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Saltation in wind blown sand
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Abgract The Boltzmann equation of the sand particle velocity distribution function in wind-blown sand two-phase
flow isestablished based on the motion equation of sngle particleinar. Andthen, the generdized baance law of parti-
cle property in dngle phase granular flow is extended to gasparticle two-phase flow. The veocity distribution function
of particle phaseisexpanded into an infinite series by meansof Grad’ s method and the Gauss distribution is used to re-
place Maxwel digtribution. In the case of truncation at the third-order terms, a closed third-order moment dynamica
equation system is congtructed. The theory isfurther Smplified according to the measurement resultsobtained by stro-
bosoopic photography in wind tunne tess.
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The wind-blown sand trangport is a two-phase turbulent boundary layer flow. It is divided
into three types, i. e. sugpendon, sdtation and creep[l]. Sdltation plays a predominant role in
sand trangportation and most of the trangorted sand movesin sdtation at afast eed. Most the
ories about wind-blown sand trangort are experiential or semi-experientia theories. Many prima
ry propertiesin blown sand two-phase turbulent boundary layer were found by Owen!?! through
the sngle trgectory assumption. Inrefs.[3,4] and other literature launch velocity distributionis
studied by means of experimenta measurements and tatistical methods. Recently a numerical
dmulation method , the so-caled sf-regular method isdeveloped[5_7]. It is necessary to asociate
macrosoopic research with microscopic research to establish a dual fluid dynamic mode for blown
sand two-phase flow. In this paper, the closed thirdorder moment theory of particle-gas two-
phase flow and its smplified form , which is ussful and convenient for engineering, are obtained.

1 Veocity digribution function and generalized balance law of particle phase

It isfound that the collison process of sand on the bed plays a predominant role in blown
sand trangoort possessest®! | @ do the blown sand characteristics of granular flow. The motion of
individua particle isfully random. According to the characterigics of blown sand it is supposed
that : (i) dl the particles are goheres and have an identical diameter and mass; (ii) in microsocopic
representative volume element of sdtation layer, the location and velocity of a sand particle is
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random, 0 the macroscopic movement state of particle phase can be described by means of a ve
locity distribution function; (iii) the rotation of aparticle can be neglected; (iv) thefluctuation of
gasis not afected by particle motion , and the drag force on particlesisonly dependent on relative
velocity between a particle and the mean seed of gas. In the present paper , only saltation is tak-
en into acoount and the Rouse number Ro =T ,g/ (Ku ) > 1. In thiscase, the particle motion
has no &fect on the high-frequency fluctuation of gas, and the random force caused by high fre-
guency fluctuation of gas can be neglected.

LetPpa, Ma, u, denote densty, visodty coefficient and velocity of air, regpectively. Let
r(x,y,z) D,pp,VU denotepostion, diameter, dendty and velocity of a phere particle at time
t. Assume that the force actingonitis F(U ,r,t). Then its motion equation is

a

mdt:F’ F= Fpb + mg, (1)

where
Fo = MB(u-U), m=mDPp,/6, (2)
B = fo(Re)/Ty, T, =p,D18,. 3

According to ref. [9] , fp can be goproximately expressed as fp (Re) = 1 + Re”%/ 6, where Re
=P.D| u-V|/Ha=D| u-U|/V is Reynold’ s number of a particle. Therefore 3 can be ex-
pressed as

4
Bozl&la/(PpDz), 51:33¥1/3/(ppD4/3), )

whereT , is the relaxation time of particle motion. Let f (U, r, t) be the velocity distribution
function of particle phase. Then at time t, the probable number of particlesin the volume ee
ment dQ,(=dx dy dz) centered at thepoint r with velocity intherange O U +d)) isf (@ ,r,
t) dQ,dQ, (where dQ, =dv, dv, dv,) . S the Boltzmann equation to determine the particle ve-
locity distribution function is

%_tf_-'-U'-g_f; imp-%f+imf—a)a-F:Dcf, (5)
where' -” meansinner product , (¢&/ @) - Fiscaused by visoous drag of intertitial fluid, Dcf is
the mean collison rate of change of f. In the satation layer of blown sand, the mean free length
between particlesisone order larger than their diameter , and the particle volumefraction is small-
er then 10 *; therefore the collison effects of particle can be neglected ’* !, S in the follow-
ing, we neglect al the collison terms.

Let n be the number dendty of particles. Then

{B = [Bo+By] u-v 2%,

n:J‘f(U,r,t)dQv :J- I I fO,r,t)dvydvydv,. (6)
Gven any particle property y =y U , r, t) , its mean vdue Y is determined by
o= fwe oo o, (7)

epecialy when W =U . The mean velocity of particle phaseisU = U . Let C be the fluctuation
of particle velocity. Then

U =0 + C. (8)
S any particle property U can d be expressed as afunctionof C, and (7) can be rewritten as
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_inJ’qJ(c,r,tmc,r,t)olQC. (9)

Let Y be some property of aparticle, from (5) it can be confirmed that the balance law of
particle property in particle-gas two-phase flow is

Loy vy Wy o=y, (10)
where
_a o 1 A
DjJ_at+U-ar+mF-a). (11)
Lety = m. ThenDP =0. From (10) , we obtain
i - . n _ 0 ol
ot TPV =00 p =5t g 12

wherep = nm. In theforegoing statement , thelndependent micro-variablesare U , r,t) , but it
is more convenient to expressy asafunctionof (C,r,t). Let
PO ,r,t) =WO(r,t) + C,r,t) =W(C,r,t). (13)

Except gecia clam in the following statement we use C ingtead of U as an independent variable
for any physica quantity. From (11) we obtain

oy = oy [J_F_m @ A C{Qiﬁj
Dt -m 0t 9cC or oc Or
Then the baance law of particle property (10) can be expressed by the fluctuation velocity asfol-
lows:

(14)

p Dt V- pay =p DY , (15)
where DY) is determined by (14). Let Y = Cin (15). Then we obtain the momentum balance
eguations

P gL =-y-P + b,

(16)

P= pcC ,b :IFf(C,r,t)dQc.

Inthecaseof Y =P (C) (i.e. P isnot degpendent on r and t) ,by meansof (16) , the balance law
of particle property (15) can be smplified into

D_llL_..Q_v.pGp a

pt -V P 5¢ P 5cC o

P ocC

+ (17)

2 Clo=d third-order moment theory and its simplified form in fully developed 2-dimensional
static boundary layer

Define the Nth-order moment :
Mii, i, = G G, G . (18)

N

TakingP = CC,in (17) one obtains the second-order moment balance equations:

M g _@ Ovy

p 2D+ 3t oM + 2R 5 =22 F(a) (19)
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Takingy) = C«C/Cy and subgtituting it in (17) , one obtains the thirdrorder moment balance
equations:

DMyw . 0 vy vy vy
p Dt T ari(pMiklm) +p{Milm or; + Mikm or, + Min or;
0Py OPy OPin o
= or, Mim + or; Mym + or; My + m( FkCiCn
+ FCGCmn + FnGC - Fx Mim- F Min- Fm Mu). (20)

It is noticed that in generd diffuson termsin the Nth-order moment baance equations are depen-
dent on (N +1)th-order moments. The same as the classcd turbulent flow theory, truncationis
needed to obtain closure smultaneous equations. Following Grad!*?! the traditional truncation
method in classcal granular flow isexpanding the velocity distribution function into an infinite se-
ries in the vicinity as Maxwell distributiont™. In two-phase turbulent boundary layer flow of
blown sand , because the velocity distribution function of particle phase is strongly anitropic in
three directions, which has been confirmed by experimenta resultsin wind tunnd , we introduce
the Gauss distribution function fo instead of Maxwell distribution in windblown sand two-phase
flow :

fo(C,r,t) = [2T]3’2[<rjletM]l’2eXF{_ ‘JZ‘C- Mot CT}, (21)

where M isa 3-dimendona 2nd-order symmetric tensor , the componentsof which are determined

by (18). det M isthe determinantof M ,and M~ Yisthe reverssof M. For any particle proper-
ty@(C,r,t) ,itsanother mean vaue is defined asfollows:

llJO:'Jr;J’llJ(C,r,t)fo(C,r,t)dQc, (22)
Define the characteristic function of fo(C,r,t) as@ (N ,r,t)
O ,r,t) = exp{ /- 1N - C} °=ex -‘;‘nwnT}. (23)

Usng formuae* =1+ x +§Jr x?+  and the basic property of characteristic function it is easy
to show that

0 _ HL — i
c,c, G °= [ /. 1J am, In=0o =0, when N isodd, (24)
CC 0= My . (25)

Following Grad!™?! , we expand the velocity distribution function f (C, r, t) into aninfinite series
at the vicinity of fo(C,r,t):

_ 2 Pal'll iP ap
For any particle propertyy (C, r, t) we have
- oY 0 )
= ) 7
Vo e 0C,0C, 0G;, @0

From (24) —(26) and the definitions of number density n, mean velocity U , and the secondtor-
der moment My , it iseasy to obtain a =0, a; =0; therefore (26) can be rewritten as
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e & i, i P
_ p 1 I
f(C,r,t) —ll+ FZ(' 1) P! acllaclz aCIJ fo(C,I’,t) (28)
If only the second-order moments are conddered (i. e. ai, i =0,foradl P>3) ,then f(C,r,
t) =fo(C,r,t). From the definition of the thirdorder moment and (27) one can obtain

, Bk >(ccuc
*31 2coGoc

Mimn = GCCnCy = CICan

Usng (24) we get Mimn = @mn . Therefore

_ _qu_L i, i, oP
f(C,r,t) —[l- 31 aGaC]aCk FZ( 1) P Y aCilaCiz aCi] fo(C,r,t). (29)

From the difinition of the fourthrorder moment and (27) one obtains

Mimp = CiCmCnCp ° + amm = 2.31,31 .31 [n=o0* @mnp- (30)
m n

Expanding (23) into thefourth-order terms and substituting theminto the above equation one ob-
tains

Mumn = MuMmpn + MinMin + MisMim + @mnp. (3D
Usdng (31) , we can rewrite (21) as
DMymn oM oM oM
p Dt _a_(pa|klm) + Plk arlim + PiI arl:m + le a “
ov, v, Ovp
+P Milmﬁ"' Mikma_ril + Mg o,
P
= m( FCCn + FCGCnm + FnGC - F Mim- F Mgn- Fn Mg). (32

For the closed third-order moment theory , it isassumed that the syssem state variablesof particle
phase are n, vi, M, Mij . Any coeficient of higher-order terms ai i, i,(P=4) in (28) should
be expressed with the system state variables based on experiments, which has been done in turbu
lent flow theory. For lack of experience, following Jekens and Richman'*! | we truncate it to the
thirccorder terms, i.e. let a i, i =0for dl P=4. In the present paper only this case is to be

conddered; therefore (12) , (16) , (19) , (32) and the motion equation of gas phase form the
complete equation system of the closed third-order moment theory.

In order to amplify the equations obtained in the above section, in this section we condder
the fully developed 2-dimensiona static boundary layer problem. It is assumed that : (i) v, =0
and (ii) al the macroscopic quantities such as vy and vy are only dependent on y. From assump-
tion (i) , the mass conservation equation (12) can be smplified into p vy = constant. Becanuse of
pvy 0 at infinity, in fully developed 2-dimensona satic boundary layer problem only the x-
component of the mean velocity of particle phase is non-zero , and we denote it by v(y). In this

2

case, when any macrosoopic quantity is acted on by an operator JDlt =5t + v Bar_ , that isequa to

zero. For the same reason, the gas velocity has only one component in x-direction, u(y). Be
cause the motion of particle does not afect the gasfluctuation, Prandtl’ s mixing length theory is
al true. The effect of particle on gas can be smplified into a reaction force. Let T , denote the
shear stressof particle phase, T ¢ shear stressof gasphase. Then the momentum baance equation
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in x-direction of the mixture becomes O(T ,+T 5/ 0y =0. Integrating it we obtain
T,+Ts =Ty, (33)

whereT gis a congtant denoting the tota shear stress at boundary ,Ts= - PMj2. According to
Prandtl’ s mixing length theory we haveT ,=p ,(Ky- du/ dy)?. Then the motion equation of gas
phase can be expressed as

PaKy- du/dy)? =To +P My, (34)
whereK isthe Karman congtant. From assumption (ii) it is known that any moment containing
the subscript 3 of particle phase vanishes. Then in thefully developed 2-dimendonal static bound
ary layer problem, the syssem state variables of particle phase for the closed third-order moment
theory are

upP,v,Mu, M2, M2z, M111, M1z, M112, M22o.

Then (21) becomes

*

n
2T MuMgp - M%
M3 M ¢ 2Mp GG | G
. exq - > - + . (39)
(M11 Mo - Mi)L Mg M11 M2 M2
The complete equation system of the closed thirdorder moment theory of two-dimensonad prob-
lem can be written as

fo(C,l’,t) =

2
p Kyg_ﬂ =To+PMi2,
ad{/(lez) =p[B (u-v) - Bc ],
d

dy(pMzz) =-pg-p BC ,

b

dy(pMzzz) =- P BCC, ,

dy(pan) +3~)|V|12£dh; =P[BC (u-v) - Bcic ],

b

ad)'/(pl\/llzz) +PM22g§f =p[BC (u- V) -2BC1C, ],
dM s v —

Mo dy + Mlll-gif: [(BCiC - B M) (u- v) (36)
+ BC M- BCiCiC ],
dMz dMgp dv

M 12

dy +2M2 dy + Mzzzdy

= [(BC2Ca - B M) (u- v) + BC My
+2BC, M- 3BCICC ],

dMy; dMj,
M2, dy +2Myp dy +2M122g§

= [2(BCiC; - B M) (u- v) + BC, My
+2BC Mp-3BCCiC ],

dMo

M2 dy =[BC Mp- BCCC ],
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where is determined by (4) . The product terms (i.e. all terms) ineq. (36) can becacu
lated by meansof (29) .

3 Simplified equationsfor engineering application

Experimenta researcheson wind tunnd for the developed wind-blown sand turbulent bound-
ary layer flow were carried out (limited by space, experimenta details are omitted here) . U nder
the experimental condition of the present work , the average vaue of experimenta results within
0.04 m can be given as

My = 1.772m°/ &, My, = - 0.472m%/ &,
Mz = 0.179m°%/ &
Experimental results show that May isfar smaller than M2, Experimenta results of the three
order moments are scattering, and no satifactory results are obtained. We can only eva uate the
order of magnitude from experimenta results. Particle dendty isindirectly caculated by particle
flux and average particle velocity :p = ¢/ v . Experimenta results show that the particle densty
p approximately attenuates as negative exponentia function with height y. It can be approxi-
mately expresed as
P = exp{- 54.75y}, (38) 1of-
where the dimenson of p isin kg/ m*, the dimension
of yisinm. Thefitting curve of p is compared with
the experimentd resultsinfig. 1. Thisconcludonisal-
© given by Napaniset a. '3 wul*® and others.

In the fully developed 2-dimendsonal particle-gas
two-phase turbulent boundary layer flow , dynamic e
guations of closed third-order moment theory are given
by (36). In generd cases these equations are all cou )
pled together. In our experiments the third-order mo- plkgem™?
ments cannot be measured accurately. All these dtua
tions make these 9 multaneous equations difficult in en-
gineering. S we smplify eq. (36) according to the order of magnitude obtained in experiments.
The following approximate solution can be obtained (the details are omitted here) :

(37)

g
0
e
-

L L I T R R R - - =]

Fg. 1.  Partide dendty and itsfitting curve.

oy
p = pOe_MZZ, Mo = 0, Mo, = cond. ,
(39)
M1 = ocond. , M1 = cons. ,
oy
pa(Kyg‘;) =To+PoMpe wm,,
gM 1 (40)
M _ _ - -
"My = PBolu- V) +Bi(u- D+ ZBi(u- 9 Y M

The densty in eq. (39) iscorreponding to eq. (38). The vaueof u and v can be obtained from
eq. (40) . Inorder to reslve eq. (40) , two boundary conditions are required: (i) particle borne
shear stressat y =0, and (ii) wind peed at y= D. First we consder condition (1) ; athough we
can determine Mj, by means of experiments, it is difficult to accurately determine dendty at
y =0; therefore we ill use Owen’ s aswmptionlz] . suppose that air borne shear stressat y =0
always has a threshold value for the initid sdtation:T . =p .u%. FromT ¢ =P ,u one can obtain
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Ty =PoMiz =-Po| Miz| =- Pa[ U - U%]. (41)
Substituting (41) into the first equation of (40) , and noticingT o = P ,u% , one can obtain

du _ u*[l- 1- %‘ e'w?_y} M.
dy Ky 2
Assume that the second condition is

u=Bu.aty=D, (43)
where coefficient B is determined by experiments. In the present paper, B isalittle larger than

8.5, 0 we can approximately take B =8.5. From (42) and (43) we obtan

v U2
U = y UZ*I I
u:_J’[l-[l- zJeMzz} m(+Bu*. (44)
K D U= yl

Substituting the relevant parametersinto (44) , and integrating it by numerica method one can
obtain the theoretical profile of wind geed as shown infig. 2. Beow 0.02 m, the particle borne
shear stress increases repidly with the decreasng height , and air stress is no longer constant ;
therefore the wind gpeed deviates from the logarithmic profile. This Stuation causes the fitting
curve to deviate from the practicad wind eed below 0.02 m. From fig. 2. we can find that the
experimental fitting curve of the wind eed is smaller than the theoretical one. From fig. 2 we

(42)

*

K

(y/ yo) , where yo = D/ 30, corregponding to the assumed case where sands are fixed on the bed ,
u - is determined by regresson analyssfrom the measured wind geed. Curve 1 isthe curve fit-
ting test data and curve 2 is a theoretica curve. In the smplified theory three second-order mo-
ments are constants, and particle densty decays exponentialy with height , and therefore the par-

ticle borne stress d < decays exponentialy with height :
oy

a2 find that the roughnessisincreased due to particle shear stress. Infig. 2 curve3isu="_"1In

Tsz-[soe_MZZ,TsO:'poMlzx (45)
wherep o isthe particle dendty at y =0, the valueof M1, is negative. From (45) one can obtain
& 7
Ta :To-Tsoe-Mzz :pau2*+po|\/|12€ Mo, - (46)
2
2.0 J 10—
0.181+ 9
4.16 8
0.4k .
£ 012 § 6
< ~
% 0.10 — Ay
0.8+ 4
0.6 | 3
0.4 2
0.2f 1
I I .

L L
2 4 6 81012 14 16 18 20
1

u/ms”

Fig. 2. Theoreticd wind eed profile. Fg. 3. Theoreticd mean veocity of particde phase.
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The variation inT s andT , with height is condstent well with the numerical results given in ref.
[6]. From the second equation of (40) one canfind that (u - v) isapproximately constant with-
in an gppropriate range, which has a< been found in experiments. The particle average velocity
determined from (40) and the experimenta results are shown in fig. 3. Fig. 3 shows that they
are well condstent with each other.

Appendix Balance law of particle property

I aQ, IM &u]dQ_‘aaEJ'lldeQ IafdQ

ot
Liny)-n (A1)
0
J’ dQ I[ - Wf) - %‘ﬂ dQ, = ar.IdeQv-Iu
=y Wy - nu- (A2)
1 1,0 1 1

I[mF-%qJ Sty FFlJ]dQ J‘[ [mFﬂIJJ- mfF-‘a&g‘]dQv

= # %)ufdQ n #F- %)u , (A3)
in which we have usedJ’?aa)‘ . [#FMJJ dQ, = 0. With (A1) , (A2) and (A3) , weobtain

ID*ﬂdev =£ W +y- wY - nDU . (A4)

From (13) , (A4) and (5) , (11) can be obtained.
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