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The effects of the unresolved subgrid-scé8&S motions on the energy balance of the resolved
scales in large eddy simulatighES) have been investigated actively because modeling the energy
transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models.
But the subgrid scales not only modify the energy balance, they also contribute to temporal
decorrelation of the resolved scales. The importance of this effect in applications including the
predictability problem and the evaluation of sound radiation by turbulent flows motivates the present
study of the effect of SGS modeling on turbulent time correlations. This paper compares the
two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by
direct numerical simulatiofDNS) with the correlations evaluated by LES using a standard spectral
eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier
decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their
time correlations decay more slowly at all resolved scales of motion and both their integral scales
and microscales are larger than those of the DNS field. Filtering alone is not responsible for this
effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to
those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved
scales of motion by including a random force in the model is briefly discussed. The results could
have applications to the problem of computing sound sources in isotropic homogeneous turbulence
by LES. © 2002 American Institute of Physic§DOI: 10.1063/1.1483877

I. INTRODUCTION they also contribute, through nonlinear interactions, to the

. . temporal decorrelation of the resolved scales. Temporal
Constructing subgrid scal&GS models for large eddy decorrelation is important in the sound radiation problem in

simulation (LES) depends on theoretical understanding Ofwhich the turbulent time scales are directly related to the
how the unresolved scales of motion influence the resolve : . . N

. ) r ncy of radi rdThe increasin lication of
scales. The most extensively applied class of SGS models ?eque cy of radiated souridThe increasing application o

based on the eddy viscosity assumption: like the molecularl-' S to compute sound sour€ésand unsteady aerodynamic
scale thermal fluctuations, the effects of the subgrid scalgcelows more generally, suggests that the ability of LES to

motion on the resolved scales can be modeled by a viscositp'rediCt the temporal properties of turbulence will become
y Yncreasingly important. Other problems in which time corre-

however, unlike the mo!ecular viscosity, .th's eddy v ISCOSItyIation properties have an important role are particle disper-
depends on the filter size and on certain properties of thgion and the predictability problef?

rgsolvc_ad scales. The Smagqrmsky modekhe cIassp eddy This paper compares the Eulerian time correlations of
wsppsny modell..AIthough .'t is no longer often applied in its spatial Fourier amplitudes computed by direct numerical
cr;rlgdln]al Iflim':h I ('js r:h(ranibars;:s dcgwmrlimh mr?::( Cdc,),nr:]mgn:y&lisedsimulation (DNS) with the time correlations computed by
0dels fike the dynamic modevarious N 0Cels, LES in the basic problem of homogeneous isotropic turbu-
and moreéssgemallzed spectral SGS models for homogeneovesnce_ This problem permits the application of a spectral
turbulence™ ?ddy viscosity. The Chollet—Lesieur modé used because

enerEddge\;Iszgilt}c/hZ?gseg)sl z;t(tje;nnp:jt toﬂ?j:glngz t:ceafgznsgert (t)lt reproduces the energetics of the resolved scales well. We
gy betw v u v - e nclude that the LES fields are more correlated than the

subgrid scales not only act as a sink and source of ENETIKNS fields: their time correlations decay more slowly at all
resolved scales of motion and their integral scales and mi-

dAuthor to whom all correspondence should be addressed; electronic maigrosc_ales_ are larger than thos.e qf. the DNS field.
hgw@icase.edu Filtering alone can have significant effects on many tur-
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bulence quantities; however, it is evident that filtering cannois the single-time correlation function; is the kinematic
alter the time correlations of Fourier amplitudes:uifk,t) viscosity, F(k) is the correlation of a large-scale forcing
denotes a Fourier mode of the DNS field, then the correwhich maintains the turbulence in a steady state, B(iqg is

sponding filtered mode is the nonlinear transfer defined by
k,t)=F(klko)u(k,t 1
utk.t)=Fklkeu(k 1) D 09 P [ dpda skp-
where F(k|k.) is the Fourier transform of the filter function
and the cutoff wave numbée; is proportional to the inverse L }
filter width. Regardless of the analytical form of the transfer X(Un(P. DU D U(—K.D) | ©

function F(k|k;), the normalized time correlations of the In Eq. (5)
exact and filtered fields trivially satisfy '
Pimn(K) =KmPin(K) +knPim(k),

2 where

ided F(K|k.)#0. It will be shown through cal 0= Am kil

provide c . It will be shown through numerica o . .
simulations that the time correlations of DNS and LES fields For S|mpl|0{ty, we follqw Kraichnaf? and only consider
can differ significantly; in view of Eq(2), the difference the sharp Fourier cutoff filter,
cannot be the result of filtering. It is natural to attribute the 1 for k<k,
difference to the decorrelating effect of nonlinear interactions ~ F(k|Ke)= 0 for k=k."
between the resolved and unresolved scales. A SGS model o
which correctly models the energy transfer between the reBecause of this trivial analytical form, we need not distin-
solved and unresolved scales of motion may not model thiguish the original and filtered velocity fields by special no-
decorrelating effect and may consequently overpredict théation.

(ulk,D-u(—k,t)) (@K, k)
<U(k,t)’u(_k,t)> - <U(k!t)'i(_ k!t)>

(6)

coherence of the resolved scales. Filtering decomposes the energy transfer into the two
The question therefore arises of how to adapt SGS modParts
els to the requirement of predicting time correlations. Previ- T(K)=T=(k|ko) + T~ (K|Ke), @

ous studies of the predictability probléfi*have suggested
including a random force in the SGS model. The possibilitywhere
that a random force could be chosen so that the time corre-
lation predictions are improved is discussed briefly. T=(klko)= Im{ Pimn(k)J dpdq 6(k—p—aq)

While intuitively plausible, it should be stressed that the P.a<ke
increased correlation of LES fields is a property of Navier—
Stokes dynamics. In Burgers turbulence, the modes become X(“m(Pat)Un(q,t)Ui(—ki))} (€S)
phase-locked as shocks develop; therefore, reducing the
number of modes could make the resolved velocity field lesés the part of the total energy transfer due to interactions
correlated than the true velocity field. This comparison callamong resolved modes alone and
attention to a C(_)nnecnon l_Jetween phase (_:orrelatlons and T (k|ko) =T(K) = T=(k|k¢) 9)
temporal correlation properties of nonlinear fields. Phase re-
lations in the LES field will not be the same as those in the'epresents the effect of unresolved interactions, in which ei-
DNS field unless the SGS model somehow restores theniher p=k. or q=k.. In this setting, Kraichnafi introduced
The altered phase relations may either promote temporal cébe spectral eddy viscosity

herence, as we find in Navier—Stokes dynamics, or reduce it, T>(K|k,)

as we suggest for Burgers turbulence. vi(Klke)=— 2k2—Q(k) (10
so that the balance equation, Eg), becomes

Il. SUBGRID SCALE MODELS OF ENERGY 2[ v+ v(klke) 1K2Q(k) =F (k) + T=(k|k,). (12)

TRANSFER

This equation can be understood as a formal statement of the

We consider time-stationary homogeneous isotropic tureddy viscosity assumption. It shows that an eddy viscosity
bulence, for which the Fourier representation is a naturamust be scale- and cutoff-dependent.
setting to study SGS models. Following Kraichnan’s original ~ To make the model determinate, a formula expressing
analysis'® the problem of SGS modeling is best formulated in terms of the resolved field is required; in view of Eg0),

in terms of the steady-state evolution equation: this is equivalent to modeling the unresolved energy transfer
T~ in terms of the resolved field. One standard mofie
2vk?Q(k) =F(k)+T(k), (3) 0N
wherek= k| and vi(klke) = (" (k|ke) K =, (12
C
Q(k)=(ui(k,t)ui(—k,1)) (4)  where
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V;r(k|kc) =0.267+9.21 exp— 3-03<c/k)- (13) TABLE I. DNS parameters and statistical quantities of the runs.
In applying Eq.(12), the quantityE(k.) is evaluated from ViSCOSityd_ o »=0.002
the LES, not from the DNS. This model usually gives a’Verage dissipation rate €=0.169

. . rms fluctuating velocity u’'=0.851
satisfactory account of energy transfer in homogeneougeqral length scale L,=1.55
turbulence The question which we propose is whether thiSTaylor-scale Reynolds number R,=108.5
model also predicts turbulent time correlations well. ThisCFL number 0.38
question will be discussed using comparisons with DNS angPatial resolution parameter Kmax?7=1.05

Velocity derivative skewness -0.47

closure arguments.

IIl. NUMERICAL CALCULATION OF TIME developed and implemented on a Beowulf 96 CPU cluster
CORRELATIONS computer at ICASE, NASA Langley Research Center, using

DNS and LES of isotropic homogeneous turbulencethe parallel fast-Fourier transformation algoritfifrFigure 1
were performed using a standard pseudospectral Galerkfows the energy spectra for the DNS and LES. _
method*® In DNS, the three-dimensional Navier—Stokes The correlation of Fourier amplitudes in the DNS field
equations were solved on a cube of sidg=21r, with peri- C(k,7)=(u(k,t+7)-u(—k,t)) (15)

odic boundary conditions in the three coordinate directions. ) ) )
The flow domain is discretized uniformly inte® grid points 1S evaluated at a reference timafter which the simulated

(N=128), which defines the wave number components iflow becomes statistically stationary. The analogous quantity
Fourier space as; = =n;(2m/Lg)=*n;, wheren;=0, 1,..., for the LES field is

N/2—1 for j=1, 2, 3. Aliasing errors were removed by trun- C(Klke,7)=(u gs(k,t+ 7)-ues( —k,1)). (16)
cating the velocity field at higher wave numbeljis,> Ky i )

with k., =N/3 (the two-thirds truncation methpdAlthough Subsequentl_y, the time correlation 'for eac_h wave number
relatively low resolution for computing spatial statistics, aShe" [k|=k is cornpqted as a function of t!me lag The
128 simulation should give adequate representation of tim@nsemble averagﬂng IS performed by averaging over the wave
correlations” The initial condition was an isotropic Gauss- "Umber shelllk|=k. This procedure allows us to obtain
ian field with energy spectrum smooth correlation functions.

_ 2
E(k,0) o (k/Kko)*e~2Kko)", (14 V. SIMULATION RESULTS

whereko=4.68 is the wave number at which the maximum  The figures present the normalized time correlations
of the energy spectrum occurs. A stationary turbulence was

generated by maintaining constant total en&tgy each of c(k,7)= (u(k,t+7)-u(k,t))

the first two wave number sheli®.5<k<1.5 and 1.5k ’ (uk,Hu(—k,t))

<2.5), with the energy ratio between the two shells consis- (17)
tent with k=>3. The energy levels were 0.555440 and C(k|kc,T):<uLES(k’t+T)'ULES(k’t)>_

0.159 843, respectively, for these first two wave number (Ues(k,t)ues(—k,t))

shells. Figure 2 shows the time correlations of the DNS and LES

The spatial resolution of a spectral simulation is oftenfields for wave numberk=7, 12, 15, 18, spanning a range
monitored by the value df 4,7, Where = (v%/€)¥*is the

Kolmogorov microscale. This quantity should be greater than

one for the smallest scales of the flow to be resoffethe 10° ¢ ——
value ofk,.,m was typically larger than 1.05 in our simula- ‘
tion.

The Fourier coefficients of the flow velocity were ad-
vanced in time using a second-order Adams—Bashforth
method for the nonlinear term and an exact integration for
the viscous term® The time step was chosen to ensure that Jp
the CFL number was 0.5 or less for numerical stability and @
accuracy?® Wy

The resulting parameters of the DNS simulation are
listed in Table I.

A mesh resolution of 64was used in the LES compu- 10°
tations. Scales smaller than the grid spacing were modele(
using the Chollet—Lesieur modél2), (13). The same forc- , . T
ing method used for DNS was applied to the first two wave 10° 10' 10*
number shells to maintain the energy in the resolved field of kL
the LES. All other parameters in the LES are the same as ipiG. 1. Energy spectra for the DNSolid line) and LES(dash-dotted ling
the DNS. The spectral codes for the DNS and LES weravhereL is the integral scale anB, total energy.

107

102 &
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1.2 — — ,

FIG. 2. Time correlatiore(k,7) vs time lag7/ 5. The solid line corresponding to the LES field and the dashed line to the DNS(&gld= 7, (b) k=12, (c)

k=15, (d) k=18.

of scales from the integral scale to the upper end of the
resolved scale range. The time separation is normalized by
7s= (UrmKmin) " Where u,ms is the rms fluctuating velocity
andk,,=1 is the largest scale in the system. This normal-
ization is not essential to the numerical comparisons. Two
conclusions are evident: first, both fields decorrelate more
quickly at small scales than at large scales and second, th~
time correlations of the LES fields decay more slowly than &
those of the DNS fields. T
In Fig. 3, these results are all plotted together, with the
time axis defined by the scale-dependent similarity variable
7 (K) = 7u;mK. This normalization causes excellent collapse
of the correlation functions. The dynamic explanation has
been discussed thoroughly by Kanéfave note only that
collapse onru,,,K is due to the fact that the Eulerian time
correlations are dominated by the sweeping effect which is
characterized by the value of,s. This graph again makes

to the DNS field.

(k)
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. . . IG. 3. Time correlatiorc(k,7) vs time lagr normalized by the sweeping
evident the slower decorrelation of the LES field comparedne Umk. The upper curves are from the LES and lower curves from the

DNS. Other details are as in Fig. 1.
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FIG. 4. Time microscales for the DNS and LES: solid lingk|k.) (LES), FIG' S Tr;e ratio of i”éesra_‘r'hscalelﬁdﬂ(ll_“kc) (LEIS) and 7y (k) (]PNS) asa
dashed liner, (k) (DNS), and dotted finé . unction of wave numbek. The solid line is a least-squares fit.

. . L . V. THE EFFECTS OF SUBGRID-SCALE MODELING
The time correlation function is often described by two o TIME CORRELATION

scalar properties, thimtegral scaledefined by
The Taylor expansion technigt/€® makes possible a
(k)= fmdrc(k,r) (18) simple analysis of the effects of eddy viscosity on the time
0 microscale. To facilitate the analysis, we are assuming that
) . initial DNS and LES velocity fields are identical and the
and themicroscaledefined by question under investigation concerns the subsequent evolu-
g2 tion under DNS and LES. The governing equations for the
7,(K) 2=~ gzek, ).—0- (199  Navier—Stokes fields are

0K, = = 5 Mimo(K,P.0) U, DU (6,1

The integral scaler, (k) estimates the time required for the (it + vk?
amplitude of a mode with wave numblkito become decor-
related with itself; the microscale is related to the zero- +fi(k,t1), (22
crossing rate of the time signal. The corresponding quantities
for the LES field will be denoted byy (k|k;) and7,(klk).  ""ere

In Fig. 4, the microscales of the DNS and LES fields are
compared over the range of wave numbers computed in the Mimn(k!p'q):Pimn(k)J' dpdq é(p+qg—k) (23
simulations. The plot shows that both microscales vary with _ . . .
wave numbek ask !, consistent with theweeping hypoth- andf;(k,t) is the Igrge—scale random forcing which vanishes
esisfor Eulerian time correlatio&?! and with the collapse XCePt al the forcing scales. _
of the correlation functions shown in Fig. 2. The DNS and The governing equations for the LES fields are

LES microscales are seen to be approximately proportional, ¢ )
with v (ko) 1K Jui(k,)
ALLON 20 L=
G 20 =~ 5 Minn(K,P.Q)UR(P.OU (GO + 11, (24

over the entire range of wave numbers considered. The LE&here
microscale always exceeds the DNS microscale.

The same comparison for the integral scales is made in Mifnn(k,p,q):pimn(k)J' S(k—p—q)dpdg (25
Fig. 5, which shows the ratioy (k|k.)/ (k) as a function P.a=ke

of wave numbek. Least-squares fitting of the data gives  restricts the nonlinear interaction to resolved modes alone.

ru(Kko) The Taylor expansion of the time correlatitib) has the
7@" ~1.6. (21)  general form
) Ck, 7) = Co(K) +iC(K) 7— Cl(K) 7224 - -,
The LES integral scale also exceeds the DNS integral scale. . (26)
Comparison between Eq&1) and (20) shows that the mi- c (k)=(—i)”< d"u(k,t) u(—k t)>
croscale is more sensitive to filtering than the integral scale. " at" B
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The time derivatives of the Navier—Stokes fields can be calspectral eddy viscosity, EGL0). Regardless of the definition

culated from Eq(22). For negligible viscosityy and wave

numbersk far from the forcing frequency, we obtéth

Colk)=Q(K), @7
Cy(k)=— 5 T(K), 29

CZ(k): %Mimn(k,p,q)MirS(k,p’,q’)

X<um(p)un(q)ur(p,)us(_q,)>- (29)
Note that
Co(k)
2_
7,(K) “C, 0 (30
In Eq. (29), the result for time stationary turbulence
Uk, Hu(k,t))=—(uck,t)a(k,t)) (31
is applied.
In a steady state,
i dui(k,O)
iICa(k)= Tui(_kao)
~1d
=35 gr{uikOu(—k,0)
=0. (32

In view of Eq. (28), this result is equivalent td(k)=0: a

of vy(k|ks), energy transfer among the resolved modes ad-
justs itself so thaC,(k|k.) =0.

Equation (36) can be simplified using the result
C1(k|kg)=0: in view of Eq.(35),

Co(K|ke) =C5 (Klke) — vi(k|ke) 2k*Q(K), (39)
where we have introduced the quantity

C5 (klke)=2Miyn(k,p,a)Mirs(k,p',q")

X{Um(P)un(a)ur(p")us(a’)), (40)

which represents the effect of interactions among resolved
modes alone. Note that always decreaseS,(k|k.), hence
it always increases the time microscale.

The quasinormality hypothesis results in

C3 (klke) = 2Minn(k,p,a)Mirs(k,p’,a")

X Pmi(P)Png(a)Q(P)Q(q). (41)
The geometric factor in Eq41) is positive?? consequently
C3 (K[ke) <Ca(K). (42
Combining Egs(42) and(39),
Ca(klke) <Ca(k). (43

If the SGS model correctly predicts the energy levels of the
resolved scales, we can divide Eg¢.3) by Q(k) and con-
clude that

steady state implies zero net transfer into modes outside the Tu(k|kc)>7u(k) (44)

production and dissipation ranges.

Similarly, the Taylor coefficients of time correlations in

the LES velocity field, defined by analogy with E@6) by

C(k|ke,7)=Coq(k|ko) +iCq(k|ko) 7— Co(K|ke) 7212+ -
(33

can be obtained from E¢24) as

CO(k|kc):Q(k|kc)a (34

Calklke) = — 5 (T=(Klko) ~ 2i(Kl ko) KQ(K k), (35

_1 < < o~
CZ(k|kC)_ 4Mimn(k1prq)Mirs(k1p lq )

X (Um(P)Un(aD U (P )us(q"))
— v(K| ko) K2T=(K|kc)

+ (K[ ko) 2k*Q(K|Kg). (36)
In an ideal LES calculation, we would have
Q(klk;)=Q(k) for k=k,. (37)
Again,
Q(k)
2__

In the case of LES, the requirement ti&f(k|k,)=0 in a

as observed in the simulations. Thus, closure is consistent
with the observation that the time microscale in the LES field
is always larger than the microscale in the DNS field. The
closure result, Eq(41), also implies thaC,(k|k.) is an in-
creasing function ok.; as expected, increasing the resolu-
tion of the LES must improve the predicted microscale.
Because it is difficult to explore the effects of varying
simulation parameters through DNS, it is useful to supple-
ment the DNS with closure analysis. The most fundamental
property of the integral definin@,(k) is that if it is evalu-
ated on a cutoff Kolmogorov correlation function of the form

0 Cre?*%(27k?), k=k,
Qo= Qu(k). k=ko'

whereQq(k) is an arbitrary function ok which is bounded
neark=0, then under the closure hypothesis of quasinormal-
ity, wheng~ky~0 and consequently—Kk,

Co(K) ~ €%3Pinn(K) Pirn (K)Pr(K) ko #2113 (46)

(45

diverges for fixedk asko— 0. Note that
Ca(k)
Q(k)
also diverges in this limit.

This is the well-known divergence property of Eulerian

time correlations discovered by KraichnZhlt implies that
if k>kgy, we can expect that the integrals defining both

CZ( k) — —~ 62/3( k/k0)2/3k4/3 (47)

steady state is equivalent to Kraichnan's definition of theC; (k|k.) andC,(k) will be dominated by the behavior 6
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TABLE Il. The wave numbers,, k, andk.. Chollet—Lesieur model—Ed12)—this effect, which is pro-
portional to the energy spectrum at the cutoff wave number,
is small and is consequently not shown.
0.1,1.0,4.0 &27" for 0<n<8 16, 32, 64, 128 None of the ratios in Table Ill is close to the value
c,(K)/cy(k|k,)~1.8 found in our DNS. The reason is that
the von Kaman spectrum happens not to apply well to either
near the peak of the energy spectrum. If aksek., then the DNS or LES spectrum. Modeling these spectra by
C,(k)=C5 (k|kc). Thus, ifkg<k<k., C,(k) will be rela- 0 for k<1.0
tively unaffected by mode truncation, and should be well —1.67

g =4 0.7 for 1.0<k=<15.3
predicted by LES. Eons(k) :

ko k ke

In a finite system in whictk, is fixed, C,(k) is finite, 700k~ *#  for 15.3<k=60.0
becauseQ,(q) approaches zero whep— 0. For fixedky, if 0 for k=1.0 (49
k~kg, then Eq.(46) shows that the contribution t€,(k) 167
from scalesy~0 is of orderk2”. Similarly, Eq.(47) shows Eles(k)=y 0.7~ for 1.0sk<11.5
that the contribution ta,(k) from these scales is of order 500k 5% for 11.5<k=30.0

k. Thus, C,(k) and c,(k) are no longer dominated by
contributions from smally; instead, these contributions are
small, and the effect of the cutoff & can be stronger.

The conclusion of these two arguments is that in highf
Reynolds number turbulence witthy<<k,, whereky is the
inverse Kolmogorov scale, the time microscale can be wel

predicted by LES for scaléssatisfyingko<k<k.=kq, but LES spectrum is simply the cutoff DNS spectrum as in Eq.

the effect of mode truncation can be strongekitk, or if (37). It is therefore likely that the ratios in Table Ill are

k~Kk., whether the Reynolds number is large or not. In par- . . ; .
. . X . unrepresentatively low. The numerical simulations have ap-
ticular, in low Reynolds number turbulence in whidg

~Ky, the effect of the cutoff can always be significant plied the Chollet—Lesieur spectral eddy viscosity, which is
~Rd» .

To quantify the effect of proximity to the cutoff scales on _derlved theoretically for high Reynolds number turbulence,

. ) . in a relatively low Reynolds number simulation. The LES is
time correlations, we evaluated the integral of E4l) nu- " . .

. ; . probably far from optimal. It is therefore also likely that the
merically for the von Kaman spectrum . . : . .

ratios from the simulations are unrepresentatively high. In

Q(K)=Ce?%K, *3(klko) [ 1+ (k/kg)?] %2, (48)  any case, our goal is not to predict this ratio, which depends
, . on the flow and the SGS model, but to show that it can be
wherek, defines the peak of the energy spectrum. In th|sSi nificantly laraer than one
integration, the wave vectors are restricted by the conditions 9 ylarg '
p, q<k.. The problem has two parameteks, k.; these
cases are considered in Table II.

The results are given in Table III. VI. DISCUSSION

The results shown in Table Il agree with the above-
given arguments: the cutoff effects are largest whkgns
largest and increase &spproacheg,; we also note that the
time microscale for scalds<k, below the integral scale are
even more strongly affected by the cutoff. The results in
Table Il do not include the effect of eddy viscosity: for the

numerical evaluation of the ratity(k)/c,(k|k.) gave values
in the range 1.6-2.0.

The disparity in the ratiosc,(k)/c,(k|k)~1.0—1.15
ound in Table Il andc,(k)/cy(k|ke)~ 1.8 for the numerical
imulations is surprising. However, we should consider that
able 11l was constructed by making the idealization that the

In most previous applications, LES has been judged by
its ability to predict single-time flow properties like the mean
velocity profile, turbulent kinetic energy, and Reynolds
stresses. SGS model development has therefore been focused
on improving the predictions of these quantities. The time
statistics of the LES do not enter such comparisons directly.
The recent increased attention given to unsteady problems in
TABLE lll. The effects of proximity to the cutoff scales on time correla- aerodynamics suggests that LES will be needed for time-
tions. accurate calculations in the future; even if the time accuracy
required is only statistical, this emphasis will impose new
requirements on SGS modeling.

klko  Cy(K|32)/Co(K|16) C,(k|64)/Cy(k|32) C,(K|128)/C,(k|64)

ko=4.0 A relatively new application of LES to unsteady flow is
2.000 1.107 1.062 1.037 h , f turbulent d In thi bl
0.500 1137 1073 Loal the computation of turbulent sound sources. In this problem,
0.195 1146 L.075 1042 the Lighthill acoustic analody shows that the sound source

depends on the space—time properties of turbulence. Since

Ko=1.0 unsteady information is required, LES is a natural approach;
2.000 1.037 1.022 1.013 h . tigati £ th fLES in thi Y
0.500 1041 1.024 1014 owever, investigation of the accuracy o in this appli-
0.125 1.042 1.025 1.016 cation has begun only recently.

o1 In a recent assessment of LES-based sound radiation cal-

0=0. . 25 .
2 5000 1.007 1.004 1002 culations, Seroet al.=> found that SGS modeling suppresses

1.2500 1.007 1.004 1.003 the sound radiated by the unresolved scales. Itis not difficult
to use turbulence theory to model the subgrid sound
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