PROGRESS IN NATURAL SCIENCE

Vol. 16, No. 12, December 2006

RESEARCH ARTICLES

Scheme construction with numerical flux residual correction (NFRC)
and group velocity control (GVC)"

MA YanwenM and FU Dexun

(LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China)

Received February 27, 2006; revised June 9, 2006

Abstract

For simulating mult+scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In

this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approxima

tion can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity

control (GVC) and weighted group velocity control (WGVC). T he method of schem e construction & simple, and it & used to solve pract+

cal problems.

Keywords: high order accurate scheme, group velocity control, high resoution of the shock.

T o simulate the mult+scale complex flow fields,
like turbulence, high order accurate schemes are pre
ferred. There are many ways to construct high order

1,
accurate schemes!

2 but most of them are compl-
cated, and a system of linear algebraic equations has
to be solved. In 1992, we constructed the fourth or
der symmetrical compact difference approximation by
using residual correction from lower order difference
approximation'”. In 2001 and 2002, Lerat and
Corre constructed a traditional fourth order accurate
approx imation with residual correction from the see
ond order accurate difference approximation!®”!.
These scheme constructions are simple, but the
schemes were constructed only for the particular cas-
es. In this paper we present a simple method for cor
struction of the high order accurate schemes using nw
merical flux residual correction, and the scheme con
struction with numerical flux residual correction for

more general cases is presented.

When high order accurate schemes are used to
solve problems with discontinuities, the oscillations
will be produced in the numerical solutions. To im-
prove the resolution of the shock, many good schemes
with high resolution of the shocks have to be devel
oped, and many practical problems have been solved

(67121 A s known, the total
variation diminishing (T VD) scheme can capture the

with these schemes

shocks well !, but the accuracy of the schemes is too

low to simulate the complex flows with a wide range
of scales. The dissipation of the scheme is large, and
the accuracy of the schemes will be reduced at the ex
treme points. Essentially nor-oscillatory ( ENO) and
weighted ( WENO )

schemes have high order accuracy, but they are com-

essentially nomoscillatory
plicated and computer time consuming' ' '%. WENO
scheme was greatly improved in Refs. [9 —I1]. In
Ref. [12], thebehavior of the numerical solutions is
analyzed and GV C is used to improve the resolution of

discontinuities.

In this paper, a class of schemes constructed
with NFRC is presented. To improve the resolution
of the shock, the constructed schemes are modified

with GVC and WGVC.

1 Numerical flux residual correction (NFRC)

Consider a model equation and its sem+ discrete

approximation
ou I _ - -
awt oo 0, f= cu c¢= const, (1)
O Fj
TR 0. (2)
Define

(4,

where h;, 1/, is the numerical flux. For the first order

Fi, Fi= hisva— hun,

* Supported by the National Natural S cience Foundation of China ( Grant Nos. 10135010, 90205025) and INF105SCE-+ 1
*%* To whom correspondence should be addressed. E-mail: fudx@ Inm. imech. ac. cn



Progress in Natural Science Vol. 16 No. 12 2006 www . tandf. co. uk/ journals 1253

upwind difference approximation we have

Fi7 = hiiva= it hia= £ (3)
where the upper index (k,+ ) (in Eq. (3) k= 1)
denotes that the approximation is kth order accurate
for ¢> 0. After Taylor series expansion from ( 3),
we have

(1,+) (1+)
hj+l/2 j 1/2.= f} f}—l

(4)
from which we can obtain the second order symmetrt
cal difference approximation using a discretization of
the residual term on the right hand side of Eq. (4) :

20 (20 2.0
Fj /= hj+l/)2 h/(—l/Z
(L+) (1e) Lo 3
= hilya— hili 25; Jit 0(bx7),
(5)
where

(20 (1, 1 1
hj, 1/)2= hj. 1+/)2+ 3&]2 = ?(fj + fi1), (6)
1, & -
?( 8.+ 6,),
(7)
and the upper index (%, 0) means that the approxt
mation is symmetrical and kth order accurate. From

551 = (f; Xfjm), b=

Eq.(4) we can also construct the second order accu
rate upwind biased difference approximation. For ex
ample, for the case ¢> 0,
(2+) (2+) (2+)
F;m "= hiiya— hiZy

(L) (L+)

1
= hiya— hiZyo+ 36xgxfj+ 0(nx’),

(2+)_ o, (L+) 1 1
hivva= hivav 5 8= 3(3fi= fi-). (8)
After Taylor series expansion from the second order accw
rate symmetrical difference approximation, we have

(2,0) 1
Fj = E(fju— fj—l)
2
_ Qﬁ] Ax ~ |: 0 a_,li] 5
= Ax[ax j+ 3/ Ax 922 j+ O(Ax™),
from which we can get the numerical flux with the

third order upwind difference approxim ation:

(3+) (209 1 o
hj+]/2= hj+]/2_ 66.~fj

1
= o[+ S [fi-2], (9)
and the fourth order accurate symmetrical difference
approx imation:

(4,0) (2,0)
hj+ 1/2= h,‘+ 1727~

%2[ 8ifj+1+ (Szf]]
= é[“ fj+2+ 7(fj+]+fj)_f]_1](10)

From the flux residual correction we can construct the
higher order accurate approximations. For example,

the fifth order upwind difference approximation
hTT = ) 558 (1
8= firat fioam 4fri+ fioi) + 6f.
BT = 61—0[— Mot 275 1+ 4T
= 13fj 1+ 2fj-2f; (12)

the sixth order symmetrical difference approximation
0) 4,0 1, 4
Wieva= hifist ool 8fsen+ 85, (13)
(6 0) 8
hisy = 6O[f/+3+ Sfimo= 8(fisa+ fiz1)
+ 37(f e+ fi)l;

the seventh order accurate upwind difference approx+

mat ion
, ,0) 1
O R TR I (14)
6
8xff:fj+3+fj—3_ 6(fj+2+fj—2)
+ 15(fje1+ fi-1) = 20f;;

the eighth order accurate symmetrical difference ap-

proximation
(8.0) 60 1 6
hicip= hiin- 280( 8 i+ 8 ju1)s

the ninth order accurate upwind difference approx+
mation

8,00 576
9/ 5,f,,

and the tenth order accurate symmetrical difference

(9.+)
hisya= hiint

approximation
(10, 0)

(8,0) 288
hivipn = hisin+

8
9/(6J1 6xfj+1)'
In the general case, suppose that at grid points j— £,
woj— Lj,j+ 1, ., j+ k, we have the 2k order

accurate symmetrical difference approximation

(2% 0) (2 0)  (2k.0)
F; = hjsv2 - hj-v2,

from which after Taylor series expansion we can ob-
tain
(2k 0) (2k,0)
hivva = hiZin

2 1
Ax[%]l+ CAka”[a_zk:q +
J

a ) 92k
= Ax | T C Ax [ %I.]
J x 172
T o2k .
- cm“[—"ﬁzk] + 0(a ), (15)
x Jj-12

where C is a known constant obtained after T aylor
series expansion. With grid points j — k- 1, .., j,
- j+ k+ 1 after discretization of the termsin [ ]
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we can get the expression
2%, 2k , o 2k 1, 2 2k
A= [0°f/ ™ [jpyr= ?[Sxf,urﬁ' 8. fil,
(16)

where
2k 1
@fj =fj—k_ Czlfj-k+1+
(= D)"CHfjebem+ ot (= 1) e
(17)
The 2( £+ 1)th order accurate symmetrical numerical
flux can be written as

(2k+20) _ (2k, 0)

C . 2k 2k
hivvy " = hiin - E[Sxfj*' 6xfj+l]'(18)

If the approximation Ax’' [ a2 f/ ™ ];, 1y =
§3kfj_ n 15 used, the following (2k+ 1) th order accu

rate upwind biased numerical flux can be obtained:

2t 1, 2%,0) 2k
h;HJ}zH: ,(+1/2)— C& i+ ms (19)

where m <0 for the case C> 0. The simplest case is
m= 0.

2 Operator extrapolation

In Ref. [ 12] it is shown that the oscillations are
created by the noruniform group velocity in the nw
merical solutions. The symmetrical and the weakly
upwind biased schemes belong to the class SLOW
(denoted as SLW in Ref.[12]), and the strongly up-
wind biased schemes belong to the class MEXED (de
noted as MXD in Ref. [ 12]). The second Pade
scheme belongs to class FAST (denoted as FST in
Ref.[ 12]). To improve the shock resolution it is
suggested to use FST/MXD scheme behind the
shock, and SLW scheme in front of the shock. Sup-
pose that we have uniformly distributed mesh grid
ponts j— k, . j—1,j,j+ 1, -, j+ k on which we
can construct 2k order symmetrical difference approx
imation for the first derivative, and (2k— 1)th order
upwind biased difference approximation ( m = 0).
The correspondingly modified wave numbers are
Ko™ g (2m0 and Ko 10 _
Kr + kit O), where Kr is related with
the dissipation of the scheme, and Ki is related with

e (25,0
LKL( )
(2k-1,0)

the dispersion. For symmetrical approximation we

2k, 0 .. . 2k, 0,
have Kr'*" %= 0. After eliminating the term h;Jr l/é

from Egs. (19) and (18), the following relation (for
the case of m= 0) can be obtained

(2k+ 1,4+ ) (2420  C 2k 2%
hiv12° "= hjryv2  + Z[Sxfj+l_ & fil
from which we can obtain
(2k+ 1,4 ) (2k+2,0) (2k+2,0)
F; = [hjs12 = hji-2 7]

+ %[6.«2?,41— 25;3}7]*' 6§kf,‘— /- (20)

The term in the first brace of the right hand side of
Eq. (20) is related only with the dispersion, and the

term in the second brace is related only with the diss+

pation. From Eq. (20) it can be seen that Ko

K" In this paper, the difference approxima
tion F;M’O) onj— k,
and F;2k+ L+)
k are used as the original schemes to construct the

scheme with the group velocity control. In this case

2+ 1, + (2k 0 (2 L+) .
( s ki or D )(KL)>

(Ki) for the most commonly used schemes,

"'5j_ 17j7j+ 15 "'7j+ ka

onj— k-1, .sj— 17,7+ 1, ., j+

we have K¢
Pk o
where D (Ki) is the group velocity of the numerical
solution' ™! defined by d/ Ki(a)]/da. Although we

have D" 1) (Ki) > p*Y (Ki), the scheme
pie by may not be MXD. To make the scheme

J
MXD, a difference operator extrapolation is intre-

duced.

Consider a linear com bination
(2h-1, % (2h-1,% 2k, 0)
hj+ V2 ) = (1+ 0) hj+ 1/2 - 0h/(+ 1/2): (21)
(2k, %) (2k+ 1, £ (2k, 0)
hiivpn = (1+ O hjiy, "= Ohily,, (22)

where the scheme is symmetrical and SLW for 0=
— 1, and it is dissipative for 0> — 1. The scheme
with numerical flux (21) has the order of accuracy of

0/ (1+ 0) "', h?]. and the scheme with (22)

has the order of accuracy of ()(hzk). From the above
analysis we can see that the linear combination ( 22)
can increase both the dissipation and the group veloct
ty with the increasing parameter 0> — 1, but the li-
ear combination ( 21) can only increase the dissipation
of the scheme with any 0> — 1, and the group veloe-
ity of the numerical solutions cannot be changed. In
(22)

schemes. The linear operator extrapolation (22) leads

this paper Eg. is used to construct GVC

to enlarged group velocity and the dissipation in the
numerical solutions and make the scheme M XD with
0> — 1 without losing the order of accuracy.

3 Improvement of shock resolution with
GVC

3.1 Scheme with GVC

Ref. [ 12] has shown that to improve the shock
resolution it is suggested to use SLW scheme in front
of the shock, and FST/M XD scheme behind the
shock. Fig. 1 and Fig. 2 give the variations of the
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group velocity D( Ki )/ Da and Kr as a function a=

k Ax for the case of k= 2(fourth order accurate) in
scheme with (22), and Fig. 3 and Fig. 4 show the
variations of D( Ki )/ Da and Kr for the case of k= 3

(sixth order accurate).

D (Ki)
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oo o
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Fig. 1. Variation of D (Ki)/ Da versus a( k= 2).
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Variation of Kr versus a( k= 2).
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Fig. 3.

Varation of D(Ki)/D(a) versus a( k= 3).

It can be seen from Figs. 1—4 that the scheme
is dissipative ( 0> — 1) and MXD for large 0. The
numerical flux of the 2kth order schemes after modi
fication with GVC is expressed as

2.00
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1.25

2 1.00
0.75
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0.25

Fig. 4. Variation of Kr vewsus a(k= 3).
(2k) (2k) (2k)
F;™7" = H; y>— H;Z\),

(2k) (2k.+ ) (2k.~)
Hivip= Hjv12 + Hjvya,

+ 1 — SS / + 1/2 T, L
FISZkl’/ ) (l )hJ(ZA )
1 I SS / + 1 2 2k,0
(27 / ) h5+ 1V Z), (23)

kX)) .
w here hﬁ /2 is obtained from (22) and the corre
sponding scheme is MXD after operator extrapola
tion. In computation, the SS function is expressed

ast 12

SS(fjv va) = %[Ss(fﬂl)"' SS(fi)1. (24)
SS(f;) = sign( 8f; * &f ;). (25)

For the aerodynamics equations the density  or the
pressure p can be used as the function f in (25). Ex
pression (23) makes the scheme MXD behind the
shock and SLW in front of the shock, and therefore
the GVC requirement is satisfied for improvement of
the shock resolution.

3.2 Weighted group velocity control (WGVC)

The above presented NFRC+ GVC method is
still difficult to solve the discontinuity with high pres-
sure ratio for the high order scheme (higher than see-
ond order accuracy: k> 1). In this section the so-
called WGV C method is introduced. Practical appl+
cation shows that good resolution of the shock can be

obtained with the following modified GVC scheme

(oht)  1EXSS(j+ 1/2), 2k
j+l2 = 7 ]‘Lj+ 1/2
11 SS(j+ 1/2),(2k,0)
120,209 (26)
(2h 1) (2k (2h 1) (2h) (2%
hj+ V2 = (1- gj« 1;2) hj+ vy o+ g+ v2h s b

(2K, 0) (2k) (2k,0) (2k) ,(20) >
hj+ 2 = (1= 8+ 1/2)hj+ v2 t &+ I/Zhj+ /2

(27)
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(2k)
girv2=[9%,+ ol (28)

T he function 9 ;. 1/2is defined in our computation as

| & |

Opinyps — 29
CHI2T max | Sif 1+ € (29)
J
L= S
00,j+1/2_ |fj+1|+|fj|+ e (30)

where €107 ° is a small parameter. From the defi-
nition (28, 29) it can be seen that g;fkf/z
[ O( OyAx )]Zk and the constructed scheme has 2k or

der accuracy in the smooth region. With large param-

eter 0in Eq. (22) we can enlarge the wave interval
where the scheme has FST property and increase the
dissipation in the uncontrollable w ave interval without
losing the order of accuracy. 0= 3 is used in our com-
putation. The process of scheme construction is as
follows: 1) construct the high order accurate NFRC
schemes; 2) make the upwind biased scheme M XD
with operator extrapolation; 3) modify the scheme
with weighting; 4) control the group velocity of nu
merical solution for having shock with high resolu
tion.

4 Numerical experiments

T he above presented method was used to solve
practical problems, for example, the propagation of
the linear shock, the steady state shock tube prob-
lem, the Sod model problem, the 2D Riemman prob-
lem, and the shoclke material surface interaction prob-
lem. From the view point of inviscid flow, the thick
ness of the shock is zero, the derivative does not exist
at the shock, and therefore the high order accurate
scheme does not help much for shock capturing. Our
purpose of constructing the high order accurate
scheme is to simulate the complex flow field with the
N-S equations. The numerical examples are given in
this section just to show the capability of shock cap-
turing with the developed schemes. Eq. (30) is used
in computation.

4.1 ED steady state shock tube problem

The onedimensional Euler equations are dis
cretized with both the fourth and sixth order accurate
NFRC+ WGVC schemes for the cases of M = 2, 5,
and 10. Fig. 5 shows the pressure distribution for the
case of M o = 10 with the fourth order accurate
NFRC+ WGVC, and Fig. 6 presents the pressure
distribution for the sixth order accurate NFRC +
WGVC scheme.
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X

Fig. 5. Presure with the 4th order NFRC+ WGVC.
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Fig. 6. Pressure with the 6th order NFRC+ WGVC.

4.2 ED Sod model problem'"”!

The distributions of the fluid parameters at the

beginning ¢ = 0 are as follows
p=1 0P=1 u= 0;
p= 0.1 P= 0125 u= 0.

Figs. 7 and 8 give the pressure and density distribu

tions with the 4th order accurate NFRC+ WGVC at

t=10.14. Figs. 9 and 10 show the pressure and den-

sity distributions with the 6th order accurate NFRC

+ WGVC. The exact solutions are also given for
comparison.

09F -

0.8F

Exact
Numerical

07F
0.6 F
0.5F
04F
0.3F
0.2
0.1F

Pressure
T T T

C v 0

0 0.25 0.50 0.75 1.00
x

Fig. 7. Presure with the 4th order NFRC+ WGVC.
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Fig. 8. Density with the 4th order NFRC+ WGVC.
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Fig. 9. Pressure with the 6th order NFRC+ WGV C.

0 0.25 0.50 0.75 1.00
x

Fig. 10. Density with the 6th order NFRC+ WGVC.

4.3 ED ShuOsher shock tube problem

T he initial data are given as follows:
P= 3.857, u= 2.629, p= 10.33,
for 0 <x < 0. 1,
P= 1+ asin(wx), u= 0.0, p= 1.0,
for 0.1 Sx < LO.

In computation a= 0.3 and o= 40 are used. Fig. 11

gives the result with the fourth order accurate NFRC
+ GVC at t= 0.2 with number of mesh grid points
N= 401. Fig. 11 also gives a result with number of
grid points V = 5001 which is considered to be the
exact solution. T he agreement is quite well. Fig. 12
presents the result with the 6th order NFRC+ GVC
with the same mesh grid points. In computation the

parameter O, L = 0 ( without weighting) in

2
Eq. (29) is used.
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.3 8 Numerical
0.4 i
0.3
0.2
0.1 —

IR T S YT YT ST T YT S N R |

0 0.25 0.50 0.75 1.00
x

Pressure

Fig. 11. Presswe with the 4th order NFRC+ GVC at t= 0.2.

Exact
O  Numerical Lt
0.4
0.3
0.2 h
0.1 —
TN TN [N T S TN NN T Y SN TN (NN TR N N |
0 0.25 0.50 0.75 1.00
x
Fig. 12.  Pressure with the 6th order NFRC+ GVC at ¢t = 0.2.

4.4 2D Riemman plrobleml13j

The initial distribution of the physical parame
ters is as follows:
P= 15, pi= 1.5 u;=0.0, wv;=0.0;
P,= 0.5323, p,= 0.3, u,= 1.206, v,= 0.0;
P5=0.1379, p3= 0.029, wu3= 1.206, v3= 1.206;
Py= 0.5323, p,u= 0.3, ug=0.0, wv4= 1 206;
The ndex k of the fluid parameter g shows that g

is distributed in the subdomain with index k& ( Fig.
13) . This problem was computed with the 4th order
and 6th order NFRC+ WGV C. The density contours
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computed with the 6th order NFRC+ WGVC at ¢ =
0.6 are given in Fig. 14, and the pressure contours
are given in Fig. 15.

Fig. 13.
t=0.

S chematic diagram for digribution of fluid param eters at

Density

W | B

Density contours of 2D Riemman problem at ¢= 0. 6.

Pressure

1 eI r=N (=

Il o B D i

A-.l—uuoabc:zou:« VN A
420012

b da L Oh 1000 SN

Fig. 15. Pressuwe contours of Riemman problem at ¢= 0. 6.

4.5 Numerical simulation of R-M instability prob-

lem

The R-M instability is the instability of acceler

ated material interface driven by moving shock be
tween two different media. The RM instability has
attracted attention of many researchers recently be
cause of the importance of this kind of problems in in
ertial confinement fusion ( ICF) and explosion of sw
pernova. As an example, this problem is solved with
the scheme developed in this paper. The sixth order
accurate WGV C method is used to approximate the
convection terms of the twe-dimensional compressible
N-S equations in cylindrical coordinate, and the vis-
cous terms of the N-S equations are approximated
with the traditional sixth order accurate difference ap-

proximation.

At t= 0 we have a shock as shown in Fig. 16
(a). The shock is moving toward to the center with
shock Mach number Ms= 1. 2. The Reynolds num-
ber is Re= 50000 based on the radius of the averaged
material interface at t= 0. 0. The light gas is inside
the interface. The initial conditions are given in Ref.
[ 14]. The moving shock will interact with the mate-
rial interface. Some results are shown in Fig. 16,
from which we see the development of B M instabil+
ty. After shockinterface interaction, the reflected
rarefaction wave goes outward, and the transmitted
shock goes toward the center. After multiple interae-
tion of the waves between the material interface and
the center we obtain the typical spike-bubble strue
ture (Fig. 16(c)). We can see the phase changing
clearly from Fig. 16(a) —(c). Fig. 16(d) gives the
wave structure showing the interaction between the
transmitted shocks at the time ¢= 0. 39.

5 Summary

(1) A new method of high order accurate differ
ence approximation with NFRC is presented. The
method is simple, and the scheme with any order of
accuracy can be obtained easily.

(ii) A simple linear operator extrapolation is im
troduced to control the dissipation and dispersion of
the scheme.

(ii)) The constructed NFRC scheme is modified
with group velocity control (GVC) and weighted
group velocity control (WGVC) to improve the rese
lution of the shock.

(iv) The constructed NFRC+ GVC (or NFRC
+ WGVC) scheme is used to solve physical problems,
and the obtained results are satisfactory.
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Heavy gas

Shock

Interface

(c)

Fig. 16.
at t= 3.3; (d) pressure contours at t= 0.39.
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