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We report ductile bulk metallic glasses based on martensitic alloys. The slowly cooled specimens contain a mixture of parent ‘austenite’
and martensite phase. The slightly faster cooled bulk metallic glasses with 2—5 nm sized ‘austenite’-like crystalline cluster reveal high strength
and large ductility (16%). Shear bands propagate in a slither mode in this spatially inhomogeneous glassy structure and undergo considerable
‘thickening’ from 5-25nm. A ‘stress induced displacive transformation’ is proposed to be responsible for both plasticity and work-hardening-

like behavior of these ‘M-Glasses’. [doi:10.2320/matertrans.47.2606]
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1. Introduction

Recent development of bulk metallic glasses (BMGs) has
attracted enormous interest because of their potential as
structural materials."? The plastic deformation process of
metallic glasses is related to ‘shear transformation zones’
(STZs) consisting of 200-300 atoms which undergo coop-
erative shear.>® The shear localization is a result of a rapid
dilation accompanying high-rate shear deformation of short-
range ordered clusters.*> Localized shear transformations
along certain preferred directions (i.e., direction of maximum
shear stress) create microstructural shear bands,*> exhibiting
strain softening/thermal softening.®” However, failure oc-
curs catastrophically along a single shear band without
macroscopic plasticity.® In order to overcome the limited
plastic deformability of BMGs, composite microstructures
containing micrometer-size crystalline particles embedded in
a glassy matrix, have been shown to be effective in order to
control the plastic instability.”"!") Recently, a large number of
metallic glasses have been reported to show ductility at room
tempearture.'>~!> There are a few approaches that have been
proposed in order to successfully prepare ductile BMGs, like
to achieve a critical value of Poisson’s ratio,'*'® or to
introduce atomic-scale inhomogenities'>!¥ or a phase sep-
arated glassy structure.!>!?

In this work, we present bulk metallic glasses exhibiting
large plastic deformability in supercooled Cu-Zr- and Ti-
(Cu,Ni)-base martensite alloys. Our experimental evidence
together with supporting literature data clearly indicates that
a unique ‘austenite-like’ clustered glassy structure can be
achieved in these alloys, which does not depend on a specific
pin-pointed composition but seems to exist for a wide variety
of ductile BMGs or ‘M-Glasses’. A ‘stress induced displacive
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transformation’ occurs around the STZs, which releases the
local stress concentration, and delocalizes the shear by
forming wavy shear bands.

2. Experimental

The alloys used in this work were designed from CusyZrsg
and Tiso(Cu,Ni)sp alloys. The alloys have been prepared by
mixing the pure elements in an arc melter. The ingots have
been remelted several times in order to obtain homogeneity
of the alloy. Rods of 2-2.5mm¢ have been produced by
solidifying in situ in a suction casting facility attached to the
arc melter. A Zeiss DSM 962 scanning electron microscope
and Philips XL 30 a high resolution SEM operated at 25 kV
with an attached energy dispersive spectroscopy analysis
were used for microstructure observation. A Philips CM20
transmission electron microscope (TEM) coupled with
energy-dispersive X-ray analysis (EDX), differential scan-
ning calorimetry (Perkin-Elmer Diamond DSC), and a
Siemens D500 X-ray diffractometer (XRD) with Cu-K,
radiation were used for structural characterization. The TEM
specimens were prepared by the conventional method of
slicing and grinding, followed by ion-milling with liquid
nitrogen cooling. In order to evaluate the mechanical
properties under compression, cylindrical specimens with a
2 : 1 aspect ratio were prepared and tested in a Schenck
servo-hydraulic testing machine under quasistatic loading at
an initial strain rate of 8 x 107*s~! at room temperature.
Fractographic investigation has been performed by using
SEM.

3. Results and Discussion

Figures 1(a)—(e) shows the microstructure and the XRD
patterns of differently solidified CusgZrsg, Cuyy.s5Zrs475Als
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Fig. 1

SEM images of (a) CusoZrsp, 2.5 mme¢ rod showing martensitic
laths, (b) Cus7Zr47Ale ingot showing primary dendritic CuZr (B2) phase.
(c) XRD patterns for differently solidified alloys. (d) TEM bright field
image of a Cuy7sZrs475Als glass showing a contrast, top inset: SAED
pattern, bottom inset: nanobeam diffraction pattern from few darker
regions shows presence of the crystallinity. (¢) HREM image and FFT of
the same microstructure.

and Cuy;Zr47Alg alloys. The 2.5 mm¢ rod of CusyZrs, exhibit
needle-shape martensite (Fig. 1(a)). The XRD pattern
(Fig. 1(c)) reveals the presence of a monoclinic CuZr (P2;/
m and Cm space group) martensite phase.'® However, the
slower cooled arc-melted ingot (AMI) shows a mixture of
parent CuZr (B2 phase, Pm3m)'¥2” and monoclinic mar-
tensite (Fig. 1(d)). Addition of 5-6 at% Al to CusyZrsg shifts
the composition from the line compound (CuZr) and the
Cu-Zr-Al alloys solidify to a primary CuZr (B2) phase
(Fig. 1(d))**?Y and a eutectic matrix. A typical micro-
structure of Cuyg7Zr47Alg AMI is presented in Fig. 1(c). EDX
analysis gives the average composition, the composition of
dendrites and that of the eutectic matrix as Cuyy3Zr462Al¢5,
CU47.2ZI‘46.7AI6_1 and Cu44.4Zr4447A110_9, I’CSpCCtiVCly. Cll47_5-
Zry75Als (2mme) and CuyrZrs7Alg (2.5 mme) alloys sol-
idified at a higher cooling rate (500-200K/s)?? exhibit a
glassy structure, as proved by XRD (Fig. 1(d)), DSC and
TEM. The glass transition temperature (1) of this alloy is
measured to be 701 K at a heating rate of 20 K/min. It has
already been reported that 5 mme¢ glassy rods can be prepared
by adding 4-6at% Al to CusyZrsy.>? TEM investigations
reveal a contrast in the bright field images pointing to the
presence of structural inhomogeneities [Fig. 1(d)]. Although
the selected area diffraction pattern (SAED) (top inset,
Fig. 1(d)) from such a microstructure is identified to be
glassy, nanobeam (7 nm) diffraction reveals that some of the
regions show twin diffraction patterns (marked by two arrows
in the bottom inset, Fig. 1(d)). The Fourier filtered image
[Fig. 1] shows the presence of 2—5nm scale lattice perio-
dicity without any sharp crystal-amorphous boundaries
(marked by dashed circles, Fig. 1(e)). However, the Fast
Fourier Transformation (FFT) from those darker regions
(marked by a square, Fig. 1(e)) reveals the glassy nature at
high resolution. In addition, the appearance of two spots in
FFT (marked by arrows) indicates the presence of atomic
scale order. The atomic layer spacing measured from the high
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Fig. 2 (a) SEM back scattered electron image of an TissCusoNi7 5ZrsSn; 5
ingot; inset: XRD patterns of the ingot and 4 mme¢ rod; (b) TEM image of a
2 mm¢ rod revealing a clustered glassy structure (top inset, SAED pattern)
and (bottom inset) HREM image indicating the presence of crystalline
clusters.

resolution images is 0.3 nm, which is on the order of the (100)
spacing of the CuZr B2 parent phase.

Similar features were also found for other alloys, e.g. for
Ti-(Cu,Ni)-base glass-forming systems. The microstructure
of Tig5CuyoNi7 5Zr5Sn, s AMI shows elongated dark and gray
grains together with lamellar dark and brighter phases with an
eutectic-like morphology (Fig. 2(a)). EDX analysis reveals
that the average composition of the alloy is Tiss,Cusg4-
Niy4Zr46Sny 4. The composition of the white phase is
Ti34‘8Cu21‘1Ni5‘4Zr20‘6Sn18_1, and that of the dark and gray
grains is Ti4745Cu45_7Ni4_8Zr1,3Sno_7 and Ti45,0Cll37,3Ni1345—
Zr33Sn 9, respectively. The XRD pattern (inset in Fig. 2(a))
from this microstructure reveals a tetragonal CuTi phase (P4-
nmm) together with weak unidentified peaks. The 4 mm¢ rod
of this alloy exhibits a NiTi (B2) parent phase (inset in
Fig. 2(a)). This indicates that a higher cooling rate promotes
the formation of the B2 phase upon solidification, as
observed earlier.2Y However, the as-solidified microstructure
of the 2mm¢ rod is glassy, as proved by XRD, TEM and
DSC. The glass transition temperature is 690 K (heating rate
of 20K/min). The bright field image of such a glassy
structure is presented in Fig. 2(b) and the corresponding
SAED pattern is shown in the inset. Despite the fact that the
SAED pattern indicates a glassy structure, a contrast is
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Fig. 3 Engineering stress strain curves for (a) CuZr-(Al) ductile alloys;
inset: true stress-true strain curve, (b) Stress-strain curve for TigsCugg-
Ni7sZrsSny s glass; inset: true stress-true strain curve revealing work
hardening-like behavior and (c) TEM image of a deformed Cuy7 5Zr47.5Als
glass revealing slither shear bands (right inset, the SAED pattern showing
glassy phase after deformation, left inset: narrow 100-200nm spacing
appearing on the specimen surface of Ti-base glassy alloy).

observed in the bright field images. The high resolution
image points to 2-5nm size lattice periodicities similar as
found for the investigated Cu-Zr-Al alloys.

The stress-strain curves of differently prepared crystalline
and glassy Cu-Zr-Al alloys (Fig. 3(a)) show plastic defor-
mation and strain hardening. The Cuy75Zr475Als and Cuyr-
Zr47Alg glassy rods have a significantly higher yield strength
(oy = 1547 MPa and 1687 MPa) compared to the crystalline
CusoZrso ingot (o, = 1193 MPa) and 2.5 mm¢ rods (1116
MPa) together with large plastic strain (¢, = 16%'¥ and
5.5%). Interestingly, the investigated CusyZrsy 2 mme glassy
composite (Fig. 3(a)) with 10 nm sized CuZr B2 phase also
displays high strength (o, = 1272 MPa) and work hardening
up to 1794 MPa and 6.2% plastic strain. In an extreme case,
more than 50% plastic strain was observed for CusoZrs.>> In
addition, Cuygs 5Zr455Als BMG composite specimens®” with
micrometer-size CuZr B2 phase also display strain hardening
and plastic deformability. Similarly, the TiysCugoNi7s-
Zr5Sn, 5 glass also shows high strength and large ductility
(ep = 16%) together with strain hardening behavior (inset,
Fig. 3(b)).

Investigations on the microstructural evolution of shear
bands indicate that the propagation pathway of these
deformation bands has a definite wavy feature (Fig. 3(c))
and narrow (50-200 nm) inter-shear band spacing (left inset,
Fig. 3(c)) representing a homogeneous strain distribution.
It can be clearly seen from Fig. 3(c) that the wavyness of
the shear band in Cuyy5Zr4;5Als glass decreases along the
propagation direction from right to left. The SAED pattern
from this deformed region shows an amorphous halo as
depicted in the right inset of Fig. 3(c) indicating that there
is no nanocrystallizaion upon deformation. The shear band
thickness close to the apex is about 3—5 nm, which is on the
order of the size of STZs.¥ Apart from this region the
thickness of the shear band is about 25 nm demonstrating a

considerable ‘thickening’ during their propagation.

The common microstructural features in differently sol-
idified Cu-Zr-(Al) and Ti-(Cu,Ni) alloys clearly suggest the
evolution of a parent B2 phase (austenite) at a lower cooling
rate (100-10K/s) and of a glassy phase with 2-5nm size
‘austenite-like’ crystalline clusters at higher cooling rate
(103-10% K/s). A stress-induced ‘diffusion less shear trans-
formation’ from parent austenite to martensite in CuZr'8!?
and Ti(Ni,Cu)’® B2 phases has already been reported. All
these alloys either with micrometer-size,2® 10nm size B2
phase,'¥ 5nm size clustered glassy microstructure (present
investigation), or medium-range ordered structure®” exhibit
strain hardening and ductility. We have surveyed a large
number of ductile BMGs having alloy compositions near to
the martensite alloy compositions (Table 1). Since very fine
scale (5-10nm) nanocrystal are not capable for dislocation
multiplication and we did not observe any nanocrystalliza-
tion in the shear bands in order to interpret strain hardening,
this strongly suggests that the large ductility and the observed
work-hardening is associated with some phase transforma-
tion in the spatially inhomogeneous clustered glassy micro-
structure, which is not considered in the STZ theory.?

In case of structurally inhomoheneous metallic glass based
on martensitic alloys, the deformation mechanism of these
STZs seems to play a crucial role for developing micro-
structural shear bands. A ‘stress induced displacive trans-
formation’ occurs in the ‘austenite-like’ crystalline clusters,
which releases the stress concentration around STZs and
restricts free volume accumulation.” Spreading of such
events in the undeformed regions close to the shear bands
allows them to grow and leads to ‘thickening’3® from 5 nm to
25 nm. The rapid propagation of the shear bands in a spatially
inhomogeneous glassy structure is hindered due to the ‘phase
transition’, which leads to locally different shear rates®® in
the shear bands and they propagate in a slither mode. This
requires a further stress to move the slither shear bands,
which lead to work-hardening. The solidification of the
present alloys can be understood with the help of a schematic
time-temperature-transformation (TTT) diagram (Fig. 4).
Slower cooling promotes the formation of the B2 parent
phase which undergoes a martensitic transformation at Mg
temperature. In contrast, addition of different constituents
(like Al, Zr, Sn, Ni) in these rather poor glass-forming alloys
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Fig. 4 Schematic time-temperature-transformation diagram of martensitic
alloys illustrating the formation of ductile “work-hardenable” BMGs (‘M-
Glasses’).

allows to vitrify the melt into an inhomogeneous glassy
structure at a higher cooling rate (10°-10? K/s) with stress
induced martensitic transformation characteristics (‘M-
Glass’).

4. Conclusions

A novel group of Cu-Zr- and Ti(Cu,Ni)-base ductile work-
hardenable BMGs based on ‘supercooled martensitic alloys’
has been reported. The unique structure of the BMGs consists
of ordered ‘austenite-like’ crystalline clusters, which are
believed to induce a ‘stress induced displacive transforma-
tion’ at the neighbouring zone of STZs to release the local
stress concentration and delocalize the shear. The shear bands
thicken in a spatially inhomogeneous glassy microstructure
and appear as ‘wavy features’ on a nanometer length scale.
We believe that highly deformable metallic glasses with such
a spatially inhomogeneous glassy structure can be obtained in
Ni-Zr, Ni-Ti, Fe-Ni, Fe-Pt, Ti-Pt and several other near-
martensitic alloys.
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