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Abstract

a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas bound-

The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at

ary layer flows are formulated within the framework of a multi-fluid model and parametric numerical studies of the carrier- and dispersed-
phase flow fields are performed. The problem associated with crossing particle trajectories and the formation of local particle accumulation
regions are solved by using the full Lagrangian method for the dispersed phase. The basic features of the near-wall two-phase flow under
consideration including the role of Saffman force in the particle entrainment and the development of discontinuities or singularities in the
particle density profiles are discussed. The effects associated with account of the non-uniformity of particle size and the finiteness of the
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particle Knudsen numbers are studied in detail.

Keywords:
method.

A shock wave propagating over a deposited layer
of fine particles may aerodynamically entrain the par-
ticles into the airflow and result in formation of a dust
cloud behind the shock front. The knowledge of the
height of particle rise and the particle distribution in
this cloud is important for various practical applica-
tionss one of which is the prevention of dust fires and
explosions in industry. Many organic or metallic
powders (for examples cornstarch, coal, and alu-
minum? suspended in air form explosive mixtures.
Dust explosions may occur if the initiation energy of
the ignition source is high enough. Compared to
gaseous mixtures, dust-air suspensions have extreme-
ly high explosion limitst "), In additions the high-
speed particle-bed sweep-up problems are of interest
not only for two-phase explosion and detonation but
also for various natural phenomena such as tornadoess

31 In this paper, we

intense dust storms and so on
attempt to study the dispersed-phase flow patterns in
the laminar flow region of a dusty-gas boundary layer
induced by a normal shock wave travelling at a con-
stant speed along a flat surface deposited with fine

particles.

dust cloud, moving shock wave, particle entrainment, Knudsen effect, poly-disperse particles, full Lagrangian

For laminar dusty-gas boundary layer flows 4,

the main mechanism of transverse migration of parti-
cles is connected with the action of the shear-induced
lifting force Cusually called Saffman force). The rise
of a particle from the surface of a deposit layer under
the action of the Saffman force was considered in a

number of previous studiest> 7

. However, only tra-
jectories of an individual spherical particle initially lo-
cated on a plane wall and set in motion by a shock
wave were calculated in those papers. We have once
performed a similar study[gj but only considered
mono-disperse particles and neglected Knudsen effect
in the momentum exchange between the phases. In
the present work, we focus on conducting the para-
metric studies and examining the effects associated
with the variation of the shock Mach number, the
finiteness of the particle Knudsen number and the
non-uniformity of the particle size (poly-dispersity).
The action of the lifting and gravity forces on the par-
ticles in the boundary layer results in the appearance
of crossing particle trajectories and the non-uniqueness
of particle motion parameters. To overcome the diffi-
culties of calculating the particle flow structures, we
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developed the full Lagrangian approach, which is a
Lagrangian variant of the method of characteristics.
This approach makes it possible to calculate all the
dispersed-phase parameters (including concentration)
from systems of ordinary differential equations on
foxed particle trajectories.

1 Formulation of the problem

We consider a two-dimensional laminar bound-
ary-layer flow of a dusty gas, induced by a normal
shock wave travelling along a flat surface deposited
with fine particles. It is well known that in the
neighborhood of the shock front, the flow is laminar

down to the point of transition to turbulencet %Y.

When the shock wave velocity U_, Cor Mach number
M) is constant, in the coordinates fitted to the shock
front (Fig. 1), the two-phase flow is in a steady

state.
y
U..T,
o u.r, x
—_—
Fig. 1. Sketch of the gas boundary layer and the dust cloud in-

duced by a moving shock wave over a deposited layer of fine parti-
cles. Solid lines upper boundary of the dust cloud; dashed lines out-
er edge of the gas boundary.

Usual assumptions of the dilute dusty gas model
given by Marblet 0]
phase is a perfect viscous compressible gas: (ii) the
dispersed phase consists of several (in general case

are adopted: (i) The carrier

m) fractions of solid spheres of radius &, and mass

m 5 (iii) the Brownian motion, mutual collisions

m
and the particle volume concentration are neglected
and so each fraction of the dispersed phase can be
treated as a zero-pressure fluid; (iv) there are no
chemical reactions or phase transitions on the particle
surface and so there is no mass transfer between the
phases. Besidess we assume that the deposit layer on
the wall consists of a loose material with m fractions
of particles. In what follows, for simplicity, we will
consider either mono-disperse (7 = 1) or bi-disperse
(m =2) dust cloud resulting from the erosion of the
deposit layer. The upper surface of the deposit layer
is subject to steady-state erosion. For simplicity, we
assume that the surface of the eroded layer remains

plane aerodynamically and at each point of this surface
a constant normal flux of the particle number concen-
tration N* = n_ v, is sustained. We also assume
that the normal velocity of the particles leaving the
surface tends to zero when approaching the eroded
surface; in other words, we consider the purely aero-
dynamic entrainment due to the shear lifting force in
this work.

For describing the interaction between the gas
and the particles in the near-wall region, we will use
the expressions for the drag, lifting force, and heat
flux valid for a single sphere in a steady shear flow
(below, the subscript s refers to the solid particles):

[l =6ne” (V' =V )D

—6.460 2o " 1 ou*/ay" DV?

cHCu™ —u)j> (D

g, =4nc kR (T" = T/)G. 2)
Here; V' p" and T are respectively the velocity
vector (its components in x " - and y " -axis are u
and v ", respectively), density and temperature; g
and £ * are the gas viscosity and thermal conductivity
while j is the unit vector along the y * -axis. The cor-
rection functions D» G and H are introduced since;
in the course of particle motion behind the shock
wave, the characteristic particle Reynolds and Mach
numbers may vary in a very wide range and, for fine
particles, the deviations from the continuum flow
should be also taken into account. For the drag force
and the heat flux exerted on the particle, we will use
the known approximate formulas11+12]
the widest range of the flowing parameters:

D = (1+ Re*3/6)8,
$ = (1 +exp(—0.427TM_ % = 3Re %))/ o,
o =1+ Kn2.57 +0.68exp(— 1.86/Kn));
(3

which cover

and

G = +0.3P"*Re>/ ¢,
¢ =1+2.30Kn(1+0.3Pr"3Re!*)/Pr. (4)

For describing the shear-induced lifting force, we will
use the approximate formula given by Meit '3 which
generalizes the classical Saffman formulat 4]
be used both for small and finite Cup to 100) particle
Reynolds numbers:

H =0.4687(1 — exp(— 0. 1Re))(Re,/Re)"?
+ exp(—0.1Re)s (Re,<40),

H = 0.0741Re}?, (Re > 40). (5

The total force and heat flux exerted on the dispersed

and can
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phase by the carrier phase is the sum of the forces and
heat fluxes on a single sphere given above. In
Eqgs. (3)—(5), five dimensionless parameters are in-
troduced: (a) The slip Reynolds number of the parti-
cle Re,=26" p* | V" =V |/u"s (b) the shear
Reynolds number of the flow around the particle
Re,=c"?p" |ou"/ay" |/p": (c) the slip Mach
number of the particle M= [ V* =V [/c* (™ is
the gas speed of sound); (d) the Knudsen number of
the particle Kn,=1.255v yM./Re (7 is the ratio of
the gas specific heats); (e) the Prandtl number of the

g

carrier gas Pr = ¢, p"/k” Chere ¢, is the specific
heat at constant pressure).

To obtain the boundary layer equations, we in-
troduce the stretched boundary-layer coordinate 7 and
define the following dimensionless variables (below,
the superscript * and the subscript w refer respec-
tively to the dimensional quantities and the wall pa-

rameters):
x:x%, 77:y7«/Re, u:u%,
l [ U,
v = “0* Re, u, = us*’ Vg = "US,X_ Re >
UO UO UO
. T (UL-U))+ U, T, -ULT,
- (T; — T)OU; ’
T T (U, -U, )+ U, T, —ULT,
o (T, = Ty U, ’
* 71;* * *
p:‘oﬁ’ ns = "¢ P:Lz po="4
©o ng ro Uy Mo

Here; p and n, are the gas pressure and particle
number density, and the scale of the particle number

density is equal to 7 = N*+/Re/U, . The other
reference quantities (denoted by the subscript 0) are
the gas flow parameters in the inviscid region immedi-
ately behind the shock front, related with the param-
eters ahead of the shock wave by the Rankine-Hugo-
niot conditions. In the formulas given aboves two
characteristic parameters are used: (a) The phase ve-

locity relaxation length for the Stokes drag [* =
m”* Uy /6ms” 11y + (b) the flow Reynolds number

based on the velocity relaxation length Re =
o Ui 1 g

We will write the equations of the laminar dusty-
gas boundary layer over a moving flat plane in the
shock-fitted coordinates (s 7)) first for the case of

mono-disperse particles Chere the subscript m is
omitted). The governing equations of the carrier
phase take the following form:

%%+%373:0, (6)
p(ugi-l-vgi;)—;?(yg;)i{;eQ; 7
P(u%zﬂ?a%)
_La(,or)
Prony "ar;
+(a—1)Ec[#(gZ>2+u(f£;+R]—S.
(8

The state equation of the carrier phase takes the fol-
lowing form:

o0 = YMipes (9
where the dimensionless function 6 is defined as 6 =
[(d—1DT+a—d])/(a—1) and the gas pressure p,
at the outer edge of the boundary layer should be cal-
culated from the solution of the outer problem of the
relaxation region behind a planar shock wave. In
Eqgs. (6)—(8), the interphase coupling terms are
given as

Q = au an(u - usi)Dii
R = au Znsi(u — uy)?D;»
S = au(2/3PH) > n (T — T.DG,.

Here, in the term R, characterizing the work of the
viscous forces at the relative displacement of the phas-
ess the normal velocities v and v, are neglected be-
cause their contributions are small compared to those
of the longitudinal velocities # and u,. In order to
take into account the possibility of intersection of par-
ticle trajectories, we introduce as many one-velocity
particle continua (denoted by the subscript ) as
there are trajectories intersecting at the point of space
(a5 7) under consideration, where collisions between
different continua can be neglected according to the
adopted model of dilute dusty gas. In Egs. (6)—(9),
five dimensionless parameters are introduced:

U T U, *
a = v d = % EC = « M FENE
U, T, c, (TW - T, )
Ug m” ng
My=—2, o=—7%.
Co 00

When the wall temperature T, is constant and equal
to the gas temperature ahead of the shock front, by
using the Rankine-Hugoniot relationss we can repre-
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sent a» d» Ec and My in terms of the specific heat
ratio ¥ and the shock Mach number M:
Y= (y+1)M?
2+ Cy—1DM?’
B (y +1)*M?
C(y+DPMP 20y = DM = DU+ yMD
—1\/ 2+ Cy —1HOM?
Ee =~ <cyz—1>(2yM2—<y—1))’
M2 o Ly = DM/2
O M-y - 1D/2°
In the Eulerian form, the governing equations of a

d

one-velocity continuum of the dispersed phase are
(below the subscript 7 is omitted):

st a’g;"s ~ 0, (10

u, ?;“ v, %lf; = uCu—u)D, (D
ung“+ 327;;— (v — 0D

— wCu — uH( %; ) e (2

aT, aT, _ gx/i .
w5t oy T AT - TOG. (1)

Clearly, in Egs. (10)—(13), other four dimension-

less parameters are introduced:

% 0y1/
&% _ 6.46 (2&}1 o
X = v K = * Reo ’
c. 12776 | 0o
o (2] 2U; i
w = i’% ‘O*J Reé, Rey = %
108U, ~ L oo )

Heres ¢ and {02 are the specific heat and density of

S
the particle material, g* is the gravity force accelera-
tion, Rey is the characteristic particle Reynolds num-
ber. The other Reynolds; Mach, and Knudsen num-
bers of the particle entering in D> G» H can be ex-

pressed in terms of k¥ and Reg:

- Rue | Colu—ugl
Re = <6.46Re0> , e, = 7# Rey»
| ou|(3.23Re; \?
Rey = on an < 127k ) '
— ug |l 1.255 _
MS:LuT/z, Kng = 7 eol.
Crp/o) Cpp)!>

Similarly, the contributions of the normal velocities v
and v, are neglected in the Re, and M, expressions.

The boundary conditions for Egs. (6)—(8) and
(10>—C(13) are specified just behind the shock front,
on the wall and at the outer edge of the boundary lay-
er. For the carrier phase, we have

x2=0 9p>0:u=T=1;

2=0 9p=0:u=T=a v=0;
x>0, tu=U, T=T, (14

Here, U, and T, are the velocity and temperature at

77—»00

the outer edge of the gas boundary layer which should
be found from the solution of the two-phase flow
problem of the relaxation region behind a planar shock
wave. For the dispersed phase, we have
x>0, p=0:u,=T,=a>
ve—~>0, ngv, = 1. 15

The generalization of this problem formulation
for a poly-disperse system consisting of 7 mono-dis-
perse fractions of particles of the same material is ob-
vious: Egs. (10)—(13) should be solved for each
one-velocity continuum of each of m fractions and the
source terms @, R, S should be replaced by the

sums ZﬂQO ’ ZﬁmRm ’ Eﬁmsm ’ Where Bm is the

ratio of the velocity relaxation lengths of the m-th
fraction and the first fraction whose velocity relax-
ation length [ is taken as a reference quantity for
normalization. Based on the definition of the phase
velocity relaxation length, it is easy to find that,

when ‘02 is constant, the parameter (8, depends only

on the particle size 8,, = (o, /o, )*. The mathemati-
cal formulation of the problem (6)—(13) contains
the following independent similarity criteria: ¥y» M,
Pr; as ys ks w and Rey. It should be noted that in
the case of poly-disperse particles, each particle frac-
tion will give the corresponding set of the similarity
criteria which, in addition, should be complemented
by the ratios of the velocity relaxation lengths 3,,. It

is also worth to note that for very large values of the

parameter x Cstrictly speaking, when ax/v/ Re ~
O(1)) the self-induced carrier-gas pressure gradient
should be taken into account in the near-wall region
and the standard “boundary layer plus inviscid flow”
scheme fails. However, detailed discussion of this
range of parameters lies beyond the scope of the pre-
sent study.

2 Method of numerical solution for small «
case

The main aim of our study was to describe quan-
titatively the motion of solid particles leaving the sur-
face of the eroded deposit and the structure of the
dust cloud formed due to the shear-induced particle
entrainment by the laminar gas boundary layer behind
the moving shock wave. The general formulation of
the problem given in the previous section is too com-



976 www. tandf. co. uk/journals Progress in Natural Science Vol. 15 No. 11 2005

plex for analyzing the mechanism of the aerodynamic
entrainment. Thus, in what follows we assume that
the mass loading of the dispersed phase is small (a—
0) and the influence of the particles on the carrier-
phase parameters can be neglected. This assumption
substantially simplifies the procedure of finding the
numerical solution, although keeping meaningful the
problem formulation since the situation when the
mean concentration of entrained particles is fairly
small is commonly encountered in practice. In this
case in the system of Egs. (6)—(13) and the
boundary condition (14), we should assume « = 0,
po=1/( }’Mé ), U,= T.=1. The carrier-phase pa-
rameters can be calculated separately by using the
standard methods of solving the compressible bound-

‘[15].

ary layer problems For simplicity, we assume

that the gas viscosity and thermal conductivity are

linear functions of temperature Cp ™ /py =k * /by =

T*/T, ) and Pr=1. Then the standard methods of

the pure-gas boundary layer theory make it possible to

reduce the problem of calculating the carrier-gas pa-

rameters to the boundary-value problem for the Bla-
sius function fC&):

27+ ff =0, (16)

O =0, £ =ar f(0)=1. D

In our notations the gas velocity and temperature in

the boundary layer can be expressed in terms of f(&)

as follows:
_ _ I 23

T =1 +[%(1 —a 1] -

+%M—DU—fU

Here, the prime denotes differentiation with respect
to &: f =df/dé. A new variable has been intro-
duced:
1 (7
€= 7ol ean
[t is convenient to introduce an auxiliary function ¢>
for which the following relations hold:

Edg 13
(&)=L = | S = | gde,
o Jr Jo o J0 ¢

o _ 1 ¢ ¢

ox 22 ¢ 2x0°
To obtain the gas velocity and temperature, we must
first solve the boundary-value problem for the Blasius
function f(&). Then we obtain the temperature dis-
tribution T (&), the function (&), and hence the
function ¢ (£), in terms of which the relation be-

tween the variables 7, x and & can be expressed.
Thus the numerical solution for f( &) at various
shock Mach numbers makes it possible to find u, ©
and T as functions of x and 7. As a result; we have
the finite difference solution with controlled accuracy
for all the parameters of the carrier phase in the
boundary layer.

For the dispersed phase, due to the lifting and
gravity forces involved, the particle trajectories may
intersect. It results in the non-uniqueness of the dis-
perse-phase parameters in the Eulerian coordinates.
To avoid the problems associated with intersecting
particle trajectories; we introduce the lLagrangian
variables (¢, x(), where x( is the dimensionless co-
ordinate of the origin of a particle trajectory on the
eroded surface and ¢ = ¢ U, /1" is the dimensionless
time of particle motion along this trajectory. In the
Lagrangian variables, the equations of particle motion
take the form:

dry
d[ - Uy (18)
dp,
dl‘ = Vg (19)
CLL;S = pulu —u)D, Q0
CL—L;S =pCov —0v)D

1/2

—x(u—uﬁH(py‘%) - w. Q2D

When « is small, the particle temperature has no

influence on its motion. That is, there is no coupling

between the dynamic and thermodynamic behaviors of

the particles. Therefore, for investigating the num-

ber-density profiles of the particles in the dust cloud,

the equation of the particle temperature can be omit-

ted. In the Lagrangian coordinates (¢, xy)» the con-

tinuity equation of the dispersed phase for a fixed tra-
jectory can be derived,

1

ng(t7170) :lj X
(tyxg) (s xg)
J=u 87]S trxg _— ox {trxg ' (22)
810 axo

Here; J is the Jacobian of the transformation from
the Eulerian to Lagrangian variables. The boundary
conditions for the particle motion equations are given
below:

t =0: 2= 29

77S = 07
ngvs = 1. (23

us=ar» vs—>0,
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For determining the particle number density in
the cloud 7, from Eq. (22), we must know the values
of dx,/dx( and 99,/ dxy. These derivatives can be
found by differentiating Egs. (18)—(21) with re-

spect to xg:

d
% = wy» (24)
d
7%? = w, (25)
dw, _ oD ou
d[ _#(u B us)alfo * /l<al‘(] u2>D
- uoD 2, (26)
axo
dwy _ oD Ju
dlf _#(7} B US)ax() + #(810 u4>D
S)
+ (v — v )D £
7
5 ou | 12
—klu — us)%[H@w % > :|
ou 1/2 @
~ el o7 ) J(aro - ).
QD
In Egs. (24>—(27), four new functions are defined
as
_ 9wy _ 9us
w1 = 8130, w2 = 810’
_ 99U
ws = aJTO, We = al”o.

The initial conditions for these derivatives introduced
above are as follows:
t=0w; =1, wys=0.

28
Thuss for the dispersed-phase parameters on a fixed
trajectory, we have the closed system of ordinary dif-
ferential equations (18)—(21), (24)>—(27) and al-
gebraic relation (22). This system was solved by the
fourth-order Runge-Kutta method for various xy. In

wZ:O’ 'w3:0,

doing this, the values of carrier-gas parameters found
on the Euler mesh were interpolated by using second-
order polynomials.

The method of solution used here for calculating
n offers obvious advantages over the widely used or-
dinary Lagrangian method (see Ref. [16] for exam-
ple), which requires a very large number of Lagrange
trajectories of the particles per Euler cell to ensure
satisfactory accuracy of calculating the particle con-
centration. The discussion on the advantages of the
full Lagrangian method can be found in Refs.

[17,18].

3 Computation results and discussion

In our calculationss air and aluminum powders
are considered respectively as the carrier- and dis-
persed-phase and the ratio of the gas specific heats
y=1.4.

For the case of mono-disperse particles (=1,
some typical trajectories are plotted in Fig. 2 for 1 um
and 10 pm particles respectively at a fixed shock Mach
number (M =2.0). It can be seen that the Knudsen
effect is significant for finer particles and it can result
in increase in the height of particle rise and the dis-
tance of particle motion. On the other hand, when
the shock Mach number keeps constant, the maxi-
mum height of particle entrainment becomes larger
not only for the first trajectory but also for all the fol-
lowing trajectories as the particle size increases. The
10 pm particles can even rise out of the gas boundary
layer. Fig. 2 also clearly shows that the lifting and
gravity forces into account results in the intersection
of particles trajectories. In the zone of intersecting
particle trajectoriess two or more particle trajectories
cross overs which leads to the non-uniqueness of the
dispersed-phase velocity and other flow parameters.

n
T I - e )
—

._‘
(=]
1

(S S S Y e NN e el
e S S SR e S e —

(=]

Fig. 2. Effect of the Knudsen number on particle motion at M =
2.0. (a) 1 pm particles, curves 1—4 correspond to xo=0.1, 1, 2
and 5; (b) 10 pm particles, curves 1—4 correspond to xy=0. 1,
1, 2 and 5. Solid curves, with the Knudsen effect: chain curves,
without the Knudsen effect; broken line; outer edge of the gas
boundary layer.
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It should be noted that the solution considered is
valid only over the length of the laminar flow region
which depends mainly on the flow Reynolds number.
In the laminar flow region the mode of particle mo-
tion may be either saltation-like (for small particles)
or purely ascending (for large particles). To deter-
mine the dividing boundary between these two modes
of particle motion in the plane of the dimensionless
particle inertia and lift parameters Req and x, we
performed a parametric study of the particle trajecto-
ries originated immediately behind the shock front
and found the particle flight distances L over a wide
range of the governing parameters (10<< Re;<<1000
and 10<<x<<10000) for the M =2.0 case. The di-
mensionless coordinate of the transition point x. =
x /1" can be expressed as . Re./Re =
(6.46Reo/ 127tk )*Re, ( Re. is the flow Reynolds
number based on the current dimensional distance
from the shock front and the outer flow parameters).
In this work, we assume that the critical value of
Re.=3.5%10%see Ref. [15]). Comparing the cal-
culated values of L and x, for different Rey and «»
we found the curve L — 2, =0 which can be consid-
ered to be the conventional limit of the saltation mode
(Fig. 3). For M =2.0, the saltation-like motion is
typical of the 1 pm particles. On the contrary, the
motion of the 10 pm particles, even of those located
just behind the shock front, will be modified by the
turbulence of the gas boundary layer during the de-
scending phase of their trajectories.

1000,
900}
800}
700}
600} L <x,
500}
400}
300} L>x,
200}
100}

Re,

0 1000 2000 3000 4000 5000
K

Fig. 3.
tion at M=2.0.

The Rey-x domain for the saltation mode of particle mo-

To estimate the ability of saltating particles to
induce the secondary erosion associated with the bom-
bardment of the deposited layers we calculated the
following dynamic properties of the 1 pm particles at
impact: the terminal velocities u and vy» the num-

ber fluxes N, = ngug and N, = ny | v, | as well as

the momentum fluxes F, = Nyuy and F,= N, | vy]|.
In Fig. 4, these terminal parameters are given as the
functions of the distance x from the shock front.
Clearly, during their flight in the gas boundary layer
the entrained particles acquire energy from the gas
and reach much higher velocities and momentum flux-
es when they impact on the deposit surface. Thus,
another entrainment mechanism (the so-called bom-
bardment entrainment) may be excited by these ener-
getic impacting particles. The results in Fig. 4 show
thats with increase in the distance from the shock
front, the terminal number and momentum fluxes
(N,> N,and F,, F,) increase substantially although
the magnitudes of the terminal velocities u and v
vary in a relatively small range, keeping within the
same order, and even the absolute value of the termi-
nal normal velocity v decreases with x. Compared
with its initial value at x ~10, the longitudinal mo-
mentum flux F, at the surface of the deposit layer in-
creases by about one order of magnitude over the lam-
inar flow region ( + ~100). Therefore, the bombard-
ment entrainment may be sustained downstream pro-
vided the process of the aerodynamic entrainment of
the particles is initiated by the moving front.

Fig. 4. Development of terminal dynamic properties for 1 pm par-

ticles at M =2.0.

In order to study the effect of the shock Mach
number on the particle motion, the trajectories origi-
nated in the vicinity of the shock front were calculated
for four different shock Mach numbers (M =1. 5,
2.0, 2.5 and 3.0). For convenience of comparison,
the characteristic length /™ and the Reynolds number
based on this length at M =2.0 are chosen as the ref-
erence scale for normalizing the coordinates « and 7
in Figs. 5—6. The results shown in Fig. 5 indicate
that, as the shock Mach number increases, the parti-
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cle rises higher at the early phase of its motion and
follows the shock front quicker during the entire peri-
od of motion. However, with increase in the shock
Mach number, the height of the entrained particle
trajectory originated at xy=0.1 changes in different
trends: it decreases monotonously for the 1 pm parti-

T (a [ ()

N W B wm N N
T

T

cles but varies non-monotonously for the 10 pm parti-
cles. Even for those 1 pym particles; initially located
far downstream from the shock front (say, at x( =
50), the trajectory height may not vary in a
monotonous way too (Fig. 5(c)).

[ ©

O=N WAL O\ Q00O
LIS S s e e

0 5 10 15 0o 1 23
X

6 7 8 9 10 50 100 150

n

X X

Fig. 5. Effect of the shock Mach number on particle motion. (a) 1 pm particles with the trajectory origin at 29 =0.1; (b) 10 um particles with

the trajectory origin at 2¢=0.1; (c¢) 1 um particles with the trajectory origin at 2= 50. Curves 1—4 correspond to M =1.5, 2.0, 2.5 and 3.0,

respectively.

The dispersed-phase flow patterns of a shock-in-
duced dust cloud involve the collective motion of a
mass number of particles. As is well known, the en-
velope of the trajectory family of all the entrained par-
ticles represents the upper boundary of the dust
cloud. The effects of the shock Mach number on the
shape of the upper boundary of the mono-disperse
particles cloud are illustrated in Fig. 6 for the 1 pm
and 10 ym particles respectively. In the 1 um particle
case (Fig. 6(a)), the dust cloud thickness increases
with the decrease in the shock Mach number over the
intermediate region ( ~5< x< ~30). However, this
thickness increases with the increase in the shock
Mach number in the near-front region (& < ~ 1)
while it first increases and then decreases with the in-
crease in the shock Mach number in the neighborhood
of the laminar-to-turbulent transition point ( x ~
100). In the 10 um particle case (Fig. 6(b)), the
laminar-to-turbulent transition occurs at x ~ 1 and
hence, over the laminar flow region where our model
is valid, the dust cloud thickness increases with the
increase in the shock Mach number. Fig. 6(b) also
shows clearly that, with the increase of the distance
from the shock front (say for x> ~5), the envelop
lies higher for lower shock Mach numbers. In other
words, multiple factors (not only the shock Mach
number but also the particle inertia and lift parame-
ters, and the flow regime etc.) influence the exten-
sion of a shear-induced dust cloud.

For the case of bi-disperse particles (m =2),
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Fig. 6. Effect of the shock Mach number on the envelope of par-
ticle trajectories. (a) 1 pm particles; (b) 10 um particles. Curves
1—4 correspond to M =1.5, 2.0, 2.5 and 3.0, respectively.

when the eroded layer consists of 1 pm and 10 pm
particles in the ratio of number densities 1:1, the cal-
culated dust-cloud structures are shown in Fig. 7 for
the shock Mach number of M =1.5 and 2.0 respec-
tively. In these computations, the impacting particles
are assumed to be redeposited on the wall (not re-
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bound) and the characteristic length /* for 10 pm
particles and the corresponding Re were chosen for
scaling the space coordinates. The obtained results in-
dicate that the upper region of the dust cloud consists
of the large 10 um particles and the lower region of
the cloud consists of doubled-sized particles. Obvious-
ly; the presence of the small 1 ym particles makes the
cloud structure in the lower region more complex.
The most important feature is the formation of a mul-
ti-layer structure with sharp accumulation of the par-
ticles inside the cloud. Since» in our case, the 1 pm
particles saltate and their normal velocities vanish on
the envelope of the particle trajectoriess the number
density of the disperse phase grows unboundedly
when approaching this envelope and has an integrable
singularity there. In the region above the envelope of
the 1 pm particle trajectories, the number density of
the dispersed phase depends only on the motion of the
10 pm particles. It first decreases sharply and then in-
creases gradually until a larger value is reached at the
upper boundary of the cloud> beyond which there ex-
ist no particles. It is also found that the number den-
sity of the dispersed phase takes its maximum value
on the deposit-layer surface due to the vanishing nor-
mal velocity. The stratification phenomenon discussed
is a new feature for a poly-disperse system. In the
case of bi-disperse particles under consideration there
is one sharp accumulation zone inside the cloud, ex-

T @

Fig. 7. Spatial development of the dust-cloud structure in the bi-disperse
system. (a) Mach number M =1.5; (b) Mach number M = 2. 0.
Curves 1—4 correspond to x=0.2, 0.4, 0.8 and 1.0, respectively.

cept for those high-density zones near the deposited
surface and upper boundary of the cloud. It is easy to
determine that the number of particle accumulation
zone is equal to (m — 1) for more general cases of
poly-disperse systems (m=3).

4 Summary

Dust-cloud structures behind a shock wave mov-
ing over a deposited layer of fine particles are studied
numerically. The usual two-fluid model of dilute
dusty gas is modified with account for poly-dispersity
of the particles. In addition, this model takes into ac-
count the possibility of intersection of particle trajec-
tories due to the action of the shear lifting force and
the gravity. The numerical simulation indicates that
the presence of the gas boundary layer behind a mov-
ing front (such as a shock wave) ensures the incipi-
ence of particle entrainment from the surface into the
air» due to the aerodynamic mechanism. Our calcula-
tions show that the Knudsen effect should be taken
into account when the diameter of a particle is about
10 pms; otherwise the thickness of the dust cloud may
be underestimated.

The entrainment capacity of the shock-induced
boundary layer depends on the particle inertia and the
shock Mach number. Our calculations show that, due
to the action of the lifting force, the height of particle
rise increases with the increase in particle size and the
particles of about 10 um in size may be even ejected
out from the carrier-gas boundary layer. With the in-
crease in the shock Mach number, the particles rise
faster at the initial phase of their entrainment but the
height of their rise; in general, decreases except for
those particles initially located far downstream. The
extension of the shear-induced dust cloud displays
non-monotonous behavior and depends multiple fac-
tors, including the shock Mach number, the particle
inertia and lift parameters, and the flow regime.

The obtained results indicate that the non-uni-
formity of the particle size in the deposited layer leads
to the onset of sharp stratification of the dispersed
phase and the formation of local particle accumulation
zones inside the dust cloud. The formation of these
zones of high particle concentration in the near-wall
region behind a moving shock wave may be important
for estimating the concentration limit of non-explosiv-
ity of dust-gas mixtures and other relevant problems.
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