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Abstract : Standing soliton was studied by numerical simulation o its governing equation,
a cubic Schrodiger equation with a conplex conjugate term, which was derived by Miles
and was accepted. The value o linear danping in Miles equation was studied. Calculations
showed that linear damping dfects strongly on the formation o a standing soliton and
Laedke and Spatschek stable condition is only a necessary condition, but not a suficient
one. The interaction o two standing solitons was simulated. Simulations showed that the
interaction pattern depends on system parameters. Calculations for the different initial
condition and its devel opment indicated that a stable standing soliton can be formed only for
proper initial disturbance, otherwise the disturbance will disappear or develop into several
salitons.
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Introduction

The standing soliton was discovered in 1984 by Dr. WU | a Chinese visiting scholar in
U.S.A. from Nanjing University. He poured the water into a narrow and long rectangular
channel, then put the channel on a loudspeaker and vibrated it vertically or horizontally.
Controlling the vibration amplitude, a kind of non-propagating solitary water wave occurred in the
channel when the frequency is twice the character frequency o the fluid.

Since the first report of standing soliton by Wu, many theoretical and experimental studies
have been done to explain and explore the special soliton. Larraza and Putterman’® derived a
cubic Schrodinger equation from the governing equation of water wave by the multiple scales and
got a standing soliton solution in 1984. At the same time Miles'® made a more perfect theoretical
analysis on the standing soliton by variation method. He got a cubic Schrodinger equation with a
complex conjugate term, which was satisfied by a complex function r proportion to the amplitude
of standing soliton
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i(r +ar) + B+ B + Al r|)r+yr’ =0, D
where r " is the complex conjugate of r, O linear damping, A, B the parameters related to the
geometry character of the system,[3 andy are related to the amplitude and frequency o the
vibration. Miles Eq. (1) is the governing equation accepted by most people up to now and
describes the physical model of a standing soliton better. He considered the forcing vibration of
the system and introduced a conjugate termy r ~ to represent vibrating excitation. This means that
the energy in the system increases by external drive continuously. He also introduced a dissipation
term i O r to balance vibration exciting , then a stable solution can be obtained. Actually dissipation
will exist in a real physical system.

Laedke et a . considered the linear stability of asmal disturbance solution for Miles Eq. (1) ,
anayzed the stability of a sdliton solution in each parameter region, and made a check numerically for
specia case. They found that a stable sdliton can be obtained in some parameters, but in many cases,
a saliton solution o the equation will develop into other waves but not the saliton.

There are many research works on the standing soliton in China. Prof . WEl in the Acoustic
Institute of Nanjing University mainly studied the theory and experiment of the standing saliton.
They researched the chaos of the soliton height®! and the standing soliton in two-layer fluid!® and
granular materia!”!. Prof. cUI®®! made serious experiments on the standing soliton. Prof.
ZHOU™® ! considered the effect of the surface tension on the standi ng soliton carefully. Prof.
YAN studied the standing soliton in two-layer fluid by multiple scaes™ and analyzed the
interaction of two standing solitons! ™!

To sum up, the researches in the standing soliton mainly focused on the qualitative
explanation of the experimental study and theory. As | know , there is no reference for numerical
simulation. In the theory, there is no satisfactory explanation for the interaction between two
standing solitons. In the numerical simulation, the numerical solution of a nonlinear cubic
Schridinger equation with a complex conjugate term is very difficult. ZHOU X. et al.!™ have
made a numerical calculation for it. Using the physical parameters that a stable standing soliton
could occur in experiments, letting linear dampingd = O which can not be determined in the
theory , and letting a soliton solution be an initial condition, they found that the solution of the
equation is unstable. So, to make numerical simulation of a standing solution is necessary.

This article started from Miles’ theory and solved Miles’ nonlinear cubic Schrodinger
Eg. (1) numerically to simulate a standing soliton. The value of dissipation coefficient 0 is
studied to caculate a stable standing soliton. Three patterns for the interaction between two
standing solitons are simulated. The relationship between the initial disturbance and the standing
saliton is calculated and analyzed.

1 Establishment of Numerical Model

As mentioned above, we used Miles’ theory as a physicd model , solved Eq. (1) and
simulated the standing soliton numerically. The initial condition and the boundary conditions are
as follows

r(X,00 = ro(X), (2
(- 1T) =0, (3
r(1,T) =0. (4
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We adopted the following idea to solve Eg. (1) : finite difference was used for the differentiation
with respect to space variable and the integral was used for the time variable. This means that we
reduced original partial differential equation into an ordinary differential equation of time variable,
the diff erentiation with respect to space variable was replaced by scattered difference. A complex
equation is reduced into two real equations. The final equations to be solved are

d Ger * Qo1 - 2G

@ =V -Bg-ap- BRI agq (et + @), (5)
dg Bait Doa- 2D

@ =0 B p-ag BRI A (o ),

j =123, ,N. (6)
Where the spatial derivation pxx and qxx are replaced by difference of order 2,A xis spatial step ,
N - 1listhetotal number of the net. Integrating over the time variableT , Egs. (5) and (6) can
be solved. Gill method with variable step is adopted to integrate equations since it can cancel the
accumulative error and is more accurate.

2 Numerical Results and Analysis

2.1 The value of O

Dissipation term is a key term in Miles’ equation and has a very important efect on the
stability of the solution. Unfortunately , dissipation coefficientd can not be determined in physics
in advance, but can only be given by people, whase value could be given to get a stable solution
and how is the stable solution related tod ?How couldQ be determined in physics. These are the
problems to be solved. So, we are interested in the relationship betweend and the solution.

Lee A=1.0,B =10,y =11, =- 1.0and0 be variable in Eq. (1) , and the initial
condition be a standing soliton. The calculation results show thatO can not be given arbitrarily
and has an upper bound and a lower limit if you would like to get a stable standing soliton at last.
For parameters mentioned above, the system can maintain a stable standing soliton, only when
0.46 <0 < 1.09.

Laedke and Spatschek analyzed Miles' Eqg. (1) for the stability inthecase A = 1, B = 1
and got the stability condition

B <0, a?<y?<a’+p? (7
It can be written in the form
y?-B?<a?<y? (8)
In the model =- 1.0andY = 1.1, frominequality (8) ,0.458 <O < 1.10satisfied Laedke
and Spatschek stahility condition. Obviously, our result is consistent with the analysis of small
disturbance theory in [4]. A rea physical model was calculated. The channel is| x b x h =
20 x 2.5 x 2 cm®. The drive is z = A.0S2Wt , where Acis the driven amplitude, f = 0/ 2IT is
the driven frequency. Experiments showed that stable standing soliton can occur in the channel .
Calculations showed that when0.64 <O < 1.612, stable standing can be produced. The stability
condition in [4] is0.632 < O < 1.614. So, they are fairly identical .

Though stability condition by Laedke and Spatschek came from small disturbance theory,
there is amost no difference with our calculation. So, the stability condition in [4] can be used
to the nonlinear analysis. It can be recognized as a condition to restrict the dissipation term and
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excitation.

Notice that | B | <|Y | inthe model mentioned above. If |B| >|Y | , the stable condition
(8) becomesa <V ,i.e. (8) can be satisfied even ifd = 0. It means that from stable condition
in [4], the system can get and maintain the standing soliton only if | B | >| Y | even if thereis
no dissipation term. It can not be believed in physics. If the exciting term in Miles' Eq. (1) is
not balanced by a dissipation term, the wave amplitude will increase and the system will lose the
balance at last. We regulate the linear resistance to calculate a model with parameters A = 1.0,
B=10,B =-10,y =11land|B|>]|Y | . The caculation showed that only when
0.6 <O < 1.1, the system can maintain a stable standing soliton. It is consistent with the
physical analysis qualitatively and is different from the stable condition in [4]. So, the stable
condition in [4] is a necessary condition, not a sufficient condition. It is also the reason of defeat
to simulate a standing soliton in [14]. From above, how to determine the value of 0 remains to
be further discussed.
2.2 Theinteraction between two standing solitons

1) For real physical model

The real physical model mentioned in 2.1 is used again. The geometry of the channel is
| X bx h=20%x25x%x2 cm3, the drive is z = A002Wt, where Ac is driven amplitude,
W/ At = fis the driven frequency. Experiments showed that a stable standing soliton can be
produced in the system and interaction between two standing solitons can be observed.

70

60 |

50

40

30

Trough: | X bx h=20x25x%x2cn’; 0 = 1.16;
Drive: Z = AcCORWt; W = 21f; Ae = 0.95mm; f = 5.03Hz

Fg.1 A par of NPSW o the same polarity oscillate about each other
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Frst, letead = 1.16, f = 5.03 Hz, and A. be variable. When driven amplitude is in
0.95 mm 0.9 mm, we simulated the interaction between two standing solitons. At the
beginning, two standing solitons attracted each other, then overlepped, separated, and attracted
again. The process went round and round. We call it 251S-2S simply (see Fig. 1) . When
driven amplitude is less than 0. 95mm, the standing solitons attract each other , then overlapped,
became one standing soliton and never separated (2S-1S, see Fg. 2) ; Two standing solitons had
no interaction and maintained their origina shapes when driven amplitude is larger than 0. 96mm
(25-2S, see Fg.3).
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Trough: | X bx h =20 x25x2cn’; d = 1.16;

Drive: Z = AL002Wt; W = 21f; Ae = 0.949mm; f = 5.03Hz

Fg.2 A par o NPSW o the same polarity combine into a
single and never separated NPSW

Secondly, letd = 1.16, Ae =0.95mm and f be variable. When driven frequency f is in
5.02 5.03Hz, 2S5 1S2S picture can be obtained in the system. If f < 5 02Hz, the
computational result is 25 1S. If f > 5.03Hz, the result is 25 2S. It is basically consistent with
WU’ s experimental observation. They found that two standing solitons will combine into one
soliton and will never separate again if driven frequency is smaler, the interaction between two
standing solitons will go round and round only if driven frequency is near a proper value. But
they didn’t mention that there is 2S-2S phenomenon if driven frequency is larger.

2) Let al physical parameters be fixed, but linear dampinga regulated

Lee A=1.0,B=10,B =- 1.0andy = 1.1befixed, i.e. the channel geometry, fluid
depth, driven frequency and amplitude fixed, we calculated the interaction of standing solitons
with regulated linear damping @ . It was found that 2S5 1S-2S occurred if 0.83 <d < 0.87,
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2S-2S occurred if o <0. 83 and 2S- 1S occurred if O >0. 87. This means that though stable standing
soliton can simulate if O satisfies linear stability condition, o will be limited further if you
calculate the interaction of standing solitons.

140

Trough: | X bx h = 20 x2.5x 2 cn’;0 = 1.16;
Drive: Z = AL002Wt; W = 2Itf; Ae = 0.98 mm; f = 5.03Hz
Fg.3 A par of NPSW of the same polarity maintain
independent devel oppment without interaction

We obtained typical interaction of standing solitons in our numerical simulation. Two
standing solitons in same phase attract each other first, then overlgp and separate, then attract
again. It will go round and round. But to get such interaction, parameters required by calculation
models are very strict and sensitive. Three patterns of the interaction between two standing
solitons in our numerical simulation are qualitatively consistent with experiments. Though to
obtain the interaction between two standing solitons in experiments there is really a requirement of
the drive, the required ranges of parameters are not so strict, variable ranges of the driven
amplitude and frequency in experiments are larger than that in calculations. So, to describe the
interaction of standing solitons better, there is much work to do in the numerical simulation.

In Miles’ equation, O is the dissipation term and represents the linear damping. The reason
tointroduce O is as follows. There is energy inputting into the system continuously when the
channel is vibrated by externa drive. If there is no energy dissipation, the wave amplitude will
increase continuously. The dissipation exists in the rea physical system too. So, to get stable
solution, the only thing to do is to introduce a dissipation term to balance the vibration exciting.
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The interaction between two standing solitons is related to the nonlinear and dissipation term in the
system. When the vibration frequency is fixed, the driven amplitude represents the energy
obtained by channel system from externa exciting, 0 reflects the dissipation and the fluid
viscosity of the system in fact. The stronger the dissipation is, the easier to break the formed
stable wave is. Therefore, if driven amplitude is too small , i.e. the input energy from outside is
not large, two standing solitons will combine into one and will not separate again because o the
fluid viscous when d is fixed. With the increase of driven amplitude, the input energy from
outside raises and can balance with system dissipation, two standing solitons will attract each
other , overlgp , separate, and attract again. It will go round and round. If input energy is larger,
i.e. driven amplitude is larger, the action of the system dissipation and the fluid viscous is
smaller and is not large enough to break the stable standing solitons. So two standing solitons will
maintain their own stable waveform because of the support of driven input energy and will not
combine into one wave. When input energy is too large, i 2. driven ampiitudie does not satisfy
the stable condition, not only soliton pattern is excited, but ziso other wave paiternss are excited.
The competition and interaction among al pziterns made the standing soliton diseppear. Of
course, the results obtained in the case of the fixed driven amplitude and variable frequency can
be explained in the same vsay.
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Trough: | X b x h = 20><2.5><2cm3;0( = 1.16;
Drive: Z = AL002Wt; @ = 2Itf; Ag = 0.95mm; f = 5.03Hz
Fg.4 A pair o NPSW o opposite polarity maintain a without interaction
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3) Up to now, the interactions mentioned above are for standing solitons in same phase

Now we considered the interaction of standing solitons in opposite phase. The rea physical
model mentioned in 3.2 was also used. It was found that two were developed by their own way
and are inclined to separate very slowly. They didn’t disturb each other and has no interaction
(see Fig.4) , it is consistent with the real physical phenomenon.
2.3 Initial disturbance and standing soliton

According to experiments, an arbitrary disturbance could develop into one or many standing
solitons. Two types of initia disturbance have been calculated.

For half circular initial disturbance, two models were simulated. Parameters of the first one
aeA=B =10, =-1.0,Y = 1.1. The other mode is what WU used in [1]. The initial
disturbance developed into a standing soliton very soon in either case (see Fg.5) .
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Trough: | x bx h=38%x253x2cn;d = 1.16;€ = 0.06;
Drive: Z = AL002Wt; W = 2If; Ae = 0.95mm; f = 5.03Hz
Fg.5 Aninitia semicircle disturbance develop into a stable NPSW

For triangular initial disturbance, many models were calculated and analyzed. Parameters are
the same with that of circular initial condition. Frst, we fixed the botton length of the triangle as
well as the wave width, then let the height of the triangle be variable. From the calculation, we
know that when the peak value of the disturbance is 0.95 1.552 of the wave height of a
standing soliton, the triangular disturbance will develop into a standing soliton at last. Otherwise
the disturbance will disappear. Secondly, we fixed the height of the triangular disturbance, and
let the bottom length be variable. To get a singular soliton, the bottom length must be limited in
a certain region. Otherwise, the disturbance will disappear or develop into many standing solitons
that interact with each other (see Fig.6) .



Numerica Smulation of Sanding Slitons 1379

120

100

80

Parameters: 0 = 1.0, =- 1.0,y =11, A=B =1.0
Fg.6 A broad initia triangle disturbance develop into three NPSW

3 Conclusions

1) The dissipation coefficient in Miles' Eq. (1) (the linear damping® ) strongly &fects the
formation of a stable standing soliton. In some cases, Laedke and Spatschek stable condition is
very well consistent with our calculation, but in other cases, it is not the same. So, Laedke and
Spatschek stable condition is only a necessary condition, not a sufficient one. Laedke and
Spatschek stable condition for the solution of Miles’ equation was obtained from linear small
disturbance theory , and was confirmed by our nonlinear numerical simulation in some cases.

2) The numerical simulation of the interaction between two standing solitons in the same
phase showed that system parameters are limited strictly. In case of fixed channel geometry, fluid
depth and linear dampingd , two standing solitons attract each other, overlgp, separate, attract
again and go round and round only for certain driven amplitude and frequency. In case of fixed
channel geometry, fluid depth, driven amplitude and frequency , 2S-1S-2S interaction can be
simulated only for certain linear dampingd in a very narrow range. Two waves may be combined
into one standing soliton and never separate or do not interact with each other and develop
separately in their own way if parameters are not suitable. Compared with experiments, the
condition required by numerica simulation is harsher, the range o driven amplitude and
frequency is narrower. It is examined too that two standing solitons in reversal phase do not
interact.

3) Various initid disturbances can develop into one or more standing solitons. If initial
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disturbance is too small , standing soliton can not be produced. If initial disturbance is large
enough, it will disgppear or develop into two or more standing solitons and interact with each

other.
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