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Abstract

-

By the Lie symmetry group, the reduction for divergence-free vector-fields (DFVs) is studied, and the following results
are found. A n-dimensional DFV can be locally reduced to a (n — 1)-dimensional DFV if it admits a one-parameter
symmetry group that is spatial and divergenceiess. More generaily, a n-dimensionai DFV admitting a r-parameter, spatial,
divergenceless Abelian (commutable) symmetry group can be locally reduced to a (n — r)-dimensional DFV. © 1998

Elsevier Science B.V.

1. Introduction

Recently, there has been increasing interest in the
DFVs that preserve some differential form, see, e.g.,
Refs. [1,2].

On the basis of the symplectic reduction preserving

the Hamiltonian structure [ 3], we obtain the reduction
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preserving the divergenceless nature by the Lie sym-
metry group, i.e. a n-dimensional DFV can be locally
reduced to a (n — 1)-dimensional DFV when it ad-
mits a one-parameter, spatial, divergenceless symme-
try group. More generally, a n-dimensional DFV ad-
mitting a r-parameter, spatial, divergenceless Abelian
{commutable) symmetry group can be locally reduced
to a (n — r)-dimensional DFV. This result is a gener-
alization in the spirit of the symplectic reduction for
Hamiltonian systems [3].

Note that our results contain those in Ref. [4,5],
and also coincide with the conclusion in Ref. [6]. But
our proof is more simple than the one in Ref. [6],
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than those in Ref. [6]. More important is that such a
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reduction simplifies the study of some nonlinear dy-
namical systems, see, e.g., Refs. [5,7]. From a theo-
retical point of view, however, the main shortcoming
is the introducing of coordinate systems in our proof
because we hope to obtain concrete reduced systems
in order to study their dynamics in an application.

2. Divergence-free vector-fields and symmetry
group

£.11

Definition 1. Let M be a n-dimensional manifold,
and {2 be a n-form on M. For any vector-field F on
M, if Lp{) =0, where Lr is the Lie derivative along
the flows of F, the vector-field is said to preserve the
n-form (2.

With the local coordinates (x!, ..., x") on M, con-
sider {2 as the canonical n-form £ =dx! A ... A dx".
Then we have Lrp£2 = div(F) {2, where



378 D. Huang et al./Physics Letters A 244 (1998) 377-382

n
Afi(xt,. . . x"
divF:Zl(LaTL)_’

i=1
and F is denoted by

di
-(i)%:fi(xl,...,x",t), (x' ...

teR, i=1,...,n. (2.1)

XY e,

Thus saying the vector field F preserves the n-form
is equivalent to saying F is a divergence-free vector-
field (DFV). We prefer the latter in this paper.

Definition 2. Let G be a Lie group acting on M X R.
If G satisfies the following conditions: (i) G is a sym-
metry group of the system (2.1), (i1) the infinitesimal
generator V of G is

n
; 0
V= E f’(xl,...,x")ﬁ,
i=1

then G is called a spatial symmetry group of the system
(2.1). Furthermore, if V satisfies the condition

(K, X"

Z §(-Xa . v-x)=0’

- ax'

i=1

then G is referred to as a spatial, divergenceless sym-
metry group of (2.1).

Theorem 3. The Lie group G generated by

n ) 9

V= ! l, e n -
2; T e
(hereafter denoted by V = (£, ..., &")) is a spatial
symmetry group of the system (2.1) if and only if
[FV] =0, where F = (f1, ..., fu). [F V] denotes
the Lie bracket of F and V, defined in coordinates by

- ot A ,
[Ev1i=2(fj5%—§f£f—j>, i=1,...,n.

Jj-1

Proof. This is an easy calculation, applying Theo-
rems 2.36 and 2.71 in Ref. [8].

Theorem 4. Let the system (2.1) admit a one-
parameter symmetry group G whose infinitesimal

generator is V, then there exists a local transformation
of variables defined near the point (x,t) at which
Vlixn # 0, given by

=y YN, = ey Ly s),
i=1,...,n, (2.2)

such that the system (2.1) becomes

d i

E);—zgi(yla~--9yn_lis)’ i:1""’n’ (23)

where ¥',...,y"~! and s are a complete set of func-

tional independent invariants of V, i.e.

Viy)=0(i=1,...,n—1),
V(s)=0, V(»"=1. (2.4)

Proof. We refer to Theorem 2.66 in Ref. {8]. [

Remark. Because the right-hand side of the system
(2.3) is independent of y", the component y" can be
got by quadrature. Thus we call usually the first n — 1
equations of the system (2.3) a reduced system of
(2.1) under G.

In particular, when G is a spatial symmetry group,
we get the following corollary.

Corollary 5. Suppose G in Theorem 4 is a spatial
symmetry group, then for the transformation (2.2) we
can take s =t and n; (i = 1,...,n) are independent
of s,i.e. yi(i=1,...,n) are independent of time.

Proof. Since G is a spatial symmetry group, the

function ¢ is just an invariant of G, and we can take
s = t. Further, since

n .ay
Viyy=> €=,
) > '3 pwr

where £ (i = 1,...,n) are independent of ¢, the solu-
tions to the equations V(y) = 0 and 1 are all indepen-
dent of ¢. This completes the proof. ]

3. Main results and proof

Lemma 6. Suppose there exists a diffeomorphism ¢,



under which the system (2.1) becomes

gy, i=1,. 0. (3.2)
dt
Then the foliowing relation is vaiid,
n n
— dfi 1 =a(J|g) aan
- = — — (3.3)
axt|J| —

i=1

where J is the Jacobian matrix of the transformation
is its determinant.

Proof. Using the properties of the derivative and
determinant, after a straightforward and lengthy cal-
culation, one can prove the result. O

Theorem 7. Let the vector-field (2.1) be divergence-
free and admit a one-parameter, spatial, divergenceless
symmeiry group G. Then there exists a local transfor-
mation of variables such that the reduced vector-field
of (2.1)isa(n—1)- dimensional DFV.

Proof. Let the infinitesimal generator of G be V =
(&', ..., €. Applying Theorem 4 and Corollary 5,
there exists a transformation of coordinates as (3.1)
under which (2.1) becomes

—=k(y',...y"h, i=l.n. (34)
dr ’ :
According to Lemma 6, we get

a(|J |k

JACLINY (3.5)
— oy’

i=1

Further, applying (2.4) in Theorem 4, we find the
vector-field V will have the form (0, ..., 0, 1) under
¢. Using Lemma 6 again, we get

* ( am)
0= 2% =gilo+ e

c?lfl
=
ay"

=0.

Thus |J] is independent of y", and (3.5) becomes

n—1
a(|Jki)

L v’
i=1 Y

=0. (3.6)
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Now consider the reduced system of (2.1), i.e. the
first n — 1 equations of the system (3.4),

dyi_kl(l '7—!t)
i 16 AT Y O I
i=1,...,n—1. (3.7)

Take a transformation I,

7=y, ..., z =y s (3.8)

i=1,...,n—-1. (3.9)

Obviously, the inverse I'~! exists. In other words,
(3.9) becomes (3.7) under I'"'. We calculate the
Jacobian matrix Dz/Dy (z = (z!,....2"), y =
(v'.o....yM)of 7Y,

; _
112 /|J|dy g [ Wiy
Dz_1y
Dy
| 0 0 ! |

(3.10)

MThiio ameslerin T amrnia A and (2 LY a has:a

11Hud dppl)’llls 1L.C111111a U allu J U), wo lldVC

L Zi |Dz/Dy| & L ay’

1 2 a(J)k)
_m;—ayi =0.

To sum up, for the vector-field (2 1) satisfying the

\.«UlluluUllb lll lllCUlUIll I lllClU C)&lblb a lldllblUlllldllUll
of coordinates: x — z, under which (2.1) becomes

dz'
< —a.

n—1 .
4 Sy, i=1,...
dt )

7n'_19



220 N Hiyauwa ot Al /Dhyeine
180 D. Huang et al./Physics
dz" _
“ =g, (2! 2", =y (3.11)
dr
The theorem is proved. (]

Remark. From the above proof, one may find the

teomofArmaatinm +al TNVt~ 2 11N Anng bt Aonand

aldiulllauuvln Lal\lllg \2 1w Lo.11 ) Uuucs Hutucpeiiu
on the vector-field (2.1), but only depends on the
symmetry group G.

When n = 3, from Theorem 7, we get directly the
main results in Refs. [4,5].

Corollary 8. Let the following three-dimensional
system be divergence-free,
dx’

i 2.3
E=f,-(x LXT X0, t),

and admit a one-parameter, spatial, divergenceless
symmetry group G. Then there exists a local transfor-
mation of coordinates,

i=1,2,3, (3.12)

seens Ty Lls s

such that in new variables the system (3.12) becomes

dz! _oH(z'.z% 1)

dr dz? ’

dz?  4H(Z',2%,1)

dr dz1 ’
dz?

=ki(z', 2% 0) . (3.13)

dr
af

where H(z!,z2, 1) is a certain function.

Proof. From Theorem 7, the two-dimensional re-
duced system of (3.12) must be a two-dimensional
DFV, henceforth it can be expressed as a Hamiltonian
form. So the system (3.12) can be taken to the form

(3.13). ]

Now consider the case of a multi-parameter group.

- rx, N, i=1,.. . ,n, (3.14)

be a n-dimensional DFV, and admit a two-parameter
symmetry group G that satisfies the following condi-
tions:

(i) W, and V; are divergenceless,

(ii) [V, V2] =0, 1.e. G is an Abelian group,

where V; and V, are two independent infinitesimal
generators of G. Then (3.14) can be locally reduced
to a (n — 2)-dimensional DFV.

Proof. We first reduce (3.14) by V; as the proof of
Theorem 7. For simplicity, we still suppose the system
(3.14) has the same reduced system as (3.7),

dy’ 1 1

— n— P —
=k(y,....y"" ), i=1,....,n—1
dt

under the same transformation as ¢,

xi:%’()’];---»)’") ’

According to the theory of Lie group, the quotient
group G/G, is a symmetry group of (3.7), where G,
is a Lie group generated by Vj, and G/G, is just a
one-parameter group whose infinitesimal generator is
the reduced vector-field of V, (written as V3) under
the complete set of invariants of V;. Let

1

n a — n
+---+7 8x":(17,...,77).

V=7 E)

We work out V5 below.

From Theorem 4, the complete set of invariants of
Vi is {t,y',...,y""1}, then we get new coordinates
{t,y',...,y"~1,y"} by supplementing a variable v"
that is from ¢. Under the new coordinates, let V5 be
taken correspondingly to

a
~ 1 n—1
— +
7(y y )avl

i 4. @
+17n I(yl.”.’yn I)avn—l
d
~neo 1 n—1 _.ny “
+7(y ...y ,y)ﬁy".
Thus
Vazal(yl, .y
=7 (¥ y )19y1+
FATON T o

On the other hand, since |V}, V5] = 0, from Theorem
3, the autonomous system associated with V5,

dxi i i n
—=n(x,...,x"),

ar (3.15)
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admits a one-parameter symmetry group G| generated
by V,. The transformation in Theorem 7 is indepen-
dent of the vector-fields, so we can transform (3.15)

with the above transformation ¢ similarly, and let the
resulting system be

dy’ - .

E-h(y,...,y" Y, i=1,...,n. (3.16)

From Ref. [1], we have

i=1,...,n.

B =7,
=7,

Thus the system (3.7) admits a one-parameter sym-
meiry group generaied by Vi = (A',..., k""", ie.
[V3,K1=0,K=(ki,... . kp-1).

Further, for (3.7) and (3.16), we take the second
transformation similar to " in the proof of Theorem 7,
and we still suppose (3.7) is taken to (3.9) under I".
On the other hand, from Theorem 7, the first n — 1
equations of (3.16) are taken to an autonomous (7n —
1)-dimensional DFV (written as V5°).

From [V4,K] = 0, one gets easily [V, g] = 0,
where g = (g1,-..,8,—1) defined in (3.9) (this is
because the definition of the Lie bracket is indepen-
dent of the choice of coordinates). Thus the system
(3.9) admits a spatial, divergenceless symmetry group
generated by Vy', then applying Theorem 7 again, the
vector-field (3.14) is reduced to a (n—2)-dimensional

DFV. This theorem is proved. ]

More generally, one can obtain the following result
from the above n_rQof_

Theorem 10. If a n-dimensional DFV admits a
r-parameter spatial, divergenceless Abelian (com-
mutable) symmetry group, then it can be locally

reduced to a (n— r) -dimensionai DFV.

In Theorem 10, when r = n — 2, from Corollary &,

the reduced vector-field is an integrable Hamiltonian
system with one degree of freedom, so the original
system can be integrated by quadrature. This result
coincides with the conclusion in Ref. [6], without the
condition on rank as in Ref. [6].

4. An example

Consider the modified model from Ref. [9],

=
1)
B
N
-~
~
Ne]
Q
20
N
g
™~
X
g
0o
(3]
A7
o0

u=—uvw+bvz, ©=uw-—buz,

xX=-z,

o Tpe 2 2N
I=x+y0(u +07).

A1

(4.1)

It is shown easily that (4.1) admits a one-parameter
symmetry group whose infinitesimal generator is

'3 g +
=—p— 4+ u—

Ju av
Ry calenlatinn £ hae the Fallawing invariantas 12
Uj Laivuiauivii, 5 1Edd Ui lUllUWllls mrvariatiw. it T
i
v=, w, z and x. £(arctg(v/u)) = 1, so we take the
transformation

2 2
wy=u +v°, v =arctg(o/u), w=w,
Xy =x, 21=2,
such that (4.1) becomes

=07 Wv:—ll{lA )’C|=—Z|;
! UL, ! !

. 1 g
Z1=x1 + gbul , Uy =w, —bzy. 4.2)

Obviously, the Jacobian determinant of ¢ is equal to
1, so here we do not need the second transformation in
the proof of Theorem 7. In fact, the first equations in
(4.2) are already independent of vy and divergence-
less, and the exact solutions of (4.2) become
w(t)=py, wi(t)=—1pjt +wo.

x1(1) = (xo + bpj) cost — zosint — 1bpg,
21(t) = (xp + bpé) sint + zgcost,

v (t) = —%pgtz + wot + b(xg + bpé) cost

— bzgsint + vy,

where pg, Zg, Wo, Up and xp are initial values.
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