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Abstract. In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack
between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading
is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the
crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get
the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced
to a set of dual integral equations of crack open displacement function in the transformation domain. The dual
integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE)
by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get
the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic
SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval
is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.

Key words: Integral transformation, interface crack, singular integral equation, stress intensity factor, viscoelastic
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1. Introduction

The fracture problems of interface cracks under static loading have been investigated exten-
sively. It was revealed that the singular index of the stress field at crack-tip is not real but
complex. The complex singular index of stress field for interface crack causes the oscillation
of stress field and the overlapping of the crack surfaces near crack-tip. These phenomena
which are assumed not rational in physics exist in the case of dynamic loads. In the case of
dynamic loads, two loading cases are of interest, viz. Harmonic loading and impact loading.
The former can be dealt with in frequent domain; and the latter is generally analyzed in time
domain. The dynamic SIF plays an important role in dynamic fracture under both harmonic
and impact loads, that predicts whether or not the fracture toughness of the material will be
exceeded and catastrophic crack propagation will follow. The dynamic SIF of interface cracks
between two dissimilar elastic materials has been studied widely. Kundu (1986, 1987, 1988)
studied the dynamic SIF of interface crack under impact loading with the method based on
Betti’s reciprocal theorem. In his investigations one or two Griffith interface cracks that were
located at one interface or different interfaces for multi-layered media were considered. Li
(1991) studied the dynamic SIF of one Griffith interface crack in a four-layered composite by
reducing the mixed boundary problem to the Cauchy-type singular integral equation. As for
interface crack between two dissimilar orthotropic or anisotropic materials the investigation
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of dynamic SIF was given by Kuo (1984). Wang (1991) extended the investigation to modified
Griffith interface cracks that has contact region at the crack-tip. As a result, the oscillation of
stress field and the overlapping of the crack surfaces near crack-tip are removed. In light of
investigation of purely elastic problem and the use of correspondence principle, Georgiadis
and co-worker (1991, 1993, 1996) studied the dynamic SIF of Griffith crack, penny-shaped
crack and half-infinite crack in homogenous viscoelastic material under impact loading. The
time history of dynamic SIF during a small time-interval immediately after the sudden appli-
cation of loading was obtained, and the influence of the viscoelastic material parameters was
analyzed. It was indicated that dynamic SIF over-shoots are possible in viscoelastic materials,
but retarded and not-too-sharp as compared to that in purely elastic materials due to the fact
that viscoelastic wave-fronts are not sharp. In their works the integral transformation approach
play an important role and the inverse integral transformation method proposed by Dubner and
Abate (1968) and Crump (1976) (called as DAC method) was first introduced to carried out the
numerical inverse Laplace integral transformations. It is interested to extend the investigation
of dynamic response of crack to inhomogeneous viscoelastic material with crack, in particular,
the interface crack between two dissimilar viscoelastic materials.

The objective of the present paper is to investigate the dynamic response of an interface
crack between two dissimilar viscoelastic materials to anti-plane impact loading. Following
the Georgiadis’s work, the Laplace integral transformation and inverse integral transforma-
tion methods are used. Applying integral transformation to the viscoelastic mixed boundary
problem leads to a set of dual integral equations. In view of the convenience of singular
analysis of stress field, the dual integral equations are reduced to the Cauchy-type singular
integral equation (SIE) of first kind by introduction of the crack dislocation density function.
The numerical solutions of SIE were usually obtained by Jacobi or Chebyshev polynomial
extension procedure (Erdogan F. et al. 1973). In the present paper, the piecewise continuous
function method given by Kurtz (1994) is adopted. In contrast with polynomial extension
method, the piecewise continuous function method doesn’t need extrapolation at endpoints
in view of its convenience of node disposition. The inverse integral transformation method
called as DAC method is used to recover the results in the transformation domain to the time
domain. The suitability and reliability of DAC method had been confirmed in Georgiadis’s
series works. In addition, the procedure above-mentioned can also be used to deal with in-
plane impact loading which leads to two coupling singular integral equations representing the
coupling behavior of stress field of interface crack. The details on diffraction of P or SV wave
by interface crack under in-plane loads will be provided in another paper.

2. Problem statements

We consider an interface Griffith crack of length 2a between two homogeneous, isotropic,
linear viscoelastic (HILV) half-spaces. A Cartesian coordinate system is assumed in such a
way that thex-axis is along crack length direction and they-axis is perpendicular to the crack
as shown in Fig. 1. The crack surface has infinite width in thez-direction. Densities of the two
materials are denoted byρ1, ρ2 and shear relaxation function byG1(t),G2(t), respectively. A
standard linear viscoelastic solid model is used whose shear relaxation function can be written
as

Gi(t) = µ∞i
[
1+ fi exp

(
− t
τi

)]
(i = 1,2), (1)
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Figure 1. Interface crack between two dissimilar viscoelastic bodies under anti-plane impact loading.

Figure 2. Relaxation modulus of viscoelastic material. (1) Large relaxation time. (2) Medium relaxation time. (3)
Small relaxation time.

wherefi = µ0i/µ∞i − 1 is a measure of the difference between the short-time,µ0i , and the
long-time,µ∞i , shear modulus, andτi is the relaxation time of the viscoelastic material. The
influence of relaxation time onG(t) is shown in Fig. 2.

It is assumed that an anti-plane shear impact loadτ0H(t) acts suddenly on the crack
surface. The initial and boundary value conditions are written as

σyz(x,0, t) = τ0H(t) |x| < a, (2a)

σyz(x,0
+, t) = σyz(x,0−, t) −∞ < x < +∞, (2b)

w(x,0+, t) = w(x,0−, t) |x| > a, (2c)

w(x, y, t) = 0 x, y →∞, (2d)

σyz(x, y,0) = w(x, y,0) = ẇ(x, y,0) = 0, (2e)

whereσij denotes stress tensor,w and ẇ denote displacement and velocity in z direction
respectively, andH(t) is the Heaviside function.

The objective of the present work is to determine dynamic SIF for the problems specified
by (2).
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3. Derivation and numerical solution of the singular integral equation

3.1. THE DUAL INTEGRAL EQUATION OF CRACK OPEN DISPLACEMENT1w

Crack opening displacement is defined as:

w(x,0+, t)− w(x,0−, t) =
{
1w(x, t) |x| < a,
0 |x| > a. (3)

The equation of motion for viscoelastic material can be written in integral form as:

G(t) ∗ ∇2dw(x, y, t) = ρẅ(x, y, t) (4)

where∗ denotes the Stieltjes integration. Applying Laplace integral transformation to∗ and
Fourier integral transformation tox in Equation (4) in conjunction with the quiescent initial
conditions from Equation (2e) and the radial condition from Equation (2d) yields:

w̃(s, y, p)

{
a(y)e−

√
K2
T 1+s2y y > 0,

b(y)e
√
K2
T 2+s2y y < 0.

(5)

wherew̃(s, y, p) = {F [L[w(x, y, t)]], t → p, x → s}, L andF denote Laplace and Fourier
integral transformation operator respectively.K2

T i(p) = ρp/Gi(p), Gi(p) = L[Gi(t)]. The
factorsa(y) andb(y) can be determined by boundary condition (2b).

a(y) = β

β + 1
1w̃, b(y) = − 1

β − 1
1w̃, (6)

where

β(s, p) =
G2(p)

√
K2
T2
+ s2

G1(p)

√
K2
T1
+ s2

. (7)

The remaining boundary conditions (2a) and (2c) constitute the dual integral equations F−1
[
1w̃

] = 0 |x| > a, (8a)

F−1
[
−pG1(p)

β

β+1

√
K2
T1
+ s21w̃

]
= τ0

p
|x| < a, (8b)

whereF−1 denotes inverse Fourier transformation operator.

3.2. SINGULAR INTEGRAL EQUATION OF CRACK DISLOCATION DENSITY FUNCTION8

The crack dislocation density function is defined as

8(x, t) = ∂

∂x
1w(x, t). (9)

Employing Fourier integral transformation onx and Laplace integral transformation ont in
Equation (9) leads to

8̃(s, p) = (is)1w̃(s, p). (10)
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After applying Equation (10) to Equation (8), the Equation (8a) yields

a∫
−a
8(x, t)dx = 0. (11)

Equation (8b) yields

− 1

2πi

∞∫
−∞

pG1(p)
β

β + 1

√
K2
T1
+ s2

1

s

 a∫
−a
8(u, p)eisu du

 e−isx ds = τ0

p
. (12)

Taking into account

lim
s→∞pG1(p)

β

β + 1

√
K2
T1
+ s2

1

s
= pG1(p)G2(p)

G1(p)+G2(p)
signs(s), (13)

and
∞∫
−∞

eis(u−x)signs(s) ds = 2i

u− x (14)

the following Cauchy-type singular integral equation (SIE) of first kind is obtained

− pG1(p)G2(p)

G1(p)+G2(p)

1

π

a∫
−a

8(u, p)

u− x du+
a∫
−a
K(u, x, p)8(u, p) du = τ0

p
. (15)

where integral kernel has the following expression

K(u, x, p) = − 1

2πi

∞∫
−∞

[
pG1(p)

β

β + 1

√
K2
T1
+ s2

1

s

− pG1(p)G2(p)

G1(p)+G2(p)
signs(s)

]
e−is(u−x) ds (16)

3.3. NUMERICAL SOLUTION OF SINGULAR INTEGRAL EQUATION

In light of the theory of singular integral equation (Muskhelishvili, 1953), the solution of
Equation (15), viz., the dislocation density function in transformation domain can be written
in the form as

8(x, p) = ϕ(x, p)W(x). (17)

whereW(x) = (a − x)−1/2(a + x)−1/2 is the fundamental function of SIE (15).ϕ(x, p) is
analytic function in complex plane.

Because of the complexity of the integral kernelK(u, x, p), the closed-form solutions to
Equation (15) is not available, therefore much attention has been focused on numerical method
of solution. In a singular integral equation with real or complex constants, the fundamental
function turns out to be the weight function of some well-known orthogonal polynomials. For
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example, in the integral equation of first kind, the fundamental function is weight function of
Chebyshev polynomials; and in the integral equation of second kind, the fundamental function
is weight function of Jacobi polynomials. Thus, using the properties of related orthogonal
polynomials, a numerical solution of the singular integral equation may be obtained in which
the essential features of the singularity of the unknown function are preserved. More detailed
applications using Chebyshev and Jacobi polynomials appear in Erdogan (1973). However,
since the value of analytic functionϕ(x, p) at the pointsx = ±a are of special interest and
the value ofϕ(x, p) is obtained at zeros of the chebyshev or Jacobi polynomials, extrapolation
is needed. The alternative numerical method, which obviates the extrapolation, proposed by
Kurtz (1994) is based on the piecewise continuous function. If impact load exerted on crack
surface changes rapidly at local, the sampling points should be chosen so that the salient
features of loads are captured. Thus requirement for flexibility of selection of nodes rises, and
orthogonal polynomials fail to satisfy the requirement. In summary, the numerical method
based on piecewise continuous function have the advantages both of eliminating the need
for extrapolation at the endpoints and of making it possible to model with higher accuracy
solutions with localized erratic behavior. In this paper, the piecewise continuous function
method is used, and piecewise quadratic polynomials are adopted. The details of the method
will not be repeated here. The authors of interest can make reference to Kurtz (1994).

4. The numerical inversion of Laplace integral transformation

After the crack dislocation density function8(x, p) is obtained in the Laplace transformation
domain, the shear stress field,τ yz(x,0, p), and, furthermore, the dynamic SIF can be evaluated
as

K III (p) = lim
x→a

√
2π(x − a)τyz(x,0, p). (18)

For convenience of analysis, dimensionless dynamic SIF is introduced as

m(p) = K III

τ0
√
πa
. (19)

wherem(p) represents the rate of dynamic SIF to static SIF.
In order to recover the dimensionless dynamic SIF in the Laplace transformation domain

to that in time domain, viz.,m(p). The inverse integral transformation is needed. The nu-
merical inverse Laplace transformation method called as DAC method is firstly introduced
to solve inertial viscoelastic problems by Georgiadis (1991, 1993, 1996). The suitability and
reliability of DAC method had been confirmed, and was recommended to replace the old-
fashioned orthogonal polynomial method like Miller/Guy technique (Miller and Guy, 1966).
We adopted the DAC method here. By introducing the dimensionless timetd = t/t0, where
t0 = min{a/√µi0/ρi, i = 1,2}, the inverse integral transformation formulation can be written
as

m(td) =
(
ectd

T

){
m(c/t0)

2t0
+

N∑
K=1

[
Re
m((c + iKπ

T
)/t0)

t0
cos

Kπtd

T

]

−
N∑
K=1

[
Im
m((c + iKπ

T
)/t0)

t0
sin

Kπtd

T

]}
, (20)
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Figure 3. Time history ofm(td) of crack in homogenous elastic material.

whereN, T , c are parameters properly chosen to satisfy required accuracy.

5. Numerical results

Numerical results for dynamic SIF of interface crack are obtained for two dissimilar vis-
coelastic materials with constantsµ01, µ∞1, τ1, ρ1, µ02, µ∞2, τ2, ρ2 respectively. Equation (1)
pertinent to the standard linear solid was considered. Clearly, the purely elastic case can be
recovered from the material model by letting eitherf → 0 or τ → ∞. In order to examine
the effects of the viscoelastic behavior, following dimensionless parameters are introduced:

λ = µ01

µ02
, f1 = µ01

µ∞1
− 1, f2 = µ02

µ∞2
− 1, γ = τ1

τ2
.

The following material combination cases are considered
(1) Whenλ = 1, f1 = f2 = 0, the materials on both sides of interface are the same elastic

materials.
(2) Whenλ = 1, f1 = f2 6= 0, ν = 1 the materials on both sides of interface are the same

viscoelastic materials.
(3) Whenf1 6= 0, f2 = 0 or f1 = 0, f2 6= 0, the material on one side of interface is

viscoelastic but elastic on the other side.
(4) Whenf1 6= 0, f2 6= 0, λ 6= 1, γ 6= 1, the materials on the both sides of interface are

dissimilar viscoelastic materials.
For all material combination cases above-mentioned,ρ1 = ρ2 = 1200 kg m−3 µ01 =

1690 MN m−2, τ1 = 2t0. The values of material constants are from Georgiadis (1991). The
dimensionless material parameters, viz.,λ, f1, f2, γ , change in each case.

Figure 3 shows the time history of the dimensionless stress intensity factorm(td) during
a small time-interval for case (1), viz., purely elastic materials. It can be seen that dimen-
sionless stress intensity factorm(td) reaches to maximum at the vicinity oftd = 2 and static
limit m(td) = 1 with dimensionless timetd goes to infinity. The phenomenon is well-known
dynamic overshoot. For the present case of material constants, the dynamic over-shoots is
about 25%.

Figures 4 and 5 show the time history of the dimensionless stress intensity factorm(td)

for case (2) and case (3), respectively. By comparison with Fig. 3, the peak values of the
dimensionless stress intensity factorm(td) of case (2) and (3) are lower than that in case (1),
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Figure 4. Time history ofm(td) of crack in homogenous viscoelastic material.

Figure 5. Time history ofm(td ) of interface crack between elastic material and viscoelastic material.

and the oscillations around static limit alleviate slightly. Clearly, this is due to the continuous
loss of energy when diffraction wave propagates in the viscoelastic materials.

To examine the effects of the material constants, we take variousγ andf into account.
In Fig. 6, the time history of the dimensionless SIF is given for variousγ with respect to

f1 = f2 = 2.0 to show the influence of relaxation time. The peak value of dimensionless
SIFm(td) is the highest and the oscillation of curve is the most conspicuous whenγ = 0.1;
the peak value of dimensionless SIFm(td) is the lowest and the oscillation of curve is least
conspicuous whenγ = 10.0. While the peak value of dimensionless SIFm(td) and the

Figure 6. Time history ofm(td ) of interface crack between two dissimilar viscoelastic materials with variousγ

andf1 = f2 = 2.0.
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Figure 7. Time history ofm(td ) of interface crack between two dissimilar viscoelastic materials with variousγ

andf1 = f2 = 10.

oscillation of curve are intermediate whenγ = 2.0. The explanation of the phenomenon
is as follows. A long relaxation time implies that viscoelastic material performs like an elas-
tic material during short time interval while a short relaxation time will make viscoelastic
material exhibiting strong viscosity effects at short time interval when difference between
short-time shear modulusµ0 and long-time shear modulusµ∞, viz., f , keeps constant. The
phenomena can be observed clearly from Fig. 2. We can also observe that the peak value of the
dimensionless SIFm(td) takes place at vicinity oftd = 2 which corresponds to the moment
when the viscoelastic wave from one crack-tip reaches another, and delays with the increase
of viscosity of materials.

Figure 7 shows the time history of the dimensionless SIFm(td) for the same group ofγ but
with a larger value off , viz., f1 = f2 = 10. The influence of modulus differencef onm(td)
can be noted by comparison of Fig. 7 with Fig. 6. It is observed clearly that the peak value of
the dimensionless SIFm(td) decreases and the location of td corresponding to the peak value
shifts backward when the modulus differencef increases with the relaxation timeτ keeping
fixed. When the modulus differencef is very large and the relaxation timeτ is very small,
the viscosity is so strong that the phenomenon of dynamic overshoot disappears.

These phenomena observed for interface crack and the interpretations are very close to
ones for crack in homogeneous viscoelastic material given by Georgiadis (1991, 1993).

In summarizing our numerical study, the following conclusions are drawn:
(1) The time history of the dimensionless SIFm(td) for the interface crack between two

dissimilar viscoelastic materials shows dynamic overshoot at short time like that happens
in elastic material. The peak value of the dimensionless SIFm(td) happens at the vicinity
of td = 2 that corresponds to the moment when reflection wave from one crack-tip arrives
at another.

(2) By comparison with elastic material, the peak value of the dimensionless SIFm(td) de-
creases, and the location of peak value of the dimensionless SIFm(td) shifts backward.
This phenomenon is more conspicuous when the viscosity effects of viscoelastic material
increase. The answer to the delay of dynamic overshoot is the delayed elasticity of the
viscoelastic material model.

(3) The viscoelastic material parameters, viz.,f andτ , affect strongly the time history of the
dimensionless SIFm(td). The peak value of the dimensionless SIFm(td) decreases and
delays for large modulus differencef and small relaxation timeτ . When the viscosity
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effects of the viscoelastic material are enough strong, the dynamic overshoot phenomenon
even disappears

(4) For bimaterials interface crack, suitable combination of viscoelastic material parame-
ters, viz.,f1, τ1, f2, τ2, will alleviate the dynamic overshoot. Consequently, the unstable
propagation of crack under transient load can be restrained in some sense.
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