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Introduction

Particle-reinforced metal matrix composites (MMCp) are promising candidates for a number of
aerospace and automotive applications due to their higher specific stiffness and specific strength and
better wear resistance. It is well known that the mechanical behavior of this class of materials is
significantly affected by their microstructures. During the past several decades, many attempts have
been made to explore the relationship between microstructure and deformation behavior in MMCp.
Continuum models including the cell model [1,2], the modified shear lag theory [3] and the homoge-
nization models [4] lead to a dependence of flow stress on volume fraction of reinforcing particles but
not on particle size. Current experimental results, however, have demonstrated that both particle size
and volume fraction exert influence [5–8]. Conversely, dislocation models predict both reinforcement
volume fraction and particle size effects on strengthening behavior of MMCp [9–10], however, there
is no consensus on the strengthening mechanism responsible for the observed strength increase with
decreased particle size. In order to explain the size effect in materials, some phenomenological strain
gradient plasticity theories were developed by Flecket al. [11,12]. Very recently, Nix and Gao [13]
proposed a new strain gradient plasticity theory. Dissimilar to the phenomenological theory, the length
scale involved in N-G theory [13] is naturally introduced from the indentation experimental results and
Taylor relation. Furthermore, such a length scale has been proven to be related to the real microstruc-
tural dimension of crystalline materials. Therefore, the N-G theory is of solid physical basis. Although
the strain gradient theory gives a reasonable prediction of mechanical behavior-size effects for
monolithic-phase metal materials, nevertheless, how to understand the reinforcement size effect in
two-phase MMCp is still open.

In view of the aforementioned observations, a strain gradient strengthening law is developed in the
present work, in which the role of Ashby’s [14] geometrically-necessary dislocation idea is emphasized.
From this law, the essence of the strengthening-particle size effect in MMCp is clearly revealed.

Experimental

In order to investigate the particle size effect, a series of uniaxial compression tests of 2124Al and 17%
vol. SiCp/2124Al composites with average particle sizes of 3, 13, and 37mm were carried out by Ling
et al. [5,6]. We refer to [5,6] for details. The experimental results display a pronounced increase in yield
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and flow stresses of the composites with decreased particle size. Microscopic observations on the
longitudinal sections cut from the loaded-specimens present inhomogeneous plastic deformation
patterns in MCCp, as shown in Fig. 1. Obviously, the dependence of macromechanical behavior of
MMCp on particle size is closely related to such inhomogeneous plastic deformation.

Dislocation Model

In general, dislocations stored in metals during straining can be divided into two kinds: geometrically
necessary dislocations and statistically-stored dislocations. Ashby [14] found that the size effect for
metals is only controlled by the geometrically necessary dislocations required for the compatible
deformation of various parts in materials. The experimental results of Flecket al. [11] have demon-
strated that monolithic metals subjected to uniform loading display no the mechanical behavior-size
effect. However, this is not the case for two-phase MMCp due to the elastic modulus mismatch between
the particle and the matrix. So, in this paper, we adopt the idea of geometrically necessary dislocation
and Taylor relation, as Nix and Gao [13] did for indentation study, to examine the strengthening effect
of a two-phase MMCp.

Consider an MMCp subjected to a compressive loading, as is shown in Fig. 2a. Subscripts “m,” “p,”
and “c” stand for the matrix, the particle and the composite respectively. To determine the geometrically
necessary dislocation density, an idea similar to Eshelby’s equivalent inclusion principle [15] is
adopted. Firstly, imagine all particles in MMCp sample of Fig. 2a are replaced by the matrix material,
thus particles turning into “matrix spheres.” So, the whole body of this “matrix sample” will experience
a uniform deformatione when the sample is subjected to a uniform compressive loading. In this case,
those “matrix spheres” will be distorted into “matrix ellipsoids.” However, in the real MMCp sample
such a distortion will not be allowed to take place because of the existence of the reinforcing particles.
Hence, a lot of geometrically necessary dislocations must be stored near the surfaces of particles for
accommodating this distortion deformation (Fig. 2b). According to the deformation-geometry condi-
tion, the number of the geometrically necessary dislocation loops imposed on the surfaces of particles
to accommodate the mismatch of plastic deformationn is given by

Figure 1. Nonhomogeneous plastic deformation pattern in 13mm-SiCp/2124 Al composite under uniaxial compressive
loading.
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nb 5 j«dp (1)

whereb is Burges vector,j is a dimensionless geometric parameter,dp is the diameter of particles.
Assume the volume fraction of particles is denoted byfp, then the total number of particlesNp is

Np 5
6fp

pdp
(2)

If the length for each dislocation loop is taken aspdp, then the geometrically necessary dislocation
densityrG is

rG 5
3j«

blG
(3)

where lG 5 dp/2fp is the geometrical slip distance [14]. It is found from this equation that the
dislocation loop density to accommodate the deformation mismatch for the small particle is higher than
that for the large particle.

Strain Gradient-Strengthening Law

Assume the strengthening for MMCp is mainly attributed to the deformation resistance induced by the
reinforcing particle. According to Taylor relation, the flow stress of MMCp is written as

sc 5 Î3abmmÎrT 5 Î3abmmÎrS 1 rG (4)

whererT is the total dislocation density,rS is the statistically-stored dislocation density,mm is the shear
modulus of the matrix material anda is a dimensionless parameter. The flow stress for the unreinforced
matrix is

Figure 2. Configuration and dislocation model for particle reinforced metal matrix composite under compressive loading: (a)
configuration; (b) dislocation model.
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sm 5 Î3abmmÎrS (5)

Suppose the deformation of the hard reinforcing particle can be neglected. Define the average strain
gradient of the matrix by

xm 5
«

lp
(6)

wherelp is the average edge-edge spacing between particles and is given by [9]

lp 5
1

2
dpS Î2p

3fp
2

4

p
D (7)

From (3); (7), we obtain the following strain gradient-strengthening law for MMCp:

S sc

sm
D 2

5 1 1 bb
lp

lG
Smm

sm
D 2

xm (8)

where the constant factorb 5 9a2j. Now, define a characteristic microstructural scaleXl by:

lX 5 b
lp

lG
Smm

sm
D 2

(9)

Combining (8) with (9) leads to

S sc

sm
D 2

5 1 1 b lXxm (10)

Eq.(10) appears to be similar to that obtained by Nix and Gao [13] for indentation. However, here, the
strengthening effect of the two-phase MMCp is straightforwardly and clearly related to the average
strain gradient of matrix as well as the reinforcing particle size.

It is seen from this strain gradient-strengthening law that the strengthening (sc/sm) is controlled by
both the matrix average strain gradientxm and the characteristic microstructural scaleXl. For an MMCp
with fixed volume fraction of the particle, the strengthening for the composite is completely determined
by the particle size, namely, the smaller the particle size, the higher the strengthening effect. This is
qualitatively in accordance with the available experimental results [5–8].

To verify the aforementioned model, we make a comparison with the experimental results presented
in [5,6]. Firstly, the factorh(e) 5 bXl is determined by making use of the experimental data of 2124Al
and 3mm-SiCp/2124Al composite. Then, the flow stresses of 13mm-SiCp/2124Al and 37mm-SiCp/
2124Al composites at five straining points are calculated by equation (10). Table 1 and Table 2 present
a comparison of the calculated flow stresses with the corresponding experimental results respectively

TABLE 1
Comparison of the Flow Stresses for 13mm-SiCp/2124Al Composite with the Corresponding

Experimental Results [2]

« 5 0.02 « 5 0.10 « 5 0.20 « 5 0.30 « 5 0.40

Experimentalssh (MPa) 457 686 843 982 1130
Calculatedsth (MPa) 404 618 752 868 971
ssh2sth

ssh
3 100%

11.6 9.9 10.8 11.6 13.5
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for 13mm-SiCp/2124Al and 37mm-SiCp/2124Al composites. From Tables 1 and 2, we can see that the
results from the model are lower than those from the experiment, the relative errors at all straining
points are less than 15%. The relative low predicted values may be due to the fact that some other
secondary contributions to the strengthening, namely, the strain rate-size effect, the thermal mismatch
between the particle and the matrix, are not incorporated into the model. In spite of this, it is seen from
the comparison that the theoretical results are in accordance with the experimental ones on the whole.

Discussion

Now, turning back to equation (10) for discussing the possible physical significance implicated in it.
From (10), one can see that the characteristic microstructural scaleXl plays an important role in the
strengthening for MMCp. If the strain gradient in the matrix is fixed, the larger the characteristic
microstructural scaleXl, the higher the strengthening effect. It is easily found thatXl is irreverent of the
particle size if the volume fraction of particle keeps fixed. However,Xl is not a material constant and
depends on the deformation state of the matrix. Figs. 3 and 4 present the variations ofXl with the volume
fraction of particle and the matrix flow stress, respectively. From Fig. 3, one can see that there is a
characteristic volume fractionf̃p which corresponds to the peakXl 5 Xlmax under various deformation
states. Since the strengthening for MMCp is controlled byXl andxm, and the strengthening of MMCp
increases monotonously withfp increasing, Fig. 3 tells us, at least, that the strain gradient effect (size
effect) is especially remarkable for the case of high concentration of particle. This is qualitatively in
accordance with the experimental observation by Huntet al. [8]

TABLE 2
Comparison of the Flow Stresses for 37mm-SiCp/2124Al Composite with the Corresponding

Experimental Results [2]

« 5 0.02 « 5 0.10 « 5 0.20 « 5 0.30 « 5 0.40

Experimentalssh (MPa) 444 661 764 889 1056
Calculatedsth (MPa) 378 583 721 831 914
ssh2sth

ssh
3 100%

14.8 11.8 5.6 6.5 13.4

Figure 3. Variations of characteristic scale with particle volume fraction (l 5 mm/sm).
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Moreover, from Fig. 4 one can see thatXl decreases in the course of the matrix work hardening. This
indicates that the strain gradient effect in the latter stage of the deformation is higher than that in the
initial stage. When the flow localization occurs in the metal matrix, i.e., the matrix becomes soft,Xl
becomes large once more, thus leading to higher resistance to the flow localization. Therefore, filling
the metal matrix with hard particles can not only enhance the flow strength but also resist the flow
localization.

Conclusions

Based on a simple geometrically necessary dislocation model, a strain gradient-strengthening law for
MMCp is developed in this paper. From this law, one can see that the strengthening in MMCp is
controlled by both the characteristic microstructural scale and the strain gradient of the matrix. Further,
the particle size effect should be included in the strain gradient effect. This means that the strain
gradient effect may be an important factor controlling the deformation and fracture behavior in MMCp.
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