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Abstract
In this paper, several simplification methods are presented for shape control
of repetitive structures such as symmetrical, rotational periodic, linear
periodic, chain and axisymmetrical structures. Some special features in the
differential equations governing these repetitive structures are examined by
considering the whole structures. Based on the special properties of the
governing equations, several methods are presented for simplifying their
solution process. Finally, the static shape control of a cantilever symmetrical
plate with piezoelectric actuator patches is demonstrated using the present
simplification method. The result shows that present methods can
effectively be used to find the optimal control voltage for shape control.

1. Introduction

Research on shape control of flexible structures has
received much attention particularly in aircraft and space
engineering [1–4]. Shape control of a structure is to apply
control forces to make its shape trace an objective shape or
to keep a designated shape under external disturbances. In
recent years, piezoelectric materials have been widely used in
shape control of structures due to their light weight and quick
response to actuating voltage. Several methods have been
developed and applied to find the optimal control voltages for
shape control of smart structures integrated with piezoelectric
actuators [5–11].

Repetitive structures are often encountered in engineering
environments which are composed of a set of components
with identical geometric shape, physical property, boundary
conditions and even interactions with each other. Since
many space structures or structural components such as space
antennae, solar array and many parts in rockets and satellites
fall in repetitive structures, investigation of shape control of
repetitive structures is very important.

3 Author to whom any correspondence should be addressed.

In general, shape control of a structure must be designed
and performed based on modeling of the entire structure.
However, shape control of a repetitive structure can be
designed by considering only one of its substructures due to
its repetitive feature, and hence numerical and experimental
costs can be significantly reduced. A large amount of literature
can be found on the solution of the natural frequencies and
modal shapes of repetitive structures. Evenson [12] studied
the vibration problems of symmetrical structures, Thomas [13]
investigated vibration of revolutionary periodic structures, and
Cai and his colleagues [14–16] also carried out research into
the vibration of revolutionary periodic structures using the U-
transformation. Recently, Wang and Wang [17] presented a
reduction method for natural vibration of symmetrical and
linking structures.

Since shape control of repetitive structures is a new topic,
there is no literature about this topic available so far. This
paper aims to simplify the shape control of repetitive structures
including mirror-reflected symmetrical (symmetrical for short
hereafter), rotational periodic, linear periodic and linking
as well as axisymmetrical structures by fully utilizing their
symmetrical characteristics. Shape control of repetitive
structures is investigated systematically and theoretically,
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and some methods are presented to simplify the numerical
computation and on-line shape control. It is demonstrated
that the shape control problem of repetitive structures can be
reduced to shape control of one of its substructures when the
actuator placement and inputted control forces also have the
same repetitive feature as the structure. The present methods
can remarkably reduce the dimensions of the control system
in shape control of repetitive structures, and consequently
simplify the related theoretical and experimental analysis.

2. Symmetrical structures

2.1. Modeling and governing equations

A symmetrical structure can be defined as a structure whose
geometric shape, physical properties and boundary conditions
are symmetrical about a plane or line, referred to as the
symmetrical plane or line. Moreover, assume that the
actuators are also symmetrically collocated. An example of a
symmetrical piezoelectrically actuated structure is illustrated
in figure 1. In this case, the entire structure can be treated
as two substructures, and two Cartesian coordinate systems
are set, respectively, in substructure 1 and 2. The directions of
their y and z axes in these two coordinate systems are the same,
while those of their x axes are opposite to each other. Their
equilibrium equations together with corresponding boundary
conditions, which bridge the displacements and the control
forces, can be expressed in the following form:

Lwi + BU i = 0 in �, i = 1, 2 (1)

Γwi = 0 on ∂�, i = 1, 2 (2)

where w1 ∈ Rn and w2 ∈ Rn are functions or function vectors
consisting of the generalized displacements of these two
substructures,� is the domain of a substructure, ∂� represents
its boundary excluding the common boundary where x is
equal to zero, L, B and Γ represent the elasticity, control
and boundary differential operator matrices, respectively, and
Ui ∈ Rm is the function vector of actuating forces induced by
the actuators. For discrete models, the function vectors wi and
Ui as well as the differential operator matrices L, B and Γ in
equations (1) and (2) become ordinary numerical vectors and
matrices, respectively.

In addition, the generalized displacements and actuating
forces of these two substructures at their common boundary
(say x = 0) should satisfy the continuity conditions given by

J1w1 = −J1w2 on x = 0 (3)

J2w1 = J2w2 on x = 0 (4)

where J1 and J2 are the boundary operator matrices. If
there are 2l elastic and rigid linkages between these two
substructures at points s j ( j = 1, 2, . . . l), the following
constraining conditions should be imposed:

Jr j w1|s j = Jr j w2|s j , j = 1, 2 . . . l (5)

Jr j w1|s j = Jr j w2|s j , j = 1, 2 . . . l. (6)

Due to the existence of continuity and constraining conditions,
w1 and w2 are coupled to each other. Equations (1)–(6) give
all the governing equations for a symmetrical structure.

Host plate Piezoelectric Actuators  x 

y 

Figure 1. A symmetrical structure.

2.2. Simplification of the shape control problem

Using the symmetry of the structures, their shape control
problem can be simplified. To this end, take the following
transformation in the generalized displacements of the original
structure:

w =
{

w1

w2

}
= S2nq (7)

where S2n is a transformation matrix given by

S2n = 1√
2

[
In In

In −In

]
(8)

and In is the identity matrix whose dimension is the same as
that of the displacement function vector. The displacements
can be expressed in terms of a symmetrical generalized
displacement q1 and anti-symmetrical one q2 , respectively, i.e.,

w = 1√
2

[
In

In

]
q1 +

1√
2

[
In

−In

]
q2. (9)

Similarly, taking the same transformation in the input U gives

U =
{

U1

U2

}
= S2mV = 1√

2

[
Im Im

Im −Im

]{
v1

v2

}

= 1√
2

[
Im

Im

]
v1 +

1√
2

[
Im

−Im

]
v2 (10)

where Im is a identity matrix with dimension m. It is noted that
the transformation matrix S2n is an orthogonal matrix, i.e. it
satisfies

ST
2nS2n = I2n; ST

2mS2m = I2m . (11)

Equations (1)–(4) can be rewritten into the following forms:[
L 0
0 L

]{
w1

w2

}
+

[
B 0
0 B

]{
U1

U2

}
= 0 in � (12a)

[
� 0
0 Γ

]{
w1

w2

}
= 0 on ∂� (12b)

[
J1 J1

J2 −J2

]{
w1

w2

}
= 0 on x = 0 (12c)

[
Jr j 0
0 Jr j

]{
w1

w2

}∣∣∣∣
s j

=
[

Jr j 0
0 J r j

] [
0 In

In 0

]{
w1

w2

}∣∣∣∣
s j

,

j = 1, 2, . . . l. (12d)
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Substituting equations (7) and (10) into (12), and noting (11),
we have

Lqi + Bvi = 0 in �
Γqi = 0 on ∂�; i = 1, 2
Jiqi = 0 on x = 0
Jr j qi |s j = ±Jr j qi |s j , + for i = 1, − for i = 2;
j = 1, 2, . . . , l.

(13)
Equation (13) gives two sets of decoupled equations in terms
of q1 and q2, respectively, which shows that the shape
control problem of an entire symmetrical structure depicted in
equations (12) can be converted to the shape control problem
of its two substructures given in equation (13). i = 1
gives the symmetrical displacements, and i = 2 the anti-
symmetrical displacements. The feature given above can be
used to significantly simplify the shape control of symmetrical
structures.

In the static shape control of such a symmetrical structure,
the target shape can be expressed by the symmetrical desired
displacement vector as follows:

wd = (wd1, wd2)
T. (14)

The desired generalized displacements can be obtained from
the inverse of equation (9),

qd =
{

qd1

qd2

}
= ST

2nwd = 1√
2

[
In

In

]
wd1 +

1√
2

[
In

−In

]
wd2.

(15)
The shape control problem of a whole symmetrical structure
in equations (12) is simplified to two shape control problems
of its substructures described by equations (13) with desired
displacements qdi given in equation (15).

As a special case, take a symmetric structure discretized by
the finite element method as an example to illustrate the design
process of the actuating forces for its static shape control. In
this case, the operator matrices L, B, Γ and J in equation (13)
are numerical matrices.

After taking the corresponding transformations, the
boundary conditions, continuity conditions and constraining
equations can be assembled into the equilibrium equations
described by

Lgiqi + Bvi = 0 i = 1, 2 (16)

where qi is the generalized displacement vector and Lgi is the
global stiffness matrix. If the structure is properly constrained
so that the stiffness matrix is nonsingular, the generalized
displacements can be solved from equation (16) as

qi = −L−1
gi Bvi . (17)

To measure the difference between the actuated shape and the
desired one, an error function is defined as follows.

ei = (qi − qdi)
T(qi − qdi), i = 1, 2. (18)

Substituting equation (17) into (18) and letting the derivative
of the error function with respect to vi be zero, the optimal
actuating forces can be easily obtained in the following form:

vi = −
[
BTL−T

gi L−1
gi B

]−1
BTL−T

gi qdi , i = 1, 2. (19)

No.1 
No.2 

b1
- 

b1
+ s1 s2 2s

1s

Figure 2. A rotational periodic structure.

Substituting equation (19) into (10) yields

U = S2m

{
v1

v2

}

= − 1√
2

[
Im

Im

] [
BTL−T

g1 L−1
g1 B

]−1
BTL−T

g1 qd1

− 1√
2

[
Im

−Im

] [
BTL−T

g2 L−1
g2 B

]−1
BTL−T

g2 qd2. (20)

Equation (20) gives the optimal control forces to best achieve
the desired shape of the entire structure. Since the actuating
forces are designed by considering two substructures instead
of the entire structure, the computation needed for finding the
actuating forces is greatly reduced.

3. Rotational periodic structures

3.1. Modeling and governing equations

A rotational periodic structure is composed of a set of identical
substructures evenly distributed along a circle. In other words,
a rotational periodic structure with n substructures can be
obtained by rotating a substructure by an angle of ψ = 2π

n
around a fixed line for n times. A typical rotational periodic is
shown in figure 2, which represents a parabolic dish antenna.

Denoting by wk the displacement function or function
vector of the kth substructure, the control equations and their
boundary conditions can be expressed as

Lwk + BU k = 0 in �, k = 1, 2, . . . , n (21)

Γwk = 0 on ∂�, k = 1, 2, . . . , n (22)

where� represents the space occupied by the kth substructure,
and ∂� its boundary excluding the common boundary between
it and (k + 1)th and (k − 1)th substructures.

At the interface b−
k between the (k − 1)th and the kth

substructures and the interface b+
k the kth and the (k + 1)th

substructures, the continuity conditions of the displacements
and generalized forces must be imposed, which are expressed
by

J0wk|b+
k

= J0wk+1|b−
k+1

k = 1, 2, . . . , n (23)

where J0 is a differential operator matrix. It should be noted
that wn+1 ≡ w1 and b−

n+1 ≡ b−
1 for the rotational periodic

structure.
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If there are l p rigid or elastic constraints among
substructures, the constraining equations can be expressed as
follows:

Jpjwk |spj = J pjwk+p |s pj

k = 1, 2, . . . , n; p = 1, 2, . . . , n − 1; j = 1, 2, . . . , l p

(24)
where Jpj (p = 1, 2, . . . , n − 1) is a differential operator
matrix. Equation (24) gives the constraints between the region
spj (either a point or two- to three-dimensional region) in the
kth substructure and the region s pj in the (k+ p)th substructure.
The subscript of wk+p should be set to i when it reaches n + i .

Due to the continuous conditions in equation (23) and the
constraints in equation (24) among substructures, wk (k =
1, 2, . . . , n) are coupled with each other. If equations (21)–
(24) are used directly to obtain the displacements, the coupled
equations of w1 to wk have to be solved.

3.2. Simplification of the shape control problem

To decouple equations (21)–(24), take the following
transformation:

w = {w1,w2, . . . ,wn}T

= [ R1 R2 · · · Rn ]




q1

q2
...

qn




= Rq

Rr = 1√
n

[
I, eirψ I, . . . , eir(n−1)ψ I

]T
, r = 1, 2, . . . , n

(25)

where q = (q1, q2, · · · , qn)
T is a new set of generalized

displacement functions; I is the identity matrix with the
same dimension as wk . It can be easily proved that the
transformation matrix R is a U -matrix, which satisfies

R
T
R = I (26)

where the dimension of the identity matrix I is n times that
of wn . Taking the same transformation in the actuating force
gives

U = {U1,U 2, . . . ,Un}T

= [ R′
1 R′

2 · · · R′
n ]




v1

v2
...

vn




= R′V

R′
r = 1√

n

[
I, eirψ I, . . . , eir(n−1)ψ I

]T
, r = 1, 2, . . . , n

(27)

where the dimension of I is the same as those of Uk .
Combine the governing equations in equations (21)–(24)

into the following forms:

L′w + B′U = 0 in Ω′ (28a)

Γ′w = 0 on ∂Ω′ (28b)

J ′
0w|b+ = J ′

0Y w|b− (28c)

J ′
pjw|spj = J

′
pjY

pw|s pj

p = 1, 2, . . . , n − 1, j = 1, 2, . . . , l p (28d)

where L′, Γ′, B′, J ′
0 and J ′

pj , J
′
pj (p = 1, 2, . . . , n − 1) are

block-diagonal matrices composed of L, Γ, B, J0 and Jpj ,
J pj , respectively, Ω′ and ∂Ω′ are the region and boundary of
the whole structure and

Y =




0 I
0 I

· ·
· ·

· ·
0 I

I 0




p + 1

Y p =




0 · 0 I 0 · 0
0 · 0 0 I · 0
· · · · · · ·
0 0 0 · · · I

I 0 0 · · · 0
· · · · · · ·
0 · I 0 0 · 0




p .

(29)

Y p is a row transformation matrix that satisfies

R
T
Y pR = diag( eipψI ei2pψI · · · einpψI) . (30)

After substituting equations (25) and (27) into (28), pre-

multiplying with R
T

and employing the property given in
equation (26), we have

Lqr + Bvr = 0 in �

Γqr = 0 on ∂�

J0qr |b+ = J0eirψqr |b−

Jpjqr j |spj = J pj eiprψqr j |s pj

r = 1, 2, . . . , n, p = 1, 2, . . . , n − 1, j = 1, 2, . . . , l p.

(31)
Equation (31) is a set of decoupled complex equations in terms
of the new generalized displacement functions. Although
equation (31) is a complex equation, its solution for r = s
is conjugated with that for r = n − s. When r = n or n

2 (and
n is an even number), equation (31) and its solution are real.
For the case where r �= n, n

2 , we have

Lqr
r + Bvr

r = 0; Lqi
r + Bvi

r = 0 in �

Bvr
r = 0; Bvi

r = 0 on ∂�

J0q
r
r |b+ = J0(cos rψqr

r − sin rψqi
r )|b−

J0q
i
r |b+ = J0(sin rψqr

r + cos rψqi
r)|b−

Jpq
r
r |sp = J p(cos r pψqr

r − sin r pψqi
r )|s p

Jpq
i
r |sp = J p(sin r pψqr

r + cos r pψqi
r )|s p

p = 1, 2, . . . , n − 1 r = 1, 2, . . . ,
n − 2

2
(even n)

or
n − 1

2
(odd n).

(32)

1413



D Jin et al

Hence, it can be concluded that the shape control problem of an
entire rotational periodic structure governed by equations (21)–
(24) can be simplified to the shape control of its substructures
described by equations (31).

Taking the transformation given in equation (25), the
desired displacements for the substructures in the new
coordinate system are given by

qd =




qd1

qd2
...

qdn




= R
T
wd (33)

where wd is the desired real displacement function vector for
the whole structure and qdr = qr

dr + iqi
dr(r = 1, 2, . . . , n) is

the desired generalized displacements in equation (32). It is
easy to verify that qdr is real for r = n and n/2 (if n is even).
Following the same procedure, the optimal generalized control
forces vr = vr

r + ivi
r , r = 1, 2, . . . , n, can be obtained for

the shape control problem of each substructure independently.
Then the optimal control forces U = {U1,U2, . . . ,Un}T can
be obtained from the transformation of equation (27). In fact,
the real and imaginary part of each element Ur = U r

r + iUi
r in

the control force vector U can be calculated by

{
Ur

r

U i
r

}
=




I 0
cos rψI − sin rψI

...
...

cos(n − 1)rψI − sin(n − 1)rψI
0 I

sin rψI cos rψI
...

...

sin(n − 1)rψI cos(n − 1)rψI




{
vr

r

vi
r

}
.

(34)
Although the generalized control forces v may be

complex, the imaginary part of the control forces U obtained
from equation (27) will be zero due to the fact that the solution
of the r th equation in equations (31) is conjugated with that of
the (n − r)th equation [19].

When the shape control problem is performed using a
discrete system, if each substructure in a rotational periodic
structure has m degrees of freedom (DOFs), the shape control
problem of the whole structure will have n × m DOFs.
However, when using equations given in equations (31), only
two (for even n) or one (for odd n) shape control problems
with m DOFs and n−2

2 (for even n) or n−1
2 (for odd n) shape

control problems with 2 × m DOFs are to be handled. Thus,
the computational load for shape control of such a structure
can be considerably reduced.

3.3. Linear periodic structures

A linear periodic structure is a structure composed of a set of
substructures with identical geometric, physical and boundary
properties evenly distributed on a straight line or a circular
arc and the substructures at both of its ends have their own
boundary conditions. The method used to simplify shape
control problems of rotational periodic structures can also be
employed to simplify that of some kinds of linear periodic
structures. To this end, a new rotational periodic structure

should be generated by doubly or quadruply extending an
original linear periodic structure and then joining its two ends
together. Such an extension can only be done when the
following two pre-requisites are satisfied.

(1) All its substructures’ geometric shapes, physical
properties and boundary conditions as well as its
constraints with other substructures must be symmetrical
so that the newly generated rotational periodic structure is
also symmetrical.

(2) At the two ends of the original linear structure, the
boundary conditions should conform to the restrictions
of symmetrical or anti-symmetrical displacements on the
corresponding symmetrical planes of the newly generated
rotational periodic structure.

4. Chain structures

4.1. Modeling and governing equations

A chain structure is defined as a structure with two fixed ends
constructed with a set of identical substructures aligned like
a chain in which there is no common boundary but elastic
or rigid constraints without mass between two substructures,
and the linking region and style between a substructure and its
two neighboring substructures are identical. A typical simple
chain structure is a mass–spring system that is assembled by n
masses linked with n + 1 identical springs and fixed at both of
its ends. A more complicated example of a chain structure is
illustrated in figure 3, in each substructure of which there are
three springs and a rigid rod.

Actually, a chain structure is a special kind of linear
periodic structure and hence its shape control problem can
be treated by the method used in the linear periodic structures.
However, due to its special features, the shape control problem
of a chain structure can be solved by a simpler methodology
given in this section.

If identical actuators with the same actuating forces are
configured in each substructure of a chain structure, the
shape control of such a structure with n substructures can be
expressed by the following equations:

Lwk + BU k = 0 in �, k = 1, 2, . . . , n (35)

Γwk = 0 on ∂�, k = 1, 2, . . . , n (36)

J jwk |s j = J jwk+1|s j + J jwk−1|s j

k = 1, 2, . . . , n, j = 1, 2, . . . , l (37)

where wk is the displacement function vector of the kth
substructure and w0 ≡ wn+1 = 0. � and ∂� are, respectively,
the domain and boundary of any substructure. Equation (37)
is the equation of l constraints provided by elastic springs and
rigid rods.

4.2. Simplification of the shape control problem

It is well known that the displacements of a serial identical
mass–spring system can be expressed in the following form:

wr = {wr
1 wr

2 · · · wr
n }T

= [ sin rψ sin 2rψ · · · sin nrψ ]T qr ,

r = 1, 2, . . . , n (38)

where ψ = π
n+1 and wr

k is the displacement of the kth mass.
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k1

k1

S1

S2

k1
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S1

S2
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k1

k1
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S2

k2 S3

S4

k3 S3

S4

k3 S3

S4
Wk

Figure 3. A chain structure.

Inspired by the property given in equation (38), we take
the following transformation in the displacement of a general
chain structure:

w =




w1

w2
...

wn




=
√

n + 1

2

×




sinψ I · · · sin rψ I · · · sin nψ I
sin 2ψ I · · · sin 2rψ I · · · sin 2nψ I

...
...

...
...

...

sin nψ I · · · sin rnψ I · · · sin nnψ I




×




q1
...

qr
...

qn




= Cq (39)

where q is the function vector of generalized displacements
and the transformation matrix C satisfies

CTC = I (40)

CT
(
Y + Y n−1

)
C

= diag(2 cosψI, 2 cos 2ψI, . . . , 2 cos nψI) (41)

and Y and Y n−1 are given in equation (29).
Similarly, taking the same transformation in the control

forces gives

U =




U1

U2
...

Un




=
√

n + 1

2

×




sinψI · · · sin rψI · · · sin nψI
sin 2ψI · · · sin 2rψI · · · sin 2nψI

...
...

...
...

...

sin nψI · · · sin rnψI · · · sin nnψI







v1
...

vr
...

vn




= C ′V . (42)

Combining the equations of all substructures in equations (35)–
(37) gives

L′w + B′U = 0 in Ω′ (43a)

Γ′w = 0 on ∂Ω′ (43b)

J ′
jw|s j = J

′
j (Y w|s j + Y n−1w|s j ) j = 1, 2, . . . , l

(43c)
where L′, Γ′, B′, J ′

j and J
′
j (p = 1, 2, . . . , n − 1) are

the block diagonal matrices assembled by L, Γ, B, J j and
J j , respectively, and Ω′ and ∂Ω′ represent the domain and
boundary of the whole structure. Note that w1,w2, . . . ,wn in
equations (43) are coupled with each other.

Substituting equations (39) and (42) into (43), pre-
multiplying CT and noting the features given in equations (40)
and (41), the following decoupled equations can be obtained:

Lqr + Bvr = 0 in Ω (44a)

Γqr = 0 on ∂Ω (44b)

J jqr |s j = J j 2 cos rψqr |s j

r = 1, 2, . . . , n, j = 1, 2, . . . , l. (44c)

Equations (44) indicate that the shape control problem of
a chain structure can be converted to those of its substructures,
and thus the computation load can be greatly reduced.

The generalized desired displacements can be obtained
from the given target displacement wd as

qd = CT wd . (45)

Once the optimal generalized control forces vr are
determined for the given desired shape qdr , the control forces
for the entire structure can be calculated by

Ur = {Ur1,Ur2, · · · Urn}T

= [sin rψI, sin 2rψI, . . . sin nrψI]T vr

r = 1, 2, . . . , n. (46)

5. Axisymmetrical structures

5.1. Model and governing equations

A structure is said to be an axisymmetrical structure if its
geometrical and physical properties and boundary conditions
remain unchanged after being rotated through an arbitrary
angle around a straight line. Taking this straight line to be the
z-axis in a cylindrical coordinate system, Orθ z, the
geometrical and physical properties as well as the boundary
conditions of an axisymmetrical structure are independent of θ .
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The governing equations and boundary conditions of a
three-dimensional continuous axisymmetrical structure can be
expressed as

Lr,θ,z (r, z)[wr (r, θ, z), wθ (r, θ, z), wz(r, θ, z)]

+ Br,θ,z(r, z)[Ur (r, θ, z),Uθ (r, θ, z),Uz(r, θ, z)] = 0

in �

�r,θ,z(r, z)
[
wr (r, θ, z), wθ (r, θ, z), wz(r, θ, z)

] = 0

on ∂�

(47)

where � represents a three-dimensional domain in the
cylindrical coordinate system Orθ z, wr , wθ and wz are the
displacements in the directions of r , θ and z, respectively,
and Lr,θ,z , Br,θ,z and Γr,θ,z are the elastic, control and
boundary condition operator matrices, respectively, which are
independent of θ due to the axisymmetry of the structure.

5.2. Simplification of the shape control problem

The displacements wr , wθ and wz of a three-dimensional
axisymmetrical structure can be expanded in the following
Fourier series of θ :

wr(r, θ, z) =
∞∑

n=0

[
Wrn(r, z) cos nθ + W ′

rn(r, z) sin nθ
]

wθ(r, θ, z) =
∞∑

n=0

[
W ′
θn(r, z) sin nθ + Wθn(r, z) cos nθ

]

wz(r, θ, z) =
∞∑

n=0

[
Wzn(r, z) cos nθ + W ′

zn(r, z) sin nθ
]
.

(48)
Similarly, the three components of the control force U can also
be expanded as

Ur (r, θ, z) =
∞∑

n=0

[
Urn(r, z) cos nθ + U ′

rn(r, z) sin nθ
]

Uθ (r, θ, z) =
∞∑

n=0

[
U ′
θn(r, z) sin nθ + Uθn(r, z) cos nθ

]

Uz(r, θ, z) =
∞∑

n=0

[
Uzn(r, z) cos nθ + U ′

zn(r, z) sin nθ
]
.

(49)

Substituting equations (48) and (49) into (47) and
employing the orthogonality of cos nθ and sin nθ , the
following decoupled equations can be obtained for each
harmonic component:

Lr,θ,z (r, z)[Wrn cos nθ + W ′
rn sin nθ,W ′

θn sin nθ

+ Wθn cos nθ,Wzn cos nθ + W ′
zn sin nθ ]

+ Br,θ,z(r, z)[Urn cos nθ + U ′
rn sin nθ,U ′

θn sin nθ

+ Uθn cos nθ,Uzn cos nθ + U ′
zn sin nθ ] = 0

in �

�r,θ,z(r, z)[Wrn cos nθ + W ′
rn sin nθ,W ′

θn sin nθ

+ Wθn sin nθ,Wzn cos nθ + W ′
zn sin nθ ] = 0

on ∂Ω.

(50)

The displacements of an axisymmetrical structure have the
following form:

Wn =
[Wrn(r, z) cos nθ

W ′
θn(r, z) sin nθ

Wzn(r, z) cos nθ

]
+

[ W ′
rn(r, z) sin nθ

Wθn(r, z) cos nθ
W ′

zn(r, z) sin nθ

]
;

n = 0, 1, 2, . . . . (51)

Clearly, the first term of the displacement in equation (51) is the
symmetrical part, and the second term is the anti-symmetrical
part. Following the same procedure, the control force can also
be separated into symmetrical and anti-symmetrical terms

Un =
[Urn(r, z) cos nθ

U ′
θn(r, z) sin nθ

Uzn(r, z) cos nθ

]
+

[ U ′
rn(r, z) sin nθ

Uθn(r, z) cos nθ
U ′

zn(r, z) sin nθ

]
;

n = 0, 1, 2, . . . . (52)

Due to the axisymmetry of an axisymmetrical structure with
axisymmetrical actuators, it is easy to prove that symmetrical
control forces can only actuate symmetrical displacements
and anti-symmetrical forces can only actuate anti-symmetrical
displacements. Therefore, the following conclusions can be
drawn.

(1) The displacements of a three-dimensional axisymmet-
rical structure can be expressed as the sum of symmetrical and
anti-symmetrical displacements, as given in equation (51), and
the circumferential components are harmonic waves with order
n (n = 0, 1, 2, . . .).

(2) A three-dimensional problem can be solved by
converting it to a two-dimensional problem. Consider the
symmetrical case in equation (47), i.e.

Lr,θ,z (r, x)

[Wrn cos nθ
W ′
θn sin nθ

Wzn cos nθ

]
+ Br,θ,z(r, z)

[Urn cos nθ
U ′
θn sin nθ

Uzn cos nθ

]
= 0

(53)

Γr,θ,z (r, z)

[Wrn cos nθ
W ′
θn sin nθ

Wzn cos nθ

]
= 0. (54)

Since Lr,θ,z , Γr,θ,z and Br,θ,z are linear operators and
independent of θ , the Fourier transformation of equation (53)
will include cos nθ and sin nθ only, and therefore equation (53)
is equivalent to the following equations:∫ π

−π

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]{
Lr,θ,z (r, z)

[Wrn cos nθ
W ′
θn sin nθ

Wzn cos nθ

]

+ Br,θ,z(r, z)

[Urn cos nθ
U ′
θn sin nθ

Uzn cos nθ

]}
dθ = 0 (55a)

∫ π

−π

[ sin nθ 0 0
0 cos nθ 0
0 0 sin nθ

]{
Lr,θ,z (r, z)

[Wrn cos nθ
W ′
θn sin nθ

Wzn cos nθ

]

+ Br,θ,z(r, z)

[Urn cos nθ
U ′
θn sin nθ

Uzn cos nθ

]}
dθ = 0. (55b)

It can be proved that equation (55b) can be automatically
satisfied. In fact,

Lr,θ,z (r, z)

[Wrn cos nθ
W ′
θn sin nθ

Wzn cos nθ

]
=
[ F1(r, z) cos nθ

F2(r, z) sin nθ
F3(r, z) cos nθ

]

+

[ F ′
1(r, z) sin nθ

F ′
2(r, z) cos nθ

F ′
3(r, z) sin nθ

]
. (55b-1)
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(a) (b)

Figure 4. A cantilever symmetrical plate with piezoelectric actuator patches. (a) Original structure with element numbers; (b) its
substructure.

Due to the symmetry of an axisymmetrical structure, if
we use another cylindrical coordinate system Or ′θ ′z′, where
only the direction of θ ′ is opposite to that of θ in the original
coordinates, and the directions of the other two axes are kept
unchanged, we have Lr,θ ′ ,z(r ′, z′) = Lr,θ,z (r, z). Thus,

Lr,θ ′ ,z(r
′, z′)

[Wrn cos nθ ′
W ′
θn sin nθ ′

Wzn cos nθ ′

]
=
[ F1(r, z) cos nθ ′

F2(r, z) sin nθ ′
F3(r, z) cos nθ ′

]

+

[ F ′
1(r, z) sin nθ ′

F ′
2(r, z) cos nθ ′

F ′
3(r, z) sin nθ ′

]

=
[ F1(r, z) cos nθ

−F2(r, z) sin nθ
F3(r, z) cos nθ

]
+

[−F ′
1(r, z) sin nθ

F ′
2(r, z) cos nθ

−F ′
3(r, z) sin nθ

]
. (55b-2)

Compared with equation (55b-1), it can be found that the
second term on the right-hand side of equation (55b-2) should
be zero, that is,

Lr,θ,z(r, z)

[Wrn cos nθ
W ′
θn sin nθ

Wzn cos nθ

]
=
[ F1(r, z) cos nθ

F2(r, z) sin nθ
F3(r, z) cos nθ

]
.

Similarly, Br,θ,z(r, z)

[
Urn cos nθ
U ′
θn sin nθ

Uzn cos nθ

]
has the same property, and

hence equation (55b) must be satisfied.
Rewrite equation (55a) in the following form:

(∫ π

−π

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]

× Lr,θ,z (r, x)

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]
dθ

)[Wrn

W ′
θn

Wzn

]

+

(∫ π

−π

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]

× Br,θ,z (r, x)

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]
dθ

)

×
[Urn

U ′
θn

Uzn

]
= 0. (56a)

Similarly, rearrange equation (54) as(∫ π

−π

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]

× �r,θ,z(r, x)

[ cos nθ 0 0
0 sin nθ 0
0 0 cos nθ

]
dθ

)

×
[Wrn

W ′
θn

Wzn

]
= 0. (56b)

From equation (56), the following equations in terms of
Wrn , W ′

θn , Wzn and parameter n can be obtained:

Lr,z (r, x, n)

[Wrn

W ′
θn

Wzn

]
+ Br,z(r, z, n)

[Urn

U ′
θn

Uzn

]
= 0 in Ω

Γr,z (r, z, n)

[Wrn

W ′
θn

Wzn

]
= 0 on ∂Ω n = 1, 2, . . . .

(57)
Equations (57) show that the shape control problem of a three-
dimensional axisymmetrical structure in equation (47) can be
converted to shape control problems of an infinite number
of two-dimensional structures described in equations (57).
In engineering practice, only a limited number of the shape
control problems are required to solve that of a whole three-
dimensional axisymmetrical structure approximately.

6. Illustrative examples

Consider a cantilever rectangular plate bonded with 20
piezoelectric actuator patches, as shown in figure 4. The
whole structure and its boundary conditions are symmetrical
about the x axis. The length, width and thickness of the host
plate are 150, 120 and 2 mm, respectively. The Young’s
modulus and Poisson’s ratio of the host plate are 70 GPa
and 0.3, respectively. The dimensions of each actuator patch
are 20 mm × 20 mm × 0.25 mm. The distance between
any two adjacent actuators is 10 mm and the gap between
the actuator patches to the edge is 5 mm. The Young’s
modulus, Poisson’s ratio and piezoelectric stress constant of
the 0.5 mm thick piezoelectric actuators are 50 GPa, 0.3 and
e31 = e32 = 10 N V m−1, respectively.
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Figure 5. Comparison between the actuated and desired shapes
(A = 0.0001, B = 0.0). (a) Desired shape (anti-symmetrical);
(b) actuated shape; (c) actuated and desired shapes.

The desired shape of the composite plate is described by
its transverse displacements given by

wd(x, y) = A ∗ (cosh(x/2a) − 1) ∗ sin(y ∗ π/2b)

+ B ∗
(

x

2a

)2

∗
[

1

2

(
y

b

)2

+ C

]
(58)

where a and b are the half length and half width of the host
plate, respectively; A, B and C are parameters used to adjust
the desired shape.

Clearly, the desired shape includes an anti-symmetrical
part described by

wda(x, y) = A ∗ (cosh(x/2a) − 1) ∗ sin(y ∗ π/2b),

and a symmetrical part described by

wds(x, y) = B ∗
(

x

2a

)2

∗
[

1

2

(
y

b

)2

+ C

]
.

To perform the shape control of the plate, the finite element
method is employed to discretize the governing equations.
An eight-node adhesive element [18] is employed, which
combines a pair of collocated four-node quadrilateral elements
for the upper and lower piezoelectric plates and a sandwiched
pseudo-adhesive layer element. The whole structure is meshed
into 99 rectangular elements with 120 nodes. The total number
of DOFs is 360 and the number of control voltages is 20.

Since the whole structure is symmetrical about the x axis,
according to the simplification method given in section 2,
its shape control can be converted to shape control of its
substructures. Figure 4(b) shows its substructure which
contains 55 plate elements with only 60 nodes plus 12 nodes
on the symmetrical axis. Taking the boundary conditions
at the fixed end and the constraining equations on the
symmetrical axis into account, the total number of DOFs of
each substructure is 192 with ten control voltages.

Following the procedure given in section 2.2, the optimal
control voltages for the ten actuators in the substructures
can be obtained. Firstly, take the anti-symmetrical shape
as the desired shape. In this case, the parameters A, B
and C in equation (58) are taken as 0.0001, 0.0 and 0.2,
respectively. The optimal control voltages for the desired
shape are 1780.38, 3324.19, −3324.19, −1780.38, 4457.35,
−2811.2, 2811.2, −4457.35, 2911.4, −2667.83, 2667.83,
−2911.4, 3868.32, −1750.31, 1750.31, −3868.32, −1683.15,
−2779.12, 2779.12 and 1683.15 V, respectively. The actuated
shape and the desired one are shown in figures 5(a) and (b).
The closeness of the actuated shape to the desired one can
be measured by the square error between them. Applying
the optimal control voltages to the actuators, the square error
between the actuated shape of the whole structure and the
desired one is 1.4 × 10−9 m2.

Secondly, find the optimal control voltage for the
symmetrical desired shape, i.e., the parameters A, B and C in
equation (58) are taken as 0.0, 0.0001 and 0.2 respectively.
The control voltages obtained from equation (20) are
535.171, −20.2231, −20.2231, 535.171, 461.402, −393.121,
−393.121, 461.402, 761.591, 1064.71, 1064.71, 761.591,
−722.039, −1213.13, −1213.13, −722.039, 1194.72,
4636.4, 4636.4 and 1194.72 V, respectively, which are also
symmetrical about the x axis. The actuated shape by the
optimal control voltages is given in figure 6(b) and the square
error in this case is only 6.0 × 10−10 m2. Figure 6(c) shows
that the actuated shape is very close to the desired one.

Finally, since the controlled plate is a linear system,
the final optimal control voltages can be obtained from the
superposition of the control voltages of the anti-symmetrical
and symmetrical cases. In this case, the optimal control
voltages for all actuators are 2315.55, 3303.97, −3344.42,
−1245.21, 4918.75, −3204.32, 2418.08, −3995.95, 3673.,
−1603.12, 3732.55, −2149.81, 3146.28, −2963.44, 537.172,
−4590.36, −488.431, 1857.28, 7415.51 and 2877.88 V,
respectively. The desired shape and the actuated shape are
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Figure 6. Comparison between the actuated and desired shapes
(A = 0.0, B = 0.0001). (a) Desired shape (symmetrical);
(b) actuated shape; (c) actuated and desired shapes.

shown in figures 7(a) and (b), respectively. In this case, the
square error is only 2.0 × 10−9 m2, which indicates a close
match is achieved, as shown in figure 7(c).

As shown in this example, if a desired shape is
asymmetrical and can be divided into a symmetrical and
an anti-symmetrical one, the simplification methods can be
employed in shape control of the linear symmetrical structure.
In this case, the optimal control forces (voltages) and the
actuated shapes can be obtained by means of the superposition
method.
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Figure 7. Comparison between the actuated and desired shapes
(A = 0.0001, B = 0.0001). (a) Desired shape (combination of
anti-symmetrical and symmetrical shapes); (b) actuated shape;
(c) actuated and desired shapes.

7. Conclusions

In this paper, shape control of some repetitive structures such
as symmetrical, rotational periodic, linear periodic, chain
and axisymmetrical structures is investigated. Based on
their governing equations derived from a continuous model,
simplification methods for shape control of these structures
are presented by taking advantage of their special features.
Employing these simplification methods, the shape control
problems of the entire structure with n substructures can be
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generally converted to n shape control problems of a single
substructure, and hence the computation cost can be greatly
reduced.
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