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Abstract With the recent rapid growth of Radio Fre-
quency Micro-Electro-Mechanical Systems (RF MEMS)
switches, there has developed an emergent requirement for
more accurate theoretical models to predict their electro-
mechanical behaviors. Many parameters exist in the
analysis of the behavior of the switch, and it is inconve-
nient for further study. In this paper, an improved model
is introduced, considering simultaneously axial stress,
residual stress, and fringing-field effect of the fixed-fixed
bridge structure. To avoid any unnecessary repetitive
model tests and numerical simulation for RF MEMS
switches, some dimensionless numbers are derived by
making governing equation dimensionless. The electro-
mechanical behavior of the fixed-fixed bridge structure of
RF MEMS switches is totally determined by these dimen-
sionless numbers.

1
Introduction
In recent years, Micro-Electro-Mechanical Systems (MEMS)
technology has grown rapidly and entered into many com-
munication and defense applications [1–3]. At present, as
the development in MEMS technology [4], Radio Frequency
(RF) MEMS is one of the fastest growing areas in commercial
MEMS technology. As a novel switch, RF MEMS switches
have a myriad application in radar system and wireless
communications [5, 6]. Comparing to semiconductor
switches widely used in millimeter wave integrated circuits
and microwave circuits, the novel device has a low insertion
loss, good isolation, low return loss, high frequency, good
Q-factor, and a low cost and power consumption.

RF MEMS switches consist of a thin metal membrane,
entitled the ‘‘bridge’’, suspended over a center conductor,
and one beam fixed on the ground conductor. There are

mainly three types of beams: cantilever, fixed-fixed beam,
and torsion beam [7, 8], and fixed-fixed beam are under
extensive research at present. The present paper goes on
study of RF MEMS switches based on simple fixed-fixed
beam.

Theoretical model can offer proper and convenient
approach for numerical calculations, and promote the
design of devices. At present, some theories and models of
RF MEMS switches have been established gradually based
on conventional theories. Because of miniaturization and
electromechanical coupling, some new phenomena and
factors, such as axial stress due to beam large deflection,
residual stress in thin films and so on, become compara-
tively more important. To design and optimize RF MEMS
switches further, it is essential to set up more accurate
models.

The dimensionless numbers are useful for scaling pur-
poses and for organizing experimental model tests and
numerical calculations to avoid any unnecessary repetition
of the results in dimensionless space [9, 10]. In the analysis
of improved models of RF switches, taking more physical
quantities into account, the dimensionless numbers can
play an important role in making the analysis more con-
venient.

In the present paper, a brief review of the existing
models is presented in Sect. 3, then an improved model is
put forward in Sect. 4 by considering axial stress caused by
beam large deflection, residual stress as well as fringing-
field effect, and four dimensionless numbers are obtained
by making governing equation dimensionless. Some ex-
isting models of RF switches and data of pull-in voltage are
reformulated using the dimensionless numbers and ana-
lyzed further.

The following begins with brief introduction on struc-
ture and working principle of RF MEMS switches.

2
Structure and working principle of RF MEMS switches
The schematic view of RF MEMS switches as analyzed in
this paper is shown in Fig. 1. The device consists of
transmission line, hinge, movable plate formed by using
electroplated Au or Cu, and substrate. One SEM photo of
the switch is shown in Fig. 2.

The switch can be fabricated using surface microma-
chining techniques, electroplating techniques and dry
releasing technique compatible to the (millimeter wave
integrated circuit) MMIC fabrication processes. A brief
fabrication sequence for the RF MEMS switches described
in Fig. 1 is shown in Fig. 3 [11]. A ground plate and a
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transmission line were formed on substrate (shown in
Fig. 3(a)). High dielectric layer was deposited on top of the
formed transmission line (shown in Fig. 3(b)). A patterned
seed layer was formed for electroplating the metal posts,
and a photoresist was deposited on the ground plate and
the dielectric layer (shown in Fig. 3(c)). Metal posts
formed on seed layer (shown in Fig. 3(d)). A hinge and a
movable plate were formed, and a mass was deposited on
the top of the formed plate (shown in Fig. 3(e)). The
movable plate and hinge were released by etching the
sacrificial layer (photoresist) (shown in Fig. 3(f)).

In theoretical analysis, the parameters of RF MEMS
switches involve materials constants (such as elastic
modulus, Poisson’s ratio and so on), geometrical dimen-
sions of the fixed-fixed beam moment of inertia of the
cross-section, the gap between the movable and the fixed
ground plates, and electrostatics. The analysis of these

parameters can be simplified to great extent by the
following analysis in this paper.

The essential of the problem of the RF MEMS switches
is the coupling of the mechanics and the electrostatics,
which governs the behavior of the structure of RF MEMS
switches [12]. The device controls mechanically electrical
current or signal, by using the on/off impedance ratio.
While a voltage is applied between the movable and the
fixed ground plates of the switch as shown in Fig. 1, the
movable plate subjected to the electrostatic force moves
down onto the fixed ground plate. When the pull-in volt-
age is reached, the switch is in the down state, or the
blocking state, when no voltage is applied it is in the up
state, or pass-though state [13].

3
Existing models
Electrostatic pull-in is a famous instable behavior of an
elastic supported structure with regard to parallel-plate
electrostatic actuation [14]. Despite the pull-in event is
sudden and sharp, the actuation voltage can be accurately
measured at wafer level by the standard electrical test
equipment with a microscope. Existing models have no
sufficient accuracy, so that there has developed an emer-
gent requirement for more accurate model to approach the
design of RF MEMS switches.

3.1
1D lumped model [14–16]
The 1D lumped model approximates pull-in structure by a
single rigid parallel-plate capacitor suspended above a
fixed ground plane by an ideal linear spring as shown in
Fig. 4. The model is the simplest and most intuitive ana-
lytically, but its accuracy is very poor. Its purpose is for
first-cut analysis to gain physical insight, explore design
options and understand overall behavior.

The pull-in voltage Vpi can be expressed by the
following equation

Vpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Keff G3
0

27e0A

s

; ð1Þ

where e0 is the vacuum permittivity, Keff the effective
spring constant, G0 and A the initial gap and the over-
lapping area between the movable and the fixed plates,
respectively.

Fig. 1. Schematic of one kind of RF MEMS switches

Fig. 2. SEM of a fixed-fixed RF MEMS switch

Fig. 3. Fabrication sequences of RF MEMS switches shown in
Fig. 1

Fig. 4. 1D lumped model for pull-in test
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3.2
2D distributed model [15–19]
Compared with the 1D lumped model, the 2D distributed
model can contain the influences of the fringing field,
residual stress, axial stress, and so on. Thus it can attain
more accurate solutions. The 2D distributed model gen-
erally includes the cantilever (shown in Fig. 5) and fixed-
fixed beam (shown in Fig. 6) structures.

The governing equation of the beam as shown in Fig. 5
or Fig. 6 is

~EE I
_ o4w

ox4
¼ e0V2B

2ðG0 � wÞ2
; ð2Þ

where ~EE, I
_

, w, B are the effective modulus, the effective
moment of inertia of the cross-section, the deflection and
the width of the beam, respectively. V is the voltage ap-
plied between the movable and the ground plates on the
fixed substrate. Following assumptions have been sup-
posed to simplify the analysis:

(i) residual stress in the fixed-fixed beam is ignored.
(ii) error derived from nonhomogeneous distribution of

charge, after the movable fixed-fixed beam deflects, is
ignored.

(iii) fringing field effect is ignored.
(iv) small deflection is assumed.

In theoretical modeling, some models considering residual
stress are established [15], which are represented as the
following governing equation

~EE I
_ o4w

ox4
� Tr

o2w

ox2
¼ e0V2B

2ðG0 � wÞ2
; ð3Þ

where Tr is the residual force of fixed-fixed beam.
Some models involving residual stress and fringing field

are analyzed [15, 16], which derived the governing equa-
tion as follows

~EE I
_ o4w

ox4
� Tr

o2w

ox2
¼ e0V2B

2ðG0 � wÞ2
ð1þ ffÞ ; ð4Þ

where ff is the fringing field correction. The residual stress
and fringing field effect are interpreted further in detail in
Sect. 4.1.

4
Model improvement
Because of the miniaturization and special fabrication
technology, it is necessary to take some the effects such as

residual stress, fringing field effect and axial stress into
account simultaneously. Some research about residual
stress and fringing field effect is referred in Sect. 3.2 in
modeling. In this section, in addition to further interpre-
tation of residual stress and the fringing effect, another
important factor axial stress, is analyzed. Then an im-
proved model is established, involving these important
factors.

The detailed schematic of fixed-fixed bridge structure
is shown in Fig. 7, where w is the deflection of the
fixed-fixed beam, B, t and L and are the width, the
thickness, and the initial length of the fixed-fixed beam,
respectively.

4.1
Residual stress and fringing field effect

(i) Residual stress
Residual stress, due to the mismatch of both thermal
expansion coefficient and crystal lattice period
between substrate and thin film, is unavoidable in
surface micromachining techniques, so that accurate and
reliable data of residual stress is crucial to the proper
design of the MEMS devices concerned with the
techniques [20, 21]. Therefore the residual stress is an
attractive research topic in the development of the
Microsystem Technology (MST). Considering the fabrica-
tion sequence of RF MEMS switches in Fig. 3, the residual
stress is very important and inevitable to the device.
Residual force can be expressed as

Tr ¼ r̂rBt ; ð5Þ

where r̂r is the residual stress, equal zero for cantilever, and
r̂r ¼ r0ð1� mÞ for fixed-fixed beam, where r0 is the biaxial
residual stress [15].

(ii) Fringing field effect
A uniform magnetic field cannot drop abruptly to zero at
an edge as shown in Fig. 8(a). In actual situation, there is
always a ‘‘fringing field’’ existing, and a more realistic
situation including ‘‘fringing field’’ modification is illus-
trated in Fig. 8(b).

If fringing field effect is taken into account, the first
order fringing-field correction [15, 16] is denoted as

ff ¼ 0:65
G0 � w

B
: ð6Þ

Fig. 5. Schematic of cantilever

Fig. 6. Schematic of fixed-fixed beam
Fig. 7. Detailed schematic of fixed-fixed bridge structure. a Side
view; b Top view
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4.2
Another important factor: axial stress
The bending of a fixed-fixed beam involves generally a
stretching. When the maximum deflection is less than the
thickness, small deflection can be considered valid, and the
stretching can be neglected. But for RF MEMS switches,
the gap G0 is usually larger than the beam thickness t, so
that the maximum deflection at middle point is larger than
t. Considering the invalidity of small deflection, it is
required to take axial stress of the fixed-fixed beam into
account.

Axial stress is analyzed in Fig. 9, where Ta is the axial
force derived from the elongation of the fixed-fixed beam,
and q is the electrostatic force per unit length.

When a voltage is applied, the actual length of the beam
is

L2ðxÞ ¼
Z

L

0

1þ dw

dx

� �2
" #1=2

dx : ð7Þ

Considering L� w, hence dw=dxð Þ2� 1, as a result, the
elongation is approximately given by

DL � 1

2

Z

L

0

dw

dx

� �2

dx : ð8Þ

Therefore, axial force is calculated as

Ta ¼ rBt � ~EEBtðDL=LÞ ¼
~EEBt

2L

Z

L

0

dw

dx

� �2

dx : ð9Þ

4.3
Governing equation
Considering factors as mentioned in Sect. 4.1 and 4.2, the
governing equation can be written as

~EE I
_ o4w

ox4
� ðTa þ TrÞ

o2w

ox2
¼ e0V2B

2ðG0 � wÞ2
ð1þ ffÞ : ð10Þ

Substituting Ta, Tr, ff and I
_

¼ Bt3=12 into Eq. (10), the
governing equation can be expressed as

~EEt3

12

o4w

ox4
�

~EEt

2L

Z L

0

dw

dx

� �2

dxþ r̂rt

" #

o2w

ox2

¼ e0V2

2ðG0 � wÞ2
1þ 0:65

G0 � w

B

� �

: ð11Þ

5
Dimensionless numbers for the electromechanical model
The behavior of a fixed-fixed beam involves more physical
quantities in present model compared with the classical
ones. In this section, it will be shown that the dimensionless
numbers can play an important role in the present problem.

By making Eq. (11) dimensionless, dimensionless
numbers with evident physical significations can be
obtained. Introducing the dimensionless transformation
as follows

X ¼ x

L
; W ¼ w

G0
; ð12Þ

onw=oxn can be shown as

onw

oxn
¼ G0

Ln

onW

oXn
n ¼ 1; 2; 3 � � � � � �ð Þ : ð13Þ

Substituting Eqs. (12), (13) into Eq. (11), the governing
equation can be expressed as the dimensionless form

~EEt3G0

12L4

o4W

oX4
�

~EEtG3
0

2L4

Z

1

0

dW

dX

� �2

dX þ r̂rtG0

L2

2

4

3

5

o2W

oX2

¼ e0V2

2G2
0

1

ð1�WÞ2
þ 0:65

G0

B

1

ð1�WÞ

" #

: ð14Þ

Multiplying both sides of Eq. (14) by 2G2
0= e0V2ð Þ, it

becomes

1

6

~EEt3G3
0

e0V2L4

o4W

oX4
�

~EEtG5
0

e0V2L4

Z

1

0

dW

dX

� �2

dXþ 2
r̂rtG3

0

e0V2L2

2

4

3

5

o2W

oX2

¼ 1

ð1�WÞ2
þ 0:65

G0

B

1

ð1�WÞ

" #

: ð15Þ

Several dimensionless numbers are derived as follows

P1 ¼
~EEt3G0

3

e0V2L4
; P2 ¼

~EEtG0
5

e0V2L4
;

P3 ¼
r̂rtG0

3

e0V2L2
; P4 ¼

G0

B
¼ Ff ;

ð16Þ

where P1 is the ratio between the bending force ~EEBt3G0=L4

and the electrostatic force Be0V2=G2
0 per unit length, P2 the

ratio between the axial force derived from the elongation of
the beam ~EEBtG3

0=L4 and the electrostatic force Be0V2=G2
0 per

Fig. 8. Electrostatic field of fixed-fixed bridge struc-
ture applied by voltage. a Simplified model;
b Schematic including fringing field modification

Fig. 9. Analytical schematic of the element of fixed-fixed beam
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unit length, P3 the ratio between the residual force r̂rBtG0=L2

and the electrostatic force Be0V2=G2
0 per unit length, and Ff

the first order fringing-field correction number, equal to the
ratio of G0 to B.

Therefore, Eq. (15) can be rewritten as

1

6
P1

o4W

oX4
� P2

Z

1

0

dW

dX

� �2

dX þ 2P3

2

4

3

5

o2W

oX2

¼ 1

1�Wð Þ2
þ Ff

0:65

1�Wð Þ

" #

: ð17Þ

The equation shows that the governing equation of a fixed-
fixed bridge structure to an applied voltage is solely
dependent upon dimensionless number group P1;P2;ð
P3; FrÞ.

Considering the ratio of the bending force to the axial
force per unit length of the beam as follows

P1

P2
¼ t

G0

� �2

; ð18Þ

we know that when t is more than G0, the axial force
derived from elongation is negligible compared with the
bending force of the beam and can be neglected.

6
Discussions
In order to show the validity of these obtained dimen-
sionless numbers in the behavior of electromechanical RF
MEMES switch, some other models and some existing
solutions of pull-in voltage will be related to these ones in
this section.

6.1
Some models of RF MEMS switches
For 2D model of a fixed-fixed bridge structure, the
governing equation as shown in Eq. (2) is recast into the
dimensionless form as follows

P1

6

o4W

oX4
¼ 1

ð1�WÞ2
: ð19Þ

Because of the ignorance of axial stress, residual stress and
fringing field effect, the equation is determined by the only
dimensionless number P1, the ratio between the bending
force and electrostatic force per unit length.

If residual stress is taken into account, the governing
equation as shown in Eq. (3) can be rewritten as the
dimensionless form

P1

6

o4W

oX4
� 2P3

o2W

oX2
¼ 1

ð1�WÞ2
: ð20Þ

If fringing field is also taken into account, the dimen-
sionless form of governing equation as shown in Eq. (4)
can be rewritten as

P1

6

o4W

oX4
� 2P3

o2W

oX2
¼ 1

ð1�WÞ2
þ Ff

0:65

ð1�WÞ

" #

:

ð21Þ

If axial stress effect due to large deflection of the fixed-
fixed bridge structure is also considered, the dimension-
less form of the governing equation is turn into the form
as shown in Eq. (17).

By comparing Eqs. (17), (19), (20) and (21), we know
that the influences of axial stress, residual stress and
fringing-field effect are represented by P2, P3 and Fr,
respectively.

6.2
Pull-in voltage Vpi

Since the behavior of the switch is determined by at most
four dimensionless numbers. As one of important indices
of RF MEMS switches, the pull-in voltage Vpi can be rep-
resented by these dimensionless numbers.

(i) For the simplest model (1D), considering
Keff ¼ 32 ~EEBt3=L3 and A ¼ LB, the pull-in voltage Vpi in
Eq. (1) can be written as

Vpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

256

27

~EEG3
0t3

e0L4

s

: ð22Þ

Using dimensionless numbers in (16), the equation can be
transformed into the following dimensionless form

Vpi

V
¼ 16

3
ffiffiffi

3
p

ffiffiffiffiffiffi

P1

p

: ð23Þ

It is easy to see that the dimensionless pull-in voltage is
only determined by P1, the ratio of the bending force to
the electrostatic force per unit length.

(ii) For a fixed-fixed bridge structure, when residual
stress and fringing-field effect are taken into account, pull-
in voltage Vpi obtained in [16] is

Vpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

27 1þ 0:42 G0

B

� �

32 ~EEt3G3
0

e0L4
þ 8r̂rtG3

0

e0L2

� �

s

; ð24Þ

and the equation can be changed into the dimensionless
form

Vpi

V
¼ 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4P1 þP3

3 1þ 0:42Frð Þ

s

: ð25Þ

It is evident that the dimensionless pull-in voltage depends
on fringing-field effect number, the ratio of the bending
force to the electrostatic force per unit length, and the ratio
of the axial force to the electrostatic force per unit length.

(iii) For a fixed-fixed bridge structure, if ignoring axial
stress and fringing-field effect, an analytic solution for Vpi

can be obtained as follows, using the Rayleigh-Ritz method
[14, 15]

Vpi ¼
p2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
ffiffiffiffiffiffiffiffi

3=5
p

~EEt3G3
0

25e0
1þ 3r̂rL2

p2 ~EEt2

� �

s

: ð26Þ

By using the dimensionless numbers in (16), the equation
can be rewritten as dimensionless form

Vpi

V
¼ 2p2

5

ffiffiffi

3

5

4

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P1 þ
3

p2
P3

� �

s

: ð27Þ
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It is evident that the dimensionless pull-in voltage depends
upon the ratios of the bending force and residual force to
electrostatic force per unit length.

(iv) Solution of pull-in voltage involving the fringing
field effect is obtained [15] as follows

Vpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11:86 ~EEt3G3
0

1þ 0:42 G0

B

� �

e0L4

s

; ð28Þ

which can be rewritten into the following dimensionless
form

Vpi

V
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11:86

1þ 0:42Fr
P1

r

: ð29Þ

Ignoring the factors of residual stress, fringing field effect
and axial stress, Eq. (27) can be rewritten as

Vpi

V
¼ 2p2

5

ffiffiffi

3

5

4

r

ffiffiffiffiffiffi

P1

p

; ð30Þ

and Eq. (25) can be recast as the following form

Vpi

V
¼ 16

3
ffiffiffi

3
p

ffiffiffiffiffiffi

P1

p

; ð31Þ

which is same to Eq. (23).
In order to show its validity to predict the pull-in

voltage of switches, Fig. 10 illustrates the use of P1 for
comparison of the experimental results [15] with simple
theoretical models of fixed-fixed bridge structures ig-
noring the residual stress, the axial stress and the
fringing effect. The horizontal axis represents P1, the
ratio of the bending force to the electrostatic force per
unit length, and the vertical axis represents the dimen-
sionless voltage, i.e., V 0pi is Vpi normalized by unit
voltage. The solid curve is the theoretical analysis of
model based on Eq. (30), similarly the dashed curves are
the theoretical analysis of models based on Eq. (29) and
Eq. (31), respectively.

When P1 is less than about 30, these theoretical
models agree relatively well with the experimental results.
However, the difference between prediction of these
theoretical models and the experimental results will be

larger with increasing P1 (depicted in Fig. 10). Obvi-
ously, both P2 and P3 increase with increasing P1 due
to the changes of parameters t and L. In fact, the in-
crement of the difference between the theoretical models
and the experimental results is a result of ignorance of
axial stress and residual stress. Therefore, to obtain more
accurate models, it is necessary to take some these fac-
tors into account.

7
Concluding remarks
Axial stress, residual stress, and fringing-field effect are
important in the behaviors of RF switches and can cause
degradation or even failure of the devices [22]. An im-
proved fixed-fixed bridge structure model, involving these
factors, is established and discussed in this paper. In order
to facilitate the analysis of the factors, four dimensionless
numbers P1, P2, P3 and Ff are presented. P1 is the ratio
between the bending force and the electrostatic force per
unit length, P2 the ratio between the axial force and the
electrostatic force per unit length, P3 the ratio between the
residual force and the electrostatic force per unit length,
and Ff the fringing-field correction number. Such a sim-
plification not only decreases the enormous and unnec-
essary repeated work, but also gives a convenient
approach of design.

The influences of axial stress, residual stress and
fringing-field effect on some obtained models and solu-
tions of pull-in voltage are reformulated and analyzed
using dimensionless numbers.

It should be pointed out that dimensional analysis can
give only general relationships among these dimensionless
numbers. The relative importance of each dimensionless
numbers has to be studied further by analytical, experi-
mental and numerical studies.

Fig. 10. Use of P1 to compare the experimental results with
simple theoretical models of fixed-fixed bridge structures m
experimental results due to variant length and thickness of the
beam; —, - - - -, .–.–.– theoretical analyses due to different
models

Table 1. Parameters in the present paper

Symbol Physical meaning Dimension

B Width of beam L
~EE Effective modulus of beam ML�1T�2

ff The first order fringing-field
correction

Dimensionless

G0 Gap between movable and
ground plates

L

I
_

Moment of the inertia of
cross-section

L4

Keff Effective spring constant of beam MT�2

L Length of beam L
q Electrostatic force per unit length

on beam
MT�2

t Thickness of beam L
Ta Axial force of beam MLT�2

Tr Residual force of beam MLT�2

w Deflection of beam L
V Voltage applied ML2T�2Q�1

Vpi Pull-in voltage ML2T�2Q�1

x Longitudinal distance along beam L
e0 Vacuum permittivity M�1L�3T2Q2

r̂r Residual stress of beam ML�1T�2

Appendix
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Table 2. Dimensionless num-
bers obtained in the present
paper

Number Dimensionless number Comments

1 P1 ¼
~EEt3G3

0

e0V2L4 Ratio between the bending force and the electrostatic
force per unit length.

2 P2 ¼
~EEtG5

0

e0V2L4 Ratio between the axial force and the electrostatic
force per unit length.

3 P3 ¼ r̂rtG3
0

e0V2L2 Ratio between the residual force and the electrostatic
force per unit length.

4 Ff ¼ G0

B Fringing field correction number.
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