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Abstract. The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random ex-
citation for minimizing their frst-passage failure is investigated. First, a stochastic averaging method for multi-
degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary
random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equa-
tions and their associated boundary and final time conditions for the control problems of maximizinig reliability
and maximizing mean first-passage time are formulated based on the averaged It equations by applying the
dynamical programming principle. The optimal control law is derived from the dynamical programming equa-
tions and control constraints. The relationship between the dynamical programming equations and the backward
Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean
first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the
conditional probability density and mean of first-passage time of an optimally controlled system are oblained by
solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure
and effectiveness of control strategy are illustrated with an example.
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1. Introduction

First-passage time is related to the problem of state transition of randomly excited phys-
ical systems and first-passage (first-excursion) failure is a major failure model of mechan-
ical/structural systems under random excitation. Thus, the first-passage problem is of great
significance although it is one of the most difficult problems in stochastic dynamics. At
present, a mathematical exact solution is possible only if the random phenomenon in question
can be treated as a diffusion process. Still, known solutions are limited to the one-dimensional
case [1, 2].

The state space of a physical or engineering dynamical system is generally two-
dimensional or higher and the random excitation of the system is usually not Gaussian white
noise. So, it is difficult to directly apply the diffusion process theory of the first-passage prob-
lem. A feasible way in this case is first to apply the stochastic averaging method to reduce a
system into averaged It6 equations of lower dimension and then to apply the diffusion process
theory of the first-passage problem to an averaged system. In the last three decades, the com-
bination approach of the classical stochastic averaging method and diffusion process theory of
the first-passage problem has been applied by many researchers to single degree-of-freedom
(SDOF) oscillators with linear or nonlinear restoring force [3-13]. Recently, the combination
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approach of the stochastic averaging method for quasi-Hamiltonian systems [14-16] and dif-
fusion process theory of first-passage time was proposed and applied to quasi-non-integrable,
quasi-integrable and quasi-partially integrable Hamiltonian systems [17-19].

The mathematical theory of stochastic optimal control is quite well developed [20-23].
However, in physical and engineering fields, only the linear quadratic Gaussian (LQG) con-
trol strategy has been widely applied until quite recently. In the last few years, a nonlinear
stochastic optimal control strategy was proposed by Zhu and co-workers [24—-26] based on the
stochastic averaging method for quasi-Hamiltonian systems [14-16] and the stochastic dy-
namical programming principle [20-23]. The LQG control strategy is usually used to reduce
the response or to stabilize physical and engineering systems, while the nonlinear stochastic
optimal control strategy [24-26] can also be used to minimize the first-passage failure [19,
271 except response reduction [24-26] and stabilization [28]. However, in all these studies,
the random excitation is assumed to be Gaussian white noise.

In this paper, a procedure for designing optimal bounded control of quasi-integrable
Hamiltonian systems with wide-band random excitations for minimizing first-passage failure
is proposed. First, the motion equations of such a system is reduced to averaged It6 equations
of lower-dimension by using the stochastic averaging method for multi-degrees-of-freedom,
strongly nonlinear quasi-integrable Hamiltonian systems with wide-band random excitations.
Then, the dynamical programming equations and their boundary and final-time conditions for
the control problems of reliability maximization and mean first-passage time maximization
are established. The optimal control law is determined from the dynamical programming
equations and control constraints. The relationship between these dynamical programming
equations and the backward Kolmogorov equation for the conditional reliability function and
Pontryagin equation for mean first-passage time of optimally controlled systems is discussed.
Finally, the conditional reliability function, the conditional probability density and mean of
first-passage time of optimally controlled systems are obtained by solving the backward
Kolmogorov equation and Pontryagin equation. The proposed procedure is illustrated with
an example of two coupled Duffing oscillators under external and parametric excitations of
stationary wide-band random processes.

2. Stochastic Averaging

Consider a controlled quasi-Hamiltonian system of n degrees of freedom governed by the
following motion equations:

X aH
Qi - 'é'?iv
. oH aH
P = —— — 8¢ (Q, P)— + &u;(Q, P) + &'/ £i1.(Q, P&, (1),
00; aP;
Q:i(0) = Qio, PO)=PFo, i,j=L2,....,nk=12,...,m, (1)

where Q; and P; are generalized displacements and momenta, respectively; H = H(Q, P)isa
twice differentiable Hamiltonian; ¢ is a small parameter; ec;; (Q, P) denotes the coefficients of
light quasi-linear damping; &'/2 f; (Q, P) denote amplitudes of weak random excitations; & (¢)
are stationary wide-band random processes with correlation functions Ry (r) = E[§(£)§ (t +
7)] or spectral densities Sy (w); su; (Q, P) denotes weak feedback control forces.
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Assume that the Hamiltonian system with Hamiltonian H is separable. i.e.,

n
H(q.p) =Y _ Higi. pi) (2)
i=1
and for most non-gyroscopic Hamiltonian systems,
Hi(gi, pi) = pi/2+ Ui(g). (3)

Besides, each sub-Hamiltonian system with a Hamiltonian H; has a family of periodic
solutions in a domain €; around equilibrium position (b;, 0), 1.e.,

g (t) = aj cos @ (t) + b;,  pi(t) = —a;vi(a;, @) sing; (1), @i(t) = Yi(t) +6:(t), (4)

where
di; 21U {a; + b)) — U;(a; cos @; + b;
vi(a, @) = —— = O ) o 9( Y )]- (3)
ds a; sin” g
Here a; and b; are constants related to H; as follows:
Uia; + b;) = Ui(—a; + b)) = H;. (6)

cosy; and sing; are called generalized harmonic functions [29]; a; are the amplitudes
of displacements, and v;(g;, ¢;) are the instantaneous frequencies of the sub-Hamiltonian
oscillators.

Expand v, Ya;, ;) into Fourier series

oo
’U,-_i(af, @;) = Co(a;) + Z Ci(a;) cos ny;. (7)

n=1

Integrating Equation (5) with respect to y; yields

t = Cola)i + ) —Cuila) sinng;. (8)

n=1

Letting the integration (8) be from O to 27 leads to the average periods

Ti(a;) = 2n Coi{ay) (9)
and average frequencies

w;i(a;) = 1/Coi(ai) (10)
of the oscillators. Thus, in averaging, the following approximate relations can be used:

@; (1) = w;(a;)t + 6 (1). (1)

Since the dampings are light, random excitations and feedback control forces are weak, the
sample response of system (1) is nearly periodic and of the form

0:(t) = A;cos @; (1) + B;,  Pi(t) = —Avi(Ai, $i) sin ®; (1),
d; () = V; (1) + O: (1), (12)
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where

dw, V2IU(A; + B;) — U;(A; cos D; + B;)]

13
dr A; sin ®; (13)

vi(Ai, @) =

Treating Equation (12) as generalized van der Pol transformations from Q;, P; to A;, ®;, one
obtains the following standard equations for A4;, ©;:

dAi ‘ ) 2 L )

— =¢F(A, 0,0 +£'7Gi (A, @)5 (1),

de; 3 (2

— = eFP(A, 0,u)+ PGP A, @)5(),

A,’(O)-—‘“—Cl,‘(), @,(O) = 0, [ = 1,2,...,]’1; k = 1,2,...,]’?1, (14)
where

FP'A,0,u) = FUA, 0)+ FY (A, 0,u)
— A,
gi(A; + B (1 + hy)
X [—cij (A, @)A;ui(A;, P;)sin®; + u; (A, @)]v; (A;, ;) sin &y,

FPA, 0,0 = F2A,0)+ FP(A, 0,u)
gi{A; + B)(1 +hy)
X [=¢ij (A, @)Ajui(A;, &;)sind; + u; (A, O)]v (A;, D;)(cos D; + h;),
—A;
gi(A; + B ) (1 + hy)
Gii' (4.©) = ——— ;1) Ty (A @)ui(Aj, @) (cos B + hy), (15)

cij (A, 9), fir(A, ©) and u; (A, ®) are ¢;;(Q, P), fi+(Q,P) and u,;(Q, P), respectively, with
Q, P replaced by A, © according to transformations (12), and

Gﬁ,)(A, 0) = ik (A, @)v;(A;, $;)sin &y,

g = aU; B — dB;  gi(—A; + B) + gi(A; + B)) (16)
Ca0 T dA gi(—Ai 4+ B) —gi(A; + By’

Suppose that system (1) has no internal resonance, i.e.,

kiw;(a;) # 0(e), | - 17

where k; are small integers. Based on the Stratonovich—Khasminskii limit theorem [30-32],
A in Equation (14) converges weakly to an n-dimensional vector diffusion process as & — 0
in a time internal [0, T'], where 7 ~ O(e™*). This limiting diffusion process is governed by
the following averaged It6 equations:

dA; = [mi(A) + e(FS (A, ©,w));1dr + o3 (A) dBy (1),
A =ap, i=12,...,nk=1,2,...,m, (18)
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where
0
- 3G}, 0G},
g — (N ik (N ik (2 :
’n’l(A) - 8<Fil +[ (W Gﬂ t+r+ e . G.il)lr+r R’J(T-)dr *
— 4 t 4 ! (
Q
bii(A) = oi(A)oj(A) ZEU (61,654 Rmr)dr> . (19)
0 ]
(-); denotes the time averaging operation, i.e.,
T
.1 |
(, = lim — { {-}dr. (20)
T—0oo
0

To obtain the explicit expressions for n1;; and b;;, first expand F;, Gj into n-fold Fourier
series with respect to ®;, integrate with respect to  and then average with respect to ®; using
Equation (11). Note that the averaging of m;>(A) = (F:(zl )(A, ®, u)}, is not completed at this
stage, since u is unknown.

Equation (18) is the averaged It6 equation for the amplitudes of generalized displacements
Q;. In some cases, the averaged Itd equations for the first integrals (energies of each degree of
freedom) H;, i = 1,2, ..., n are needed. They can be obtained from Equation (18) by using
1t6 differential rule, noting that

H;, = U;(A; + B)). (21)
The result is

dH; = [m; (H) + em(H, w)] df + 6u (H) d By (1),

HQ) =Hyp, i=12,....,mk=1L12,...,m, (22)
where H = [Hy, Ha, ..., H,1",

mi (H) = I:S’f(Az + B)Y(1 + hy)mi (A)

1 d
+ Ea—g[g,- (A; + B+ hi)]Uik(A)Uik(A):l

b

AF=U,-—](,H:')_B:'

i (HL 0) = [gi(A; + B 4+ h)(FS (A, ©,0)1] sz, = 8 Pidi

bij(H) = [0 (H)& j (H)]
= [gi(A; + B)g;(A; + B)(1+h)(1 + hj)Uik(A)Ujk(A)]lAi%Ui-l(Hi-},_Bi . (23)

Note that A(#) in Equation (18) and H(z) in Equation (22) are homogeneous diffusion
processes. So, the theory of first passage time of diffusion processes can be applied to them.
Furthermore, the dimension of averaged equations in Equations (18) or (22) is only a half
of that of the original equation (1) and in the averaged equations only the slowly varying
process A; or H; are retained. Note that time averaging in Equation (19) smoothens out only
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safety domain

[o3 Io>

Figure I. Safety domain € and its boundary on plane Hy and H, for system (54).

the rapidly temporal fluctuation in the response but not the transient response. So, the aver-
aged equations (18) and (22) can depict the averaged transient response as well as averaged
stationary response. Since the first-passage failure of engineering systems rarely occurs and
it is a long-term behavior, the averaged equations are specially suitable for studying the first-
passage problem. In the following, the averaged It6 equations in Equation (22) rather than the’
original equation (1), are used to study the optimal control of first-passage failure.

3. Dynamical Programming Equations

For most mechanical and structural dynamical systems, the Hamiltonian H (z) represents the
total energy and H; the energy of the rth degree-of-freedom of the system. Each H; may vary
in some sub-interval of [0, co). The state of averaged system (22) varies randomly in the n-
dimensional domain defined by the direct product of n H; sub-intervals and the safety domain
§21s a bounded region with boundary T" within the n-dimensional H, domain. Suppose that the
lower boundary of safety domain for each H; is at zero, then the boundary I" of safety domain
£2 consists of 'y (at least one of H; vanishes) and critical boundary T".. One example of the
safety domain and its boundary is shown in Figure 1. The first-passage failure occurs when
H(z) reaches the critical boundary I, for the first time and it is characterized by a reliability
function, the probability, density, or moments of first-passage time.
For the control problem of reliability maximization, introduce the value function

Vi, H) =sup P(H(T,u) € Q, 7 €[t, trll, 24)

. uel

where u € U denotes the control constraint; ‘sup’ is the abbreviation of the word ‘supremum’.
Equation (24) implies that V (z, H) is the reliability function of the optimally controlled
system. Suppose that H(z, u) is governed by the averaged It6 equation (22). Based on the
stochastic dynamical programming principle [20-22], the following dynamical pro gramming



First-Passage Failure of Quasi-Integrable Hamiltonian Svstems 195
equation can be derived:
SUP{8+[" () + o P ]+ - 2
— + [, + e(u; Pl e— + =
ue | 01 : “3E T2 dH0H;
0<r=<rt;,Hel2 (25)

Eij (H)

} Vi, H)y =0,

The boundary conditions associated with Equation (25) are

Vi, T'y) =0, (26)
V(t, I'y) = finite, (27)

and the final time condition is
Vir, Hy=1, He Q. (28)

Equations (25-28) are the mathematical formulation for the problem of feedback maximiza-
tion of the reliability of averaged system (22). Both the optimal control law and the reliability
function of optimally controlled system (22) can be obtained from solving these equations.

The control problem of maximizing the mean first-passage time of averaged system (22)
can be similarly formulated. Let E[z(H, u)] denote the mean first-passage time of a controlled
system. Define the value function

ViH) = Sug Eft(H, w)], (29)

which implies V,(H) is the mean first-passage time of optimally controlled systen. Based
on the dynamical programming principle, the following dynamical programming equation for
value function V{(H) can be derived from Equation (22):

1- 9>
—b;; (H)
8 H; 8 H;

_ ]
sup {[mil(H) + e Byl +

sup o5 2 } Vi(l) = -1 (30)

The boundary conditions associated with Equation (30) are

i) =0, (31)
V(o) = finite. (32)

Solving Equations (30-32) yields both the optimal control law and the mean first-passage time
of optimally controlled system (22).

Note that boundary conditions (27) and (32) imply that H(#) should not cross boundary
I".. They are qualitative and can be made to be quantitative by using Equation (25) or (30) and
by examining the behavior of the drift and diffusion coefficients of Equation (22) at boundary
I'o. This will be illustrated in the following example.

The optimal control law can be determined from maximizing the left-hand side of Equation
(25) or (30) with respect to u € U. Suppose that the control constraints are of the form

—c; <up<¢, i=172,...,n (33)
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where ¢; are positive constants. The terms u; £,V /9 H; will be maximum when |u;| = ¢; and
each term u; P;0V /9 H; (no summation over i) is positive. Thus, the optimal control law is
oV ,
u; =¢sign{ b—1, i=1,2,...,n. (34)
d H;

From [18] it is seen that the conditional reliability function is a monotonically decreasing
function of H;. So, dV /3 H; < 0. Thus, Equation (34) is reduced to

ui = —c;sign P, = —esign(Q), i=1,2,...,n. (35)

Equation (35) implies that the optimal control law 1s bang-bang control. u; has a constant
magnitude of ¢;. It 1s in the opposite direction of O and changes its direction at 0; = 0.

Inserting Equation (35) into Equation (25) to replace u; and then averaging u? P;, one
obtains the final dynamical programming equation for the control problem of reliability
maximization

9 1- a2
H —b;; (H Vi, H =0, 0<rtr<t,,HeQ,
[a i )BH 7 i )aHI-aHJ (. ) ! (36)
where
m; (H) = m; (H) + e{u; P;),. (37)

The boundary and finial time conditions are still those used in Equations (26-28). Similarly,
the finial dynamical programming equation for the control problem of mean first-passage time

maximization is
9

-
zb” (H)

{m (H) -{- :I ViH) = -1, He Q. (38)

dH; 0 H,

The boundary conditions are still those used in Equations (31) and (32).
Inserting m;(H) into Equation (22) to replace its drift coefficient yields completely
averaged Itd equations

dH; =m;H)dt + oy (H)dB(2), i=1,2,....,mk=1,2,...,m. (39)

Based on theorems due to Kushner [33], the optimal control for averaged system (22) will
be quasi-optimal for the original system (1). For simplification, it is called the optimal control
for both the original and averaged systems.

4. The Backward Kolmogorov Equation and Pontryagin Equation of Optimally
Controlled System

Equation (39) is the completely averaged Itd equations of the optimally controlled system
(22). The conditional reliability function of the optimally controlled system is defined as

Rope(t1 | Ho) = P{H(z,u") € Q,7 €[0,1] | Hy € Q}. (40)
Since H (¢) is a homogeneous diffusion process, Rqp is governed by the following backward

Kolmogorov equation

5 5 1. 52 | |
—— 1 (Ho) —— + by (Hp) =————— | Roye = 0, Hj € £, 41
[ az‘}er,( 0)8H50+2 J(HO)aHfoaHJ_O:IRpt 0 € §2 (41)
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with boundary conditions
Rop(ty | Te) =0, (42)
Ropi(ty | T'o) = finite, (43)
and initial condition
R0 1 Hp) =1, Hp e Q, (44)

where n; (Hp) and b"f_,— (Hy) are obtained from m; (H) and b“,-.,- (H) with H replaced by Hgy. A
comparison between Equations (24) and (40) reveals that

Ropt(rf l HO) = V(0, HO) (45)

Note that in Equation (41), #; is a forward time running from 0, while in Equation (36) r 1s a
backward time running from 7. Introducing the transformation

ty =1t~ I,
V(t, H) - Ropt(tl l HO), (46)

Equation (36) will be of the same form of Equation (41) and the final time condition (28)
becomes initial condition (44), while boundary conditions (26), (27) become (42), (43).
The conditional probability of first-passage failure of the optimally controlled system is

Popi(t | Hp) = | — Ropi(ts | Ho). (47)

The conditional probability density of first-passage time is then

The mean of the first-passage time is defined by
cQ oo
t1,0pt(Ho) = [ Tpopi(T | Hp) dT = / Rop(T | Ho) dT. (49)
0 0

The following Pontryagin equation for the mean first-passage time of the optimally controlled
system can be derived from Equations (41) and (49):

2

4

0 I~
l:”_li (Ho)a—"— + —b;;(Hp) ] et opt = —1. (50)
i0

Hi = 2 8Hiod Hjo
The boundary conditions associated with Equation (50) are
f,0pt{Te) = 0, (5D
t1,0pt(T'g) = finite. (52)

Obviously, dynamical programming equation (38) and its boundary conditions (31) and (32)
are of the same form of Equations (50-52). Thus, we have

i1,op(Ho) = Vi (H) =0, (53)
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Therefore, we can first solve dynamical programming equation (36) together with bound-
ary conditions (26), (27) and final-time condition (28) to obtain V (¢, H) and then obtain the
conditional reliability function and conditional probability density of the first-passage time of
the optimally controlled system by using Equations (46) and (48), respectively. Or, we can
first transform dynamical programming equation (36) into the backward Kolmogorov equa-
tion (41) by using transformation (46) and then solve Equation (41) together with boundary
conditions (42), (43) and initial condition (44) to obtain the conditional reliability function,
and finally obtain the conditional probability density of the first-passage time of the optimally
controlled system by using Equation (48). As for the conditional mean first-passage time of
the optimally controlled system, we can either first solve dynamical programming equation
(38) together with boundary conditions (31), (32) to obtain value function V;(H) and then
obtain it by using Equation (53), or first transform the dynamical programming equation (38)
into Pontryagin equation (50) and then solve Equation (50) together with boundary conditions
(51), (52) to obtain it. It is also possible to obtain the conditional mean first-passage time of
the optimally controlled system from the conditional probability density of first-passage time
by using Equation (49).

Note that here we are interested in the probabilistic and statistical measures of the first-
passage time, which are consistent with the weak convergence in stochastic averaging. As
indicated in the Introduction, the stochastic averaging has been applied by many authors [3—
13] to the first passage problem. The accuracy of the stochastic averaging method for the
prediction of the first-passage failure probability can be checked only by comparison with
the result obtained from the Monte Carlo simulation of the original system, and it depends
on the magnitude of damping, the bandwidth, and the intensity of the random excitation
as well as the initial condition of the system. As indicated in [13], for light damping and
weakly Gaussian white noise excitation, it is quite accurate when the initial system state is far
from the boundary of safety domain and the relative error increases as the initial system state
approaches the boundary. Note that the stiffness nonlinearity is concealed in A or H and the
nonlinearity characteristics of the original system is carried over to the averaged one. So, the
effect of stiffness nonlinearity on the probability offirst-passage failure and statistics is taken
into account in this method.

5. Example

Consider the optimal bounded control of the first-passage failure of two Duffing oscillators
coupled by both linear dampings and external and parametric excitations of stationary wide-
band random processes. The motion equations of the system are

X1+ BuXy + BrXs + 0l X| + a1 X = fuX &) + fio€a(t) + uy,

Xo 4 BuoXi + BuXa + 03X + X3 = fuXob1 (1) + fai&a(t) + g,

X10) =X, X(0) = Xy,

X2(0) = Xa0,  X2(0) = X, (54)

where 8;;, w;, oy, fi; (i, j = 1,2) are constants; &(t) are independent stationary random
processes with correlation functions Ry (t) and spectral density

Dy

S-Ct) = ,
o) = @+ oD

k=1,2. (55)
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Dy and @y are constants. f;;, Dy and u; are assumed to be of the same order of ¢.
Letting X; = Q1, X1 = P, Xo = @2, X3 = P, Equation (54) can be rewritten as
equations in the form of Equation (1). The Hamiltonian associated with system (54) is

H = H, + H»,
gl logyi o =12 (56)
y A A S
which is of the form of Equations (2) and (3) with
Loy, Loy ‘
Ui(g;) = zw:‘ g; + Zaiqi , 1=172 (37)

Since U, (g;) is symmetrical with respect to 0, one can obtain from Equation (16):
g = gi(A) = o] A+ wAl, Bi=h=0. (58)

The sub-Hamiltonian oscillators associated with system (54) have a periodic solution in
the form of Equation (4) throughout the whole phase plane (g;, p;) if w,?, a; > 0. The
instantaneous frequencies are

v (A;, ®;) = [(@? + 30 A7/4)(1 + A; cos 20,1112,
= (A4 /(@] + 30 AT /4 < 1/3. (59)

y; can be expanded into Fourier series. To simplify the calculation, the series is truncated and
y; is approximated by the following finite sum with a relative error less than 0.03%:

v (Ap, ;) & boi (A;) + bai (A;) co8 2®; + by (A;) cos 4D; + be; (A;) cos 6P, (60)
where

bo(A)) = (@] + 3 A /4L —27/16),

by (A1) = (w2 + 3 A2/HY2(/2 + 31} [64),

bu(A) = (F + 30 AZ/H)'2(=27/16),

bei(A) = (f +30;A7/4)' 2 (2] /64). (61)
The averaged frequencies are

w;(A;) = boi (A;). (62)

By using transformations (12), the following equations for A; and ®; are obtained from
Equation (54):

dA,'

i FD(A, @)+ FP A, 9,0+ GV A, Bk () + G2 (8, D),
d®);

- Fi(lz) (A, ®) + Fl(zz)(!s @ u) + Gl(%) (A, (I))ng_l(t) ~+ Gg)(A, ‘I’)fli(t)1

Ai(0) = a;p, ©;(0) =60, i=12, (63)
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where
—A; . . .
Fi(l“ = —— (B A v sin @) + BinArv; sin Pp)v; sin B,
8i
—1
; i’ . .
F,-{l“’ = —(Bi1Ajv; sin @) + Bia Aavasin @o)v; cos b,
¢
" —A. . , -1
Ff‘;’ = — ;v sin @y Fs(f) = —u;v; cos D;,
8i 8i
_ — i A7 5 — fii A 5
Ggll) = Jiih v; sin @; cos P, G,('f) = lv,— cos” &@;,
8i 8i
—fissid; . — fiai
G, = _L"LUE sind;, G35 = """y cos ;. (64)
8i 8i

By inserting Equation (60) into Equation (64) and applying the stochastic averaging, the
following averaged Itd equations are obtained from Equation (63):

dA; = [mi(A) + (F5 (A, ®,w)),1df + 03, (A) dBy. (1),
Ai(Q) =ao, k=12 (65)

where m;; and oy are obtained by using formulas in Equation (19) and are given in
Appendix 1.
The relations between A; and H; obtained from Equation (56) are

, \/w?-i—éla,-H,-—w?
A;=U7(H) = : (66)

C;

The averaged Itd equations for H; are then
dH; = [my(H) + (u; P),]1dt + 63 (H) dBy (1),
H;(0) = Hyp, i,k=1,2, (67)

where

1

- 9 ]' 9
m; (H) = [(wEAs +a; A (A) + —(w? + 3 A?)CT;}(A)]
2 Av=U; ()

bis(H) = oy (e (M) = (@7 A; + s APV ORI Loy By =0.i # . (68)

The dynamical programming equation for the control problem of reliability maximization
is of the same form as Equation (25) with by, byy, byy = by, = 0, and mi1, My defined by
Equation (68). Suppose that the control constraints are of the same form as Equation (33),
then the optimal control forces u} are in the form of Equation (35) and the final dynamical
programming equation is in the form of Equation (36) with 7i; (H) = i, (H) + (u P;);, where

24;¢ by by b
(uf Pr)y = === (bo,-— 2 _ b‘*’)
w

3 15 35 (69)

Ai=UT (H))



First-Passage Failure of Quasi-Integrable Hamiltonian Systems 201

Following the discussion of the last section, the conditional reliability function of the op-
timally controlled system can be obtained from solving the following backward Kolmogorov
equation:

a+f‘(H) d +n‘z(H)8 +113 (H)82 +1B H 0° R... = 0. (70
ot B0 g T T, T2 Y e T 2 22 0)8H220 ope = 0- (70)

It is seen from Equation (56) that H; may vary randomly in [0, 00) if &; = 0. Generally, the
boundary of safety domain of system (54) is a function of H, and H,. To be specific, suppose
that the boundary is

r.: H +H,=H, H,H=0. (71)

The safety domain is the inside of the right triangle consisting of boundary I', defined by
Equation (71) and I'y defined by

g = o + Tz + Do,

Fm : H1 = 0, 0 < Hp_ < Hc_.,
Ty H,=0, 0< H; <H,,
oz Hy = H, = 0 (72)

(see Figure 1). Thus, one boundary condition for Equation (70) is Equation (42) with T,
defined by Equation (71). The other qualitative boundary condition (43) can be converted into
a quantitative one by using Equation (70) and the limiting the behavior of /m; and b ; at Ty
defined by Equation (72). Since byy(Hy) — 0 as Hjp — O and by (Hp) — 0as Hyy — O, the
quantitative boundary condition at ['g 18

[_% + m (Hp) 8[?[;0 + m (Hp) 81220 + %Bzz(Ho) 81;20] Rope =0 atHi=0  (73)
or
[_.__3_. + 1 (Hp) 9 + 12 (Hg) 0 + lz’én(HO) 327 ] Ryp=0 atHyp=0 (74
ot dHq dH,, 2 dH?,
or
[—-8— + 1 (Hp) 0 + rﬁz(Ho)——?—] Rt =0 at Hip = Hao = 0. (75)
ot dH g 0 Hag

Equation (70) is solved numerically together with boundary conditions (42), (73)-(75) and
initial condition (44) to yield the conditional reliability function of the optimally controlled
system (54). Then, the probability density of the first-passage time of the optimally controlled
system (54) is obtained by using Equation (48).

Similarly, the mean first-passage time of optimally controlled system (54), ti,0pt Can be
obtained from solving the following Pontryagin equation:
3% 3%

1~ 1-
b1 (Hy) —= + —bn(H
+2 11 ( D)BHEO+2 22( 0)8H§0

. ad
l:ml(HD) 3 Hao ] H1iopt = —1. (76)

n4(H
THie + mo(Hp)



202 W. Q. Zhu et al.

09
0.8

07 -

R (1) 05

Figure 2. Reliability function of system (54) for given initial condition. The parameters of system are 81; = 0.01,
ﬁlZ = (.03, an = I, Odi = 0.1, f” = 1.2, f12 = 0.7, ﬁZI = 0.02, ﬁzz = 0.02, wy = 1.414, 0y = 0.2,
Ja2 = 1.5, fin = 0.7, H. = 0.8, Hig = Hyg = 0. The parameters of external excitations are 2Dy = 2, &y = 7.
The parameters of parametric excitations are 2D = 2.6, @1 = 8. The control parameters are ¢| = ¢3 = 0 for A;
cy = 0.01, ¢a = 0.015 for B. — analytical result by using the proposed procedure; e ¢ from digital simulation.

One boundary condition of Equation (76) is Equation (51) with [, defined by Equation (71).
The other qualitative boundary condition, Equation (52), is converted into quantitative one by
using Equation (76) and m;, b;; at I'g. Tt is

2
{fﬁl(Ho)aHm + m2(Hp) S Hr + %Egz(Ho)%;zﬂ Hiop = —1 at Hp =10 (77)
or
|- 2
l:’ﬁl (HO)BHIO + ma(Hp) Y + Ebll(Ho)m] Miopt = —1 at Hypp =0 (78)
or
I:I’Fll(Ho) 9y + ma(Hp) BHQO] Miopt = —1 at Hig = Hyy = 0. (79)

Equation (76) is solved together with Equations (51), (77-79) to yield the mean first-passage
time of optimally controlled system (54).

Some numerical results obtained by using the proposed procedure for the conditional re-
liability function, the conditional probability density and mean of the first-passage time of
uncontrolled and optimally controlled system (54) are shown in Figures 2—4. Similar results
from digital simulation of the original system (54) are also shown in the figures for com-
parison. From these figures it is seen that the two results are in rather good agreement and
the control improves the reliability of the system greatly. Some more results for the reliability
function, the probability density and mean of first-passage time of optimally controlled system
(54) as functions of the initial condition are shown in Figures 5-7. It is seen from these figures
that both the reliability function and mean first-passage time of optimally controlled system
(54) are monotonously decreasing functions of Hyy and H,y, which justifies the derivation
from Equation (34) to (35). -



First-Passage Failure of Quasi-Integrable Hamiltonian Systems 203

0.035

0.03
0.025
0.02
Pon (1)
0.015 |~

0.01

0.005

0 10 20 30 40 50 60 70 80 90 100

Figure 3. Probability density of first-passage time of system (54) for a given initial condition. The parameters and
symbols are the same as those in Figure 2.
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Figure 4. Mean first-passage time of system (54) as a function of Hpg for given Hyg = 0. The other parameters
and symbols are the same as those in Figure 2.

6. Conclusions

In this paper, a procedure for designing the optimally bounded control of quasi-integrable
Hamiltonian systems with wide-band random excitations for minimizing the first-passage
failure is proposed. The procedure consists of applying the stochastic averaging method for
quasi-Hamiltonian systems with wide-band random excitations, establishing the dynamical
programming equations for maximizing the reliability function and for maximizing mean first-
passage time based on the averaged Itd equations using the dynamical programming principle,
determining the optimally control from the dynamical programming equations and control
constraints, and obtaining the conditional reliability function, conditional probability density
and mean of first-passage time of the optimally controlled system from solving the associated
backward Kolmogorov equation and Pontryagin equation. An example has been worked out
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Figure 5. Reliability of optimally controlled system (54) at + = 2 as a function of Hjy and H»gy. The other
parameters are the same as those in Figure 2(B).
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Figure 6. Probability density of first-passage time of optimally controlled system (54) as a function of Hyq and ¢
for given Hyg = 0. The other parameters are the same as those in Figure 2(B).

Figure 7. Mean first-passage time of system optimally controlled (54) as a function of H|g and Hag. The other
parameters are the same as those in Figure 2(B).
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i1 detail to illustrate the application of the proposed procedure. The comparison between the
analytical results and those from digital simulation shows that the proposed procedure works

quite well.

Appendix 1

The drift and diffusion coefficients in Equation (65):

—A? 5 nfiA7
mp = 2 A7) + P{Zg {(Zbo; — by;)
d [ A?(2by; — bai A; |
x [ @bo = baid | 4 288 g 1 2y + b | S12e0)
dA; gi gi
d [ A?(by; — by 4A;
+ (b — bsi) (o2 ¢ )] + (by; + 2bs; + bg;) | S1i(4w;)
dA; 8 Iof
d A?b,- 06A;
+ by E2H T by + 2bgi) | S1i(6wy)
dA; | & gi
d [ A?bg; 8A;
be; d 4+ ——bg; | S11(8w;
+ G[dAi[ . ] . 6-J 11(60)}
Tf A d [A; @by — by 2bo; + b
4 BT 2y — by) Sl 2)]+( o ¥ 02 1 g @)
8g; dA; g g
T d “A,'b,-—b,-- 3(by; + bay) ]
+ (by — bay) (b = ba) | | 3t o) [ g (3,0
| dA; | gi i gi i
" d TA;(bsy —be)]  5(bai + bei) ]
+ (ba; — bei) (D4 61) + (b4 &) S22 (Swy;)
| dA; | 8 i gi i
be; Sas (Tw;
+6![dAf[ gi _+8:] oz(w)}
2 T ”f:z“ﬁ 2 2 2
o; = oo’ ] = — L[ (2bo; — bai)”S11Qw;) + (b — b)) S11 (Aw;) + by S11(6w;)

i

2 mfl A} ) )
+ bg S (8wy) ] + _Z"i'"—[(zbol o) San (i) + (b2 — bay)” S22 (3w;)

+ (b — be)2 S0 (5wy) + b S (Twi)]

o2 = [667]; =0, i#]
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