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Abstract A method of determining the micro-cantilever
residual stress gradients by studying its deflection and
curvature is presented. The stress gradients contribute to
both axial load and bending moment, which, in pre-
buckling regime, cause the structural stiffness change
and curving up/down, respectively. As the axial load
corresponds to the even polynomial terms of stress
gradients and bending moment corresponds to the the
odd polynomial terms, the deflection itself is not enough
to determine the axial load and bending moment.
Curvature together with the deflection can uniquely
determine these two parameters. Both linear analysis
and nonlinear analysis of micro-cantilever deflection
under axial load and bending moment are presented.
Because of the stiffening effect due to the nonlinearity of
(large) deformation, the difference between linear and
nonlinear analyses enlarges as the micro-cantilever
deflection increases. The model developed in this paper
determines the resultant axial load and bending moment
due to the stress gradients. Under proper assumptions,
the stress gradients profile is obtained through the
resultant axial load and bending moment.

1 Introduction

The successful fabrication and reliable operation of
micro-structures strongly depend on the sufficiently
rigorous understanding of their length-scale dependent
and process-dependent mechanical properties (Srikar
and Spearing 2003). For example, as a popular material
for the fabrication of micro-structures, polysilicon is
typically deposited by low-pressure chemical vapor

deposition (LPCVD). The vapor deposition causes
either high compressive or tensile residual stress gradi-
ents, depending on the deposition process (Yang et al.
2000). The existence of residual stress (gradients) causes
the change of equilibrium configuration and shifts of
resonant frequencies of the micro-structures. Residual
stress/strain becomes a parameter of fundamental
importance in micro-structure, thin film, surface mi-
cromaching and improving reliability of micro-devices
(Elbrecht et al. 1997; Fang and Wickert 1994, 1996).
Tremendous effort has been infused to develop the
measurement methods for the built-in residual stress/
strain in micro-structures. Devices like double-sup-
ported bridge/bridge array (Guckel et al. 1985; Elbrecht
et al. 1997), bent-beam strain sensor (Gianchandani and
Najafi 1996), micro-rotating-structure (Goosen et al.
1993), micro strain gauge (Lin et al. 1997), T- and H-
shape structures (Allen et al. 1987; Mehregany et al.
1987), suspended microrings (Guckel et al. 1992), are
developed for the measurement of the residual stress/
strain. Wafer curvature test is a popular technique for
the evaluation of residual stress in non-integrated, con-
strained structures like film deposited on the substrate
(Srikar and Spearing 2003; Elbrecht et al. 1997), which
has the advantage of evaluating (film) structure residual
stress state without knowing the mechanical properties
of the (film) structure. The sensitivity of beam resonant
frequency to the residual strain is used to measure the
shifts of the resonant frequency to determine the residual
strain (Ikehara et al. 2001). The onset of the buckling of
micro-structures with known geometries is used to di-
rectly measure the residual strain level (Elbrecht et al.
1997; Guckel et al. 1985). Because of the buckling sen-
sitivity to structural imperfection and experimental dif-
ficulties of telling buckled and unbuckled micro-
structures, Fang and Wickert (1994) use micro-structure
postbuckling equilibrium configuration to determine the
residual stress. Physically, the cause of residual stress
can be explained by revised Thomas–Fermi–Dirac
(TFD) model as the result of the difference of the elec-
tron density at the boundary of the atoms (EDBA)
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(Cheng and Cheng 1998). Qian et al. extend the EDBA
model to determine the residual stress in microelectro-
mechanical systems (MEMS) multi-layer structure (Qian
et al. 2002).

Although the techniques for the residual stress/strain
measurement mentioned above have the fortes such as
direct and in-situ measurement, the limits and experi-
mental difficulties are also obvious. For example, for
wafer curvature test technique, it is mainly confined to
non-integrated, constrained structures. For the buckling
technique, telling the onset of buckling or the buckled,
unbuckled structures is very difficult (Elbrecht et al.
1997; Fang and Wickert 1994), the micro strain gauge
design is suggested to change the gauge dimensions to
avoid buckling/postbuckling measurement scenario (Lin
et al. 1997). Buckling and postbuckling equilibrium
configuration are very sensitive to the initial imperfec-
tion of the micro-structures. For postbuckling analysis,
the initial imperfection must be known a priori.
Measuring the small imperfection of micro-structure can
be very difficult and such initial geometric condition can
be a significant error source (Srikar and Spearing 2003).
In the postbuckling analysis of Fang and Wickert
(1994), the imperfection shape is assumed. Bent-beam
strain sensor measures the beam tip displacement to
determine the residual stress. However, for bent-beam
strain sensor, the exerted axial load is related to the
bending moment via the specific structural configuration
(Gianchandani and Najafi 1996; Que et al. 2001). As we
will see later in this paper, the axial load and bending
moment generally are two independent parameters.
Measuring the tip displacement alone is not enough to
determine the micro-structure residual stress state for
general application. For EDBA model application,
EBDA at interface must be known to determine the
residual stress gradients (Qian et al. 2002).

The deflection profile of a micro-structure can be
obtained through non-contact interferometric profil-
ometry system using the fringe pattern generated by
interference. And the fringe can be digitalized by CCD
camera using Wyko-3D system for further analysis.
Once the deflection profile of a micro-structure is mea-
sured, the slope and curvature can be easily calculated.
By studying the deflection and curvature, the model
presented in this paper can uniquely determine the
resultant axial load and bending moment due to residual
stress gradients.

2 Model development

Figure 1 shows scanning electron microscope (SEM)
image of the deflection of a micro polysilicon cantilever
under residual stress gradients influence. Generally
speaking, the complicated state of residual stress
depends on the fabrication process and the residual
stress varies through the thickness (Lin and Pugacz-
Muraszkiewicz 1972; Kiesewetter et al. 1992). For

quantitative analysis, the residual stress field is assumed
to have the following polynomial distribution (Fang and
Wickert 1996; Yang et al. 1995)

r ¼
XN

k¼0
rk

y
h=2

� �k

; ð1Þ

where y is the coordinate across the thickness and y 2
y 2 �h

2 ;
h
2

� �
: h is the thickness and neutral plane is chosen

at y=0. r0 is the constant mean stress and rk (k=1, 2,
3,..., N) is gradient stress. As the thickness becomes
smaller, the stress gradient becomes particularly acute
(Fang and Wickert 1996). For this paper, we analyze the
cantilever beam deflection, the beam dimensions and
coordinate system are shown in Fig. 2a. For rectangular
beam, the axial load To due to the residual stress gra-
dients is as follows

To ¼
Z

A

rdA

¼ b
Zh=2
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and the bending moment m due to the residual stress is

Fig. 1 SEM image of the cantilevered microbeam deflection under
stress gradients. There are two beams, the front one is broken due
to the large stress gradients
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where b is the width of the beam. Equations 2 and 3
show that To is associated only with even polynomial
terms of r and m only with odd polynomial terms.
Therefore, To and m are two parameters due to the
residual stress and they are independent to each other. In
a sense, the effects of the residual stress in Eq. 1 are
converted and included into two parameters To and m,
which are the actual parameters used in the governing
equation. The beam potential energy of bending is

Ub ¼
1

2E�I

ZL

0

M2dx; ð4Þ

where E* is effective modulus. For 2-D thin structure
like film under biaxial stress state, E* is biaxial modulus
(Klein 2000; Freund et al. 1999), E* = E/(1�m) (E
Young’s modulus and m Poisson’s ratio). For wide beam
(plate under cylindrical bending), E* = E/(1�m2) (Tim-
oshenko and Woinowsky-Krieger 1959; Abdel-Rahman
et al. 2002). For narrow beam, E* is simply taken as E. L
is the beam length and I (I = bh3/12) is the moment
inertia of the cross section of rectangular beam. For

beam, when (I/AL2)<0.001 (A is cross section area and
A = bh for rectangular beam), the following linear
moment–curvature relation is sufficiently accurate even
for relatively large deflection (Thurman and Mote 1969)

M ¼ mþ E�Ivxx; ð5Þ

where v is the beam deflection displacement. For the
potential energy of stretching, we divide it into two
parts. Us1, the part due to the axial load To, is

Us1 ¼
To

2

ZL

0

v2xdx: ð6Þ

The other part, Us2, which accounts for the nonlinearity
of the large deflection (McDonald and Raleigh 1955), is
as follows

Us2 ¼
AE�

2L
1

2

ZL

0

v2xdx

2
4

3
5
2

: ð7Þ

By applying principle of minimum potential energy
[d(Ub + Us1 + Us2)=0], the following equation is
obtained

ZL

0

ðmdvxxþE�IvxxdvxxþTovxdvxÞdxþAE�

2L

ZL

0

v2xdx�
ZL

0

vxdvxdx

¼0:
ð8Þ

For this nonlinear equation, finite element analysis
(FEA) method is applied to discretize the system and
Newton–Rhapson method is used to numerically obtain
the solution. The element is a 4 degree of freedom
(DOF) thin beam element shown in Fig. 2b.

For linear analysis, the stretching energy of Us2 part
is omitted. By applying principle of minimum potential
energy (d(Ub + Us1)=0) and after two more integration
by parts procedures, the equation of equilibrium is
obtained as follows

E�Ivxxxx � Tovxx ¼ 0: ð9Þ

The four boundary conditions for the cantilever are also
obtained

vð0Þ ¼ 0; vxð0Þ ¼ 0; E�IvxxðLÞ þ m ¼ 0;
E�IvxxxðLÞ � TovxðLÞ ¼ 0:

ð10Þ

For To>0 case (tensile load), Eq. 9 has such solution
form

v ¼ A coshðaxÞ þ B sinhðaxÞ þ Cxþ D ð11Þ

for To < 0 case (compressive load)

v ¼ A cosðaxÞ þ B sinðaxÞ þ Cxþ D ð12Þ

and To=0 case

x

y

h

b

L

Beam Dimensions and Coordinate System
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4 DOF Thin Beam Element
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b

Fig. 2 Schematic diagrams of the cantilever beam dimensions,
coordinates and a 4 DOF thin beam element
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v ¼ Ax3 þ Bx2 þ Cxþ D ð13Þ

a is defined as a ¼
ffiffiffiffiffiffiffiffiffi

To
E�I

�� ��
q

: A, B, C and D are the con-
stants determined by the boundary conditions for each
case.

3 Results and discussions

All the results are obtained by setting L=50 lm,
h=2 lm and E*=66 GPa. From the expressions of To,
m and potential energies, it is not hard to conclude that
the parameter b, the beam width, does not have any
influence on the beam deflection (in Eqs. 8, 9 and 10, b is
canceled out). For statement and computation conve-
nience, we keep b in our derivation and set it as 1 m.
Figure 3 shows the convergence study of FEA method
on nonlinear analysis. The deflections computed by 5,
10, 15 elements are shown together in Fig. 3. All other
results of nonlinear analysis in this paper are obtained
by using ten elements, which offers sufficiently accurate
results. Figure 4 shows the deflection difference between
linear analysis and nonlinear analysis under different
loading scenarios. To is fixed as zero and m is taken as
�2.93·10�4 and �4.4·10�4 N m, respectively. As the
deflection increases, the difference enlarges. The non-
linear analysis results are always smaller than those of
linear analysis due to the nonlinear stiffness hardening
effect (Nayfeh and Mook 1979).

The purpose of this paper is to use the beam tip dis-
placement and curvature to determine the residual stress
state inside the beam. While, the computations (Eqs. 8
and 9) can only be carried out when To andm are known.

The idea is that we use either Eq. 8 or Eq. 9 to compute
many beam deflection cases with different To and m
combinations, then compare those curves to experimen-
tally measured one. If the computed curve matches the
measured one, the corresponding To(s) and m(s) are
found. And we give an example to illustrate this proce-
dure. Figure 5 shows the beam tip displacement v(L)
computed by Eqs. 11, 12 and 13 as To changes from
0.2Pcri to �2.8Pcri with the step size of �3Pcri/40 and m
changes from �6·10�4 to 6·10�4 N m with the step size
of 3·10�5 N m. There are 41·41 meshes. Pcri = �((p2

E*I)/(4L2)) is the buckling load (compressive) for canti-
lever beam with uniform cross section. If a measured
curve with tip displacement of 5.03 lm (an arbitrarily
chosen number), from Fig. 5, there are four cases with
the tip displacements within 1% difference from the
given tip displacement of 5.03 lm. The four cases
are c1: v(L)=5.071 lm (To = 66.225 N, m = �4.675·
10�4 N m), c2: v(L) = 5.053 lm (To = 72.739 N, m =
�4.95·10�4 N m), c3: v(L) = 5.036 lm (To=79.253 N,m
= �5.225·10�4 N m) and c4: v(L) = 5.019 lm (To =
85.766 N, m = �5.5·10�4 N m). The value (1%) of dif-
ference tolerance can be changed to account for the factors
such as measurement error, gravity (Yang et al. 1995), which
makes measured value deviating from real one. It should be
pointed out that the four cases which are picked according to
the criterion of their tip displacement with specific difference
tolerance fromthegivenvaluearealsodependenton themesh
size. For differentmesh size, the case number canbe different.
Just by the tip displacement criterion, only four cases from
41·41 cases are picked. From c1 to c4, axial load To (tensile)
increases, which stiffens the structure, as the result, m
correspondingly increases to achieve the approximately same
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Convergence Study at To=0, m=2.933e-4Fig. 3 The convergence study
of FEA for nonlinear analysis
as the element number increases

360



tip displacement. Figure 6 shows the deflections of these four
cases. As the beam deflection depends on both To and m,
which generally are two independent parameters, the tip dis-
placement criterion alone cannot determine the residual stress
state. Even for the whole deflection curve along the beam
span, it is very hard to tell the deflection curve difference for
the four cases in Fig. 6. Aswe notice that for these four cases,
the bending moment m is well separated and M
(M = m + E*Ivxx) is associated the curvature of the
deflection curve. So for the four deflection curves with very
similar deflection shapes but different ms, it is well possible
that their curvatures can be very different (at least for some
parts of the beam span). The curvature here is approximated

as vxx. For linear analysis, the curvature can be analytically
obtained through Eqs. 11, 12 and 13 according to To value.
For nonlinear analysis, the curvature is numerically obtained.
Figure 7 shows the curvatures of the four cases deflection
curves. Compared with the deflection curves in Fig. 6, the
curvature curves, especially at the beam free-end, are much
better separated. So if given the measured curvature at the
free-end,To andm are uniquely determined together with the
measured tip displacement. As it is shown in Fig. 4, the dif-
ference of linear analysis and nonlinear analysis enlarges as
the deflection increases. Thus the linear analysis becomes less
accurate for largerdeflection case.Tocompare this difference,
we define f as f = (vnl/vln). vnl is the beam tip displacement by
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nonlinear analysis and vln is that by linear analysis. Figure 8
shows fversusTo andm.To,m ranges andmesh sizes inFig. 8
are the same as those in Fig. 5. As To range is away from
buckling load (the beam is in prebuckling regime), the beam
deflection is zero for both linear analysis and nonlinear
analysiswhenm=0.For this0/0 case, f is setas1 inFig. 8. It is
not surprised that all f values are less than or equal to 1
because of aforementioned nonlinear stiffening effect. Be-
cause compressive load softens the structure, at To=0.2Pcri,

m= �6·10�4 N m and To=0.2Pcri, m=6·10�4 N m, the
beam has the largest deflections. Therefore, f has the smallest
value at these two points, which indicates the difference of
linear and nonlinear analysis is the greatest at the two points.

All of analysis above actually determines only the
resultant axial load To and bending moment m due to
the stress gradients (rks). rks are related to To and m
through Eqs. 2 and 3. Therefore, only two rks can be
determined for one measurement (of tip displacement
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and curvature) of a given structural dimensions. For
approximation, Fang and Wickert (1996) use r0 to
represents all symmetric (even) polynomial terms and r1

for all anti-symmetric (odd) polynomial terms. If we
assume rks are fixed and change the beam dimension,
for example, changing the beam thickness, new To and m
will be obtained by following the exact procedure we
describe above. Two more linear equations of rks will be
obtained again through Eqs. 2 and 3. Therefore, two
more rks can be determined. More and more rks can be
determined by changing the beam dimension(s) for more
measurements. This is the approach of determining
stress gradients used by Yang et al. (1995).

In our analysis, To is chosen to be far away from
buckling load on purpose though Eq. 8 is suitable for
postbuckling analysis. When m=0, Eq. 8 corresponds to
prebuckling/buckling/postbuckling analysis for the
beam without imperfection case and m „ 0 corresponds
to the beam with imperfection case (there is some
mathematical difference between Eq. 8 and the equation
of Fang and Wickert 1996). In postbuckling regime,
there are three equilibria(one unstable, the other two
stable) and axial load alone can cause the deflection of
the structure with no imperfection (m=0 case). This
causes the great difficulty of using the method we pro-
pose to determine the micro-structure residual stress
state in postbuckling regime. While, because such post-
buckling analysis work has been done by Fang and
Wickert (1996), our nonlinear analysis here aims more to
offer modification and adjustment for linear analysis and
evaluate the applicability range of linear analysis in
prebuckling regime. Our nonlinear analysis does not
consider the coupling effect of longitudinal and trans-
verse displacements, so it is restricted to the case of very
small slenderness ratio (Nayfeh and Mook 1979). For
the comprehensive reading of slenderness ratio influence

on the kinematic assumptions of nonlinear analysis, the
reader should refer to Nayfeh and Mook’s book
(Nayfeh and Mook 1979). For very large stress gradients
case, as shown in Fig. 1, the front beam is fractured
under large stress gradients action. Before fracture,
plastic deformation happens and our analysis is elastic
analysis. Although our model does not take those fac-
tors like gravity, pressure, beam spatial dimensional
variation, stress gradients longitudinal variation, which
affect beam deflection, into account, those factors are
not that hard to be incorporated into the model. How-
ever, the boundary conditions listed by Srikar and
Spearing as no. 1 error source in MEMS testing methods
(Srikar and Spearing 2003), may be the major error
source for the application of our method. For ‘‘cantile-
vered’’ beam, both FEA computation and experimental
measurement by Fang and Wickert (1996) show that
there is a rotating angle depending on stress gradients at
the ‘‘fixed’’ end. This factor will be extremely difficult to
be incorporated into our model if not impossible.

4 Conclusion

The resultant axial load and bending moment due to the
stress gradients are proposed to be determined by
measuring the micro-cantilever tip displacement and
curvature. The micro-cantilever deflection profile can be
measured via non-contact inferometric systems. Unlike
other techniques like measuring resonant frequency
shift, buckling/postbuckling, etc, the possible damage,
extra devices like excitation, loading instruments, spec-
trum analyzer etc, and the error source due to the ease of
these instrumentation and fixturing (Srikar and Spearing
2003) can be avoided by our method. The limits of our
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model are also discussed. Because of the uncertainty due
to the boundary conditions, micro-fabricated structure
dimensions, fabrication defects, micro-cracks, etc, it is of
great importance and necessity to use micro-devices for
direct and in situ measurement.
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