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ABSTRACT: The Mapping Closure Approximation (MCA) approach is developed to describe the
statistics of both conserved and reactive scalars in random flows. The statistics include Probability
Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The
statistical quantities are calculated using the MCA and compared with the results of the Direct Nu-

merical Simulation (DNS). The results obtained from the MCA are in agreement with those from the

DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.

KEY WORDS: conserved and reactive scalars, MCA, probability density function, conditional dissi-

pation rate, conditional Laplacian

1 INTRODUCTION

Statistics of a reactive scalar in random flows
may be found in problems of great practical and
fundamental importance in many fields of science
and engineering. The important examples include
chemical reaction flows in combustion!) and porous
medial2l. The reactive scalar is usually governed by
an advection-diffusion-reaction equation

— =4 u-Vé=rV¢+S(¢) (1)

Here, the scalar ¢ represents the concentration of
species. k is a molecular diffusivity. The source term
S represents the chemical reaction rate. The scalar ¢
is reactive if § # 0 and conserved if § = 0. The ve-
locity field (@, ¢) is usually solved from the Navier-
Stokes equation. For simplicity in the discussion of
this paper, the velocity is assumed as a known ho-
mogeneous Gaussian field with a short time correla-
tion. This assumption is reasonable since ¢ is a pas-
sive scalar.

The statistical description of reactive scalars is
usually achieved by moment and PDF approaches.
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The moments and PDFs are obtained by solving re-
spective transport equations separately.
both moment and PDF equations suffer from the clo-

However,

sure problems. In the moment equations?!, the un-
closed terms are convection and reaction. They are
modeled by truncated Taylor series expansions with
respect to variances. The truncated Taylor series ex-
pansion is only valid for small variances. In the PDF
equations(!, the unclosed terms are Conditional Dissi-
pation Rate (CDR) and Conditional Laplacian (CL).
They are modeled wusing the Gaussian assumptions.
These models are only valid for near-Gaussian distri-
butions. The closure problems for reactive scalars are
very similar to the ones in turbulence. Turbulence
models are based on Kolmogorov’s universal theory
of small scale motions. Unfortunately, such a theory
does not exist for reactive scalars in random flows.
Therefore, one has to adopt some assumptions a pri-
ori. For example, the small variance is assumed in
the moment approach and the Gaussian closure is as-
sumed in the PDF approach. The assumptions have
to be justified.
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The recently developed mapping closurel®4],
lately named as Mapping Closure Approximation
(MCA)B] provides an alternative approach for PDFs
without any ad hoc assumption. The main idea of the
MCA is to keep track of the evolution of an unknown
random field by using a known reference field and a
mapping function. The known reference field is usu-
ally chosen to be a Gaussian random field, because
we understand the properties of the Gaussian closure.
The dynamical evolution of the PDF is described by
an evolution equation of the mapping function; the
latter is obtained directly from the original govern-
In map-
ping equations, the unclosed terms, CDR and CL,

ing equation under the Gaussian closure.

can be calculated in the successive approximation by
the mapping function itself and Gaussian closure so
that we do not need any ad hoc models. The recent
work on MCA can be found in Refs.[6~10].

The models of CDR and CL have direct appli-
cations to Large Eddy Simulation (LES) of turbulent
reacting flows. In the LES based on the PDF!Y and
conditional moment closurel!?, the CDR and CL have
to be modeled. Although there are extensive studies
on CDR and CL for conserved scalars, there is very
little work on CDR and CL for reactive scalars!!l. Un-
like conserved scalars, reactive scalars are related with
nonlinear reaction, in addition to advection and diffu-
sion. MCA has been shown to be able to predict the
CDR and CL for conserved scalars. In this paper we
will show that MCA can predict these quantities for
reactive scalars. We will use MCA to calculate the
PDFs, CDRs and CLs of reactive scalars in random
flows. This paper is arranged as follows: in section
2, the MCA approach is described, followed by cal-
culations of the PDFs, CDRs and CLs for both con-
served and reactive scalars. The results obtained from
MCA are tested quantitatively against computer sim-
ulations in section 3. We summarize and discuss the
results in section 4.

2 THE MCA APPROACH TO PDF, CDR
AND CL

The transport equation for the PDF of reactive
scalar can be derived from the advection-diffusion-
reaction Eq.(1)

DP(¢7t) 8 2
—pr %WV Blo) P9, t)+

S(@)P(4,1)] =0 (2)

Equation (2) includes an unclosed term—Conditional
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Laplacian (CL) or conditional diffusion
0(¢,t) = K(V¢|0) 3)

Using the test function method, we can also
show

(V26l6)P(4,t) = %[((V¢)2I¢>P(¢,t)] (4)

Submitting Eq.(4) into Eq.(2), we obtain an alterna-
tive form of the PDF transport equation

DP(¢,t) 92 2
Dt 8752["((V¢) [#)P(, )]+
d
3 S(@P(8:1)] =0 (5)

which includes another unclosed term—Conditional
Dissipation Rate (CDR)

X(6,t) = 5{(V9)*|¢) (6)

In the PDF transport equation, the effects of
chemical reactions appear in closed form. This closed
form constitutes the primary advantage of the PDF
approach over others. However, the unclosed terms,
either CDR or CL, still remain to be modelled a pri-
ori. The MCA approach is introduced to evaluate the
CDR and CL and calculate the PDF.

In the MCA approach, an unknown random field
¢(x,t) is represented by a mapping of a known ran-
dom field 8(x), where 6(x) might be chosen as a ho-
mogeneous Gaussian field. Namely, it is assumed that
the representation

¢(@,t) = X(6(),1) (7)

holds true only in the sense of statistics: the un-
known random field ¢(x,t) has the same statistics,
such as PDF and conditional moment, as its surro-
gate X (6(x),t). The representation (7) implies

(8)

where Py(8) is the Gaussian PDF of 6. The mapping
Eq.(7) exists if and only if the spatial-level crossing

P(s,0) = po(e)[ 2500 0]

frequency at which the unknown random field passes
through a given value has a single maximum as a func-
tion of that valuel®l. It is also required to be one-to-
one and monotonic to ensure that Eq.(8) is correct.
Differentiating Eq.(8) with respect to t yields

P& | % (B2 |s)p@n] =0 ()
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The comparison of Eq.(9) with Eq.(2) gives the trans-
port equation of the mapping function X

0X

S = FvEele) +

+(5()l¢) (10)

The conditional moments in Eq.(10) can be evaluated
from the mapping function (7) and the Gaussianity for
the reference field 6 '

0(6,t) = k(V2|¢) = x(V2X|6)

(V- Gy < ) ()
(S(8)16) = (SIX(@))6) = STX(0)] (12)

Then, the transport equation of the mapping function
(7) is

# 8X 0%’°X
G el
S[X(0)] (13)

The solution of Eq.(13) can be used to calculate
the PDF P(6,¢) via Eq.(8), the CL @(6,t) via Eq.(11)
and the CDR x(0,t) via

x(¢,t) = £((V)?|9)
8X}

= r((V0))| S5 (14)

Other statistics, such as mean and variance, can also
be calculated using the scalar PDFs. The mapping
Eq.(13) plays a key role in the calculation of the scalar
statistics. Its numerical algorithms will be discussed
in the next section. However, for a conserved scalar,
S = 0, the mapping Eq.(13) is analytically solvable.
The results for initial Gaussian and double-delta dis-
tributions are summarized as follows!*4:

(1) The initial double-delta PDF

A if =0
P(¢,O):{1—A if =1 (15)
0 if ¢#0o0rl

where 0 < A < 1. The corresponding initial mapping
function is of the form

X(6,0) = {(1’

where v = v/2erf "}(24 — 1). The exact solution of
Eq.(13) with the initial condition (16) is solved as

if 6<7y

if 8>7v (16)

X(9,8) = %[Herf(ﬁ\;;;)] (17)

2004
where
9= 6
(62)
vy, (18)
(62)
= \/exp(27) — 1

Using the solution (17), we can calculate the CDR,
CL and PDF

_ (v 1
MO0 = Sy

exp ( — Z[erf_l(Zcb - 1)]2)

= x(0.5,¢) exp (- 2[exf 1(2¢ — 1)]%) (19)
TR L T
8(¢7t) - \/7—_‘_ <02> [1+E ( )]
exp (— 2[erf” Y2 -1 )] )[el‘f_l(l —2¢)—
V1 —exp(—27m)erf 11 — 2(¢#))] (20)
P(¢,t) = Z(1) exp(—[Z(7)erf 1 (2¢ — 1)—

e"erf”

N2>y D [t T2 - D) (21)
(2) The initial Gaussian PDF

\/12_7r exp ( — %2) (22)

initial mapping function is

P(6,0) =

The corresponding

X(0,0) = 6. The solution of Eq.(13) is X(6,t) =
6 exp(—7). Therefore, the CDR, CL and PDF are
calculated as follows

x(¢,t) = k{((VX)?|0) = k{(VO)*)e " (23)

((V0)*)
O(¢,t) = k(VEX|0) = —k 3 X (24)
1 X2
Pg,t) = V21 exp(—T7) P ( B 2exp(~—27’)> (25)

3 COMPARATIVE ASSESSMENTS OF
THE MCA

The objective of this section is to evaluate the
performance of the MCA via comparative assessments
against the DNS. We performed the DNS for the
scalar equation (1) in a cyclic square of side 2.
The Eq.(1) is discretized spatially, using the fourth-
order central-finite-difference scheme, with N = 512
computational grids. It is integrated in time us-
ing an Euler scheme for the first time step and
second-order Adams-Bashforth scheme for all subse-
quent time steps. The incompressible random veloc-
ity u(w,t) is numerically constructed as an isotropic
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and homogeneous Gaussian field of zero mean and
unity variance, with a specified energy spectrum
(k/ko)* exp [—(k/ko)?], where kg = 4. The velocity
field is temporally frozen for the case that the con-
vection time scale (€k?)~%/3 is much longer than the
diffusion time scale (kk2)71.

The mapping Eq.(13) is solved by numerical in-
tegration, using the same procedure as used in Eq.(1).
The boundary conditions for the mapping function X
are obtained by extrapolation in the direction of the
reference field 4.

The initial conditions are chosen as the Gaussian
and double-delta distributions. The former is sim-
ulated for random mixing and the latter for binary
mixing. The chemical reactions are modelled by the
quadratic form of S(¢) = —20¢|¢| and the cubic form
of S(¢) = —20(¢> ~ 0.5¢), whose combination repre-
sents quite general nonlinear reactions. The molecular
diffusion s = 0.005 is much smaller than the nonlinear
reaction. The models from the MCA are calibrated to
a case where nonlinear effects are dominant and the
moment approach does not work well.

In the figures, the coordinate axes are re-scaled

as follows
(e - 4200
PL(6,1) = o(t) - P(6.1)
(1) = S )
X (6,6 = X6
where

ow=[[ " eworend]”

The renormalization implies that an external
time scale is used to rescale relaxation time of the
mapping function. The time scale can be provided by
the variances of the mapping function and its deriva-
tive.

We first make comparative assessments for ini-
tial Gaussian scalars. In Figs.1 and 2, the quantities
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Fig.1 Statistics of the reactive scalar of ini-

tial Gaussian field with reaction S(¢) =
—20¢|¢|. Squares, triangles and cir-
cles are for DNS and solid, dash and
dash-dotted lines are for MCA at the
variances 4/(¢?) = 1.0, 0.5 and 0.2,
respectively
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Fig.2 Statistics of the reactive scalar of ini-

tial Gaussian field with reaction S(¢) =
—20(4> — 0.5¢). Squares, triangles and
circles are for DNS and solid, dash and
dash-dotted lines are for MCA at the
variances /{¢?) = 1.0, 0.5 and 0.2,

respectively

including PDF, CL and CDR are shown for the reac-
tive scalars of the quadratic and cubic nonlinear re-
actions separately. The nonlinear terms distort their
shapes: the PDFs depart from the initial Gaussian
distribution and become symmetric [-distribution.
The CLs look like sinusoidal distributions due to sig-
nificant distortions of nonlinear reaction for large ¢.
The CDRs become parabolic instead of being a con-
stant. The results from the MCA are in agreement
with those from the DNS, and the nonlinear distor-
tions are well predicted by the MCA. .

We further make comparative assessments for
initial binary scalars in Figs.3 and 4. Even for the
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Fig.3 Statistics of the reactive scalar of initial
double-delta field with reaction S(¢) =
—20¢|¢|. Squares, triangles and circles
are for DNS and solid, dash and dash-
dotted lines are for MCA at the variances

V/{(#?) = 1.0, 0.2 and 0.04, respectively
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Statistics of the reactive scalar of initial
double-delta field with reaction S(¢) =
—20¢|¢|. Squares, triangles and circles are for
DNS and solid, dash and dash-dotted lines are
for MCA at the variances 1/($?) = 1.0, 0.2
and 0.04, respectively (continued)

2.00

1.75
1.50
1.25
1.00
0.75
0.50
0.25

0.00

2.0

L5
1.0
0.5
0.0
-05
-1.0

-15

T T T T T I T T I T I T T I YT I TITIT

-2.0

(b) Conditional diffusion

2.0

L5

1.0

(B

0.5

LI S B S MmN B B B BN B S E R S e o

0.0

(¢) Conditional dissipation rate

Fig.4 Statistics of the reactive scalar of initial
double-delta field with reaction S(¢) =
—20(4 —0.5¢). Squares, triangles and cir-
cles are for DNS and solid, dash and dash-
dotted lines are for MCA at the variances

£/ {$?) = 1.0, 0.2 and 0.04, respectively

binary initial distributions, the PDFs from the MCA
are in good agreement with those from the DNS. The
MCA also predicts the evolution of the CLs although
there are slight differences in the tails. The MCA
predictions of the CDRs are qualitatively correct but
with some magnitude differences. The magnitude dif-
ferences are due to the fact that the current mapping
is an amplitude approximation in the sense of a first-
order accuracy, which is expected to be improved by
a higher-order approximation!®!.

The comparative assessments indicate that the
MCA can predict the statistics of the initial Gaussian
scalars with or without reactions. The MCA predic-
tions of initial binary scalars on PDFs and CLs are
also in agreement with those of the DNS, but have
some magnitude differences on CDRs with those of
the DNS.

4 CONCLUSIONS AND DISCUSSIONS

It is demonstrated that the MCA can be used
to describe the statistics of reactive scalars in random
flows. Typically, the approach can predict the shapes
of the PDFs, CDRs and CLs for both conserved and
reactive scalars. In the MCA approach, the effects
of reactions are in closed form. Therefore, the MCA
can keep track of nonlinear distortions from the re-
action terms so that it correctly describes the shapes
of the statistics. The rescaling time in the plots im-
plies an external time scale. The time scale could
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be provided by the variances of the mapping and its
derivative. Therefore, the mapping for the joint PDF
of scalar and its derivative is a natural choice for this
purpose. Although the present paper is restricted to
the quadratic and cubic nonlinear reactions, the MCA

can be applied to nonlinear reactions of general forms.
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