters A = 110 ,

B = 110 , β = - 110 , γ = 111 and | β| > | γ | . The calculation showed that only when

016 <α < 111 , the system can maintain a stable standing soliton. It is consistent with the

physical analysis qualitatively and is different from the stable condition in [4 ] . So , the stable

condition in [4 ] is a necessary condition , not a sufficient condition. It is also the reason of defeat

to simulate a standing soliton in [14 ] . From above , how to determine the value ofαremains to

be further discussed.

212　The i nt e raction betwee n two st a ndi ng solit ons

1) For real physical model

The real physical model mentioned in 2 . 1 is used again. The geometry of the channel is

l ×b ×h = 20 ×215 ×2 cm3 , the drive is z = Aecos2ωt , where Ae is driven amplitude ,
ω/ 2π = f is the driven frequency. Experiments showed that a stable standing soliton can be

produced in the system and interaction between two standing solitons can be observed.

　　Trough : l ×b ×h = 20 ×215 ×2 cm3 ;α = 1116 ;

Drive : Z = Ae cos2ωt ; ω = 2πf ; Ae = 0195mm; f = 5103Hz

Fig. 1　A pair of NPSW of the same polarity oscillate about each other
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First , let α = 1116 , f = 5103 Hz , and Ae be variable . When driven amplitude is in

0195 mm～0196 mm , we simulated the interaction between two standing solitons . At the

beginning , two standing solitons attracted each other , then overlapped , separated , and attracted

again. The process went round and round. We call it 2S-1S-2S simply (see Fig. 1) . When

driven amplitude is less than 0195mm , the standing solitons attract each other , then overlapped ,

became one standing soliton and never separated (2S-1S , see Fig. 2) ; Two standing solitons had

no interaction and maintained their original shapes when driven amplitude is larger than 0196mm
(2S-2S , see Fig. 3) .

　　Trough : l ×b ×h = 20 ×215 ×2 cm3 ;α = 1116 ;

Drive : Z = Aecos2ωt ; ω = 2πf ; Ae = 0194mm; f = 5103Hz

Fig. 2　A pair of NPSW of the same polarity combine into a

single and never separated NPSW

Secondly , letα = 1116 , Ae = 0195mm and f be variable . When driven frequency f is in

5102～5103Hz , 2S-1S-2S picture can be obtained in the system. If f < 5102Hz , the

computational result is 2S-1S . If f > 5103Hz , the result is 2S-2S . It is basically consistent with

WU’s experimental observation. They found that two standing solitons will combine into one

soliton and will never separate again if driven frequency is smaller , the interaction between two

standing solitons will go round and round only if driven frequency is near a proper value . But

they didn’t mention that there is 2S-2S phenomenon if driven frequency is larger .

2) Let all physical parameters be fixed , but linear dampingαregulated

Let A = 110 , B = 110 ,β= - 110 andγ= 111 be fixed , i . e . the channel geometry , fluid

depth , driven frequency and amplitude fixed , we calculated the interaction of standing solitons

with regulated linear dampingα. It was found that 2S-1S-2S occurred if 0183 <α < 0187 ,
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2S-2S occurred ifα<0183 and 2S-1S occurred ifα>0187 . This means that though stable standing

soliton can simulate if α satisfies linear stability condition , αwill be limited further if you

calculate the interaction of standing solitons .

　　Trough : l ×b ×h = 20 ×215 ×2 cm3 ;α = 1116 ;

Drive : Z = Aecos2ωt ; ω = 2πf ; Ae = 0198 mm; f = 5103Hz

Fig. 3　A pair of NPSW of the same polarity maintain

independent development without interaction

We obtained typical interaction of standing solitons in our numerical simulation. Two

standing solitons in same phase attract each other first , then overlap and separate , then attract

again. It will go round and round. But to get such interaction , parameters required by calculation

models are very strict and sensitive . Three patterns of the interaction between two standing

solitons in our numerical simulation are qualitatively consistent with experiments . Though to

obtain the interaction between two standing solitons in experiments there is really a requirement of

the drive , the required ranges of parameters are not so strict , variable ranges of the driven

amplitude and frequency in experiments are larger than that in calculations . So , to describe the

interaction of standing solitons better , there is much work to do in the numerical simulation.

In Miles’equation ,αis the dissipation term and represents the linear damping. The reason

to introduceα is as follows . There is energy inputting into the system continuously when the

channel is vibrated by external drive . If there is no energy dissipation , the wave amplitude will

increase continuously. The dissipation exists in the real physical system too. So , to get stable

solution , the only thing to do is to introduce a dissipation term to balance the vibration exciting.
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The interaction between two standing solitons is related to the nonlinear and dissipation term in the

system. When the vibration frequency is fixed , the driven amplitude represents the energy

obtained by channel system from external exciting , α reflects the dissipation and the fluid

viscosity of the system in fact . The stronger the dissipation is , the easier to break the formed

stable wave is . Therefore , if driven amplitude is too small , i . e . the input energy from outside is

not large , two standing solitons will combine into one and will not separate again because of the

fluid viscous whenα is fixed. With the increase of driven amplitude , the input energy from

outside raises and can balance with system dissipation , two standing solitons will attract each

other , overlap , separate , and attract again. It will go round and round. If input energy is larger ,

i . e . driven amplitude is larger , the action of the system dissipation and the fluid viscous is

smaller and is not large enough to break the stable standing solitons . So two standing solitons will

maintain their own stable waveform because of the support of driven input energy and will not

combine into one wave . When input energy is too large , i . e . driven amplitude does not satisfy

the stable condition , not only soliton pattern is excited , but also other wave patterns are excited.

The competition and interaction among all patterns made the standing soliton disappear . Of

course , the results obtained in the case of the fixed driven amplitude and variable frequency can

be explained in the same way.

　　　Trough : l ×b ×h = 20 ×215 ×2 cm3 ;α = 1116 ;

Drive : Z = Aecos2ωt ; ω = 2πf ; Ae = 0195mm; f = 5103Hz

Fig. 4　A pair of NPSW of opposite polarity maintain a without interaction

7731Numerical Simulation of Standing Solitons



3) Up to now , the interactions mentioned above are for standing solitons in same phase

Now we considered the interaction of standing solitons in opposite phase . The real physical

model mentioned in 3. 2 was also used. It was found that two were developed by their own way

and are inclined to separate very slowly. They didn’t disturb each other and has no interaction
(see Fig. 4) , it is consistent with the real physical phenomenon.

213　I nitial dis t ur ba nce a nd st a ndi ng solit on

According to experiments , an arbitrary disturbance could develop into one or many standing

solitons . Two types of initial disturbance have been calculated.

For half circular initial disturbance , two models were simulated. Parameters of the first one

are A = B = 110 ,β= - 110 ,γ = 111 . The other model is what WU used in [1 ] . The initial

disturbance developed into a standing soliton very soon in either case (see Fig. 5) .

Trough : l ×b ×h = 38 ×2153 ×2 cm3 ;α = 1116 ;ε= 0 . 06 ;

Drive : Z = Aecos2ωt ; ω = 2πf ; Ae = 0195mm; f = 5103Hz

Fig. 5　An initial semicircle disturbance develop into a stable NPSW

For triangular initial disturbance , many models were calculated and analyzed. Parameters are

the same with that of circular initial condition. First , we fixed the botton length of the triangle as

well as the wave width , then let the height of the triangle be variable . From the calculation , we

know that when the peak value of the disturbance is 0195～11552 of the wave height of a

standing soliton , the triangular disturbance will develop into a standing soliton at last . Otherwise

the disturbance will disappear . Secondly , we fixed the height of the triangular disturbance , and

let the bottom length be variable . To get a singular soliton , the bottom length must be limited in

a certain region. Otherwise , the disturbance will disappear or develop into many standing solitons

that interact with each other (see Fig. 6) .
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Parameters :α = 110 ,β = - 110 , γ = 111 , A = B = 1 . 0

Fig. 6　A broad initial triangle disturbance develop into three NPSW

3　Concl usions

1) The dissipation coefficient in Miles’Eq. (1) (the linear dampingα) strongly affects the

formation of a stable standing soliton. In some cases , Laedke and Spatschek stable condition is

very well consistent with our calculation , but in other cases , it is not the same . So , Laedke and

Spatschek stable condition is only a necessary condition , not a sufficient one . Laedke and

Spatschek stable condition for the solution of Miles’equation was obtained from linear small

disturbance theory , and was confirmed by our nonlinear numerical simulation in some cases .

2) The numerical simulation of the interaction between two standing solitons in the same

phase showed that system parameters are limited strictly. In case of fixed channel geometry , fluid

depth and linear dampingα, two standing solitons attract each other , overlap , separate , attract

again and go round and round only for certain driven amplitude and frequency. In case of fixed

channel geometry , fluid depth , driven amplitude and frequency , 2S-1S-2S interaction can be

simulated only for certain linear dampingαin a very narrow range . Two waves may be combined

into one standing soliton and never separate or do not interact with each other and develop

separately in their own way if parameters are not suitable . Compared with experiments , the

condition required by numerical simulation is harsher , the range of driven amplitude and

frequency is narrower. It is examined too that two standing solitons in reversal phase do not

interact .

3) Various initial disturbances can develop into one or more standing solitons . If initial
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disturbance is too small , standing soliton can not be produced. If initial disturbance is large

enough , it will disappear or develop into two or more standing solitons and interact with each

other .
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