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Abstract We suggest a local pinning feedback control for stabilizing periodic pattern in spa-
tially extended systems. Analytical and numerical investigations of this method for a system
described by the one-dimensional complex Ginzburg-Landau equation are carried out. We
found that it is possible to suppress spatiotemporal chaos by using a few pinning signals in
the presence of a large gradient force. Qur analytical predictions well coincide with numerical
observations.
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1. Introduction

In the last half of twentieth century, chaos has been thoroughly investigated and well
understood in many aspects, and become the central field in nonlinear science. Now, chaos
application appears to be one of the most important tasks for further developing this field.
In this respect, chaos control and synchronization‘ are topics of most relevance. This is why
after the pioneering works by Ott, Grebogi and York,[] Pecora and Carroll,! Hubbler,®! and
Ditto et al.,l] Roy et al.l8) for experiments, chaos control and synchronization have quickly
attracted much attention.[6-10]

Recently, a great interest for chaos control and synchronization has been shifted to spa-
tiotemporal systems{!1~28! due to the following facts. First, turbulence and turbulence control
remain among the extremely important problems in nature science for more than a century,
and chaos control in spatiotemporal systems is directly aiming at the goal of turbulence con-
trol. Second, each chaotic spatiotemporal system is a reservoir of rich patterns (incomparably
richer than nonchaotic systems), and the utilization of these patterns has great potential appli-
cations in wide fields, such as hydrodynamics, plasma physics, optics, and chemical reactions.
Nevertheless, these applications can be realized only under the condition that spatiotemporal
chaos or turbulence can be successfully controlled.

In this paper we take the complex Ginzburg-Landau equation (CGLE) as our model, and
investigate its spatiotemporal chaos control both theoretically and analytically. In Sec. II, we
introduce our model and control method. In Sec. I1I, we study the problems of controllability
and control efficiency analytically. In Sec. IV, theoretical predictions are compared with
numerical simulations, both coincide with each other. The last section gives a brief conclusion.

II. Model 'and Control Method
We consider the following CGLE
SA=A+(1+ic)824—(1+ic) A A, (1)
which appears universally in spatiotemporal systems around Hopf bifurcation condition. This
equation serves as a typical model for studying pattern formation and turbulence, and has
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been investigated extensively in recent a few decades.'9~?% Here we generalize Eq. (1) to
include a gradient term as
QA =A+10,A+(1+ic)P?A— (1+icy) AP 4, (2)
where the term of the first spatial derivative represents a drift force (bias), which can be very
commonly observed in nature, e.g., in flows of charged particles under electrical fields or in
hydrodynamic streams in sloping channels. The drift force is the key ingredient introducing
convective instability and has been investigated thoroughly in open flow problems.[2324] In
this paper we will show that this entity is extremely important for controlling patterns and
turbulence.

However, for period-boundary condition A(L+z,t) = A(z,t) or for infinitely long systems,
equation (2) is identical to Eq. (1) by the transformation

=z—rt, (3)
i.e., with any given initial condition A(z,t = 0), the solution of Eq. (2) in the moving frame,
A(y, t), is exactly the same as that of Eq. (1) for A(z,t). Equation (2) has travelling wave

solutions

A(z,t) = Agexpli(kz — wt)], k=2mn/L,
Ag=V1-k2, w=02+(61—02)k2-—1‘k, (4)

where m is an integer or zero. The solutions (4) recover the solutions of conventional CGLE
(1) for zero bias r = 0. As 1+ ¢;¢2 < 0 and for L > 1, all these solutions become unstable
due to the well-known BF instability.!?] Note, the existence of the gradient force (nonzero r)
does not give any influence to various instabilities, and then the BF curve is not affected by
r due to the identity via the transformation (3). In the unstable region the system can show
phase turbulence and defect turbulence.(19:22]

When the system is in a turbulence region, it is often desirable to kill turbulence and realize
a certain stable ordered state, turbulence control is thus necessary. An effective approach for
this purpose is to use local feedback control

N
B A=A+10 A+ (1+ic))024 - (1 +ic) |AP A+e > b8(z —zi)[A(z,t) — 4], (5)
i=1
where A(z,t) is our ordered target state. Then the main idea of Eq. (5) is to inject signals,
which are negatively proportional to the differences between the given state and the target
regular state, to certain space points (pinnings). These injections first derive the system from
the chaotic motions of the turbulence state to the target motions at these injected points
and their vicinities, then bring the motion of the whole system to the target state through
the space coupling. For sufficiently large ¢ the motions of injected points are expected to be
pinned to the target state, then simple replacements of
. Az, t) = Az, t), i=12,---,m (6)
are practically accepted. Therefore, for the simplicity of numerical simulation we can also
directly use condition (6) as our control. Actually, the control (6) is nothing but boundary
control, because the system evolution in the interval z; <.z < z;41 (we have £; < 73 <2z3 <
-++ < T,,) is independent of the motions of all other regions z < z; and = > z;41, thus each
part of z; < £ < T;41 can be actually regarded as an independent system and can be treated
isolatedly with the periodic boundary conditions

OA=10A+(1+ic)82 A+ (1 +ic)(4—|4]% 4),
Al =0,t) = fi(t), A(z=L,t) = fr(t). (7)
It is emphasized that the boundary control approach is convenient and practically applicable
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in many realistic situations. For the theoretical analysis, we start from the general control
scheme Eq. (5), and then recover the condition (7) in the limit € — oo.

I11I. Theoretical Analysis on the Instability of Turbulence Control

To our knowledge, chaos control in continuous extended systems has been investigated
only numerically up to date. In order to clearly understand the control mechanism and
influences of various physical quantities on the control efficiency, it is absolutely necessary to
have an analytical study on the problem. In this regard, the turbulence control in CGLE
provides a perfect example. On one hand, the CGLE stems from realistic physical situations
and presents typical turbulent state.'9~22] On the other hand, the CGLE is among very few
examples accepting thorough analytic treatment for the problem of turbulence onset.

Suppose the system (2) is in a turbulence region, and a regular wave (4) A(z,t) exists
and is unstable for the given parameters. Now we perform the control scheme (5), having
A(z,t) as our target state. A(z,t) is certainly a solution of Eq. (5), the problem is whether
A(z,t) can be stabilized by control. We consider a small deviation from the target state
A(z,t) = Agellhz—wt), ‘

A(z,t) = Ao[l — a(z,t)] exp{i[kz — wt + ¢(z,1)]}, (8)
and insert Eq. (8) to Eq. (5) and keep the linear terms of a(z,t) and ¢(z,t) only, a set of
linearized equations can be reached

at = Gze + (7 — 2ke1)ag — 2(1 — k) — c1¢zz — 2k¢, — €6(z)a,
bt = ¢z + (1 — 2ke1)ps + €102z + 2kaz — 2c2(1 — k? Ja — 65($)¢ ’ (9)
where we denote
_Oa _Oa _ 0%
at—a; GI_EI-, a::z—m
and so for ¢, ¢, and ¢,, and specify the values of Ag and w by Eq. (4). Assuming an
eigenfunction of ( ;) corresponding to the eigenvalue o, we can write the eigenfunction as

(Z) - }; (i) et en, (10)

where ¢ and p should be complex values as
c=A+1iQ, pi = pi + iy, 1=1,2,3,4 (11)

with all A, Q, pi, v; being real numbers. Three significant points of Eq. (10) should be.
remarked. First, o is usually complex since equations (9) are non-Hermitian. Second, given
an eigenvalue o, there are four-mixing-waves to construct the corresponding eigenvector, since
the eigen-equation (9) is a four-ordered ordinary differential equation. Third, the wave number
pi,t = 1,2,3,4, are usually complex too. The real parts p; characterize the behavior of
convective instability. The last two points are interesting for characterizing the instability.

Two particular simplifications of Eqs (10) are worth while mentioned. Without control
€ = 0, the eigenfunctions can be reduced to

2
(Z):(Z) et eP?, p=——1£—7r, n=0,%1,52 (12)
which are similar to those for r = 0,1 since equations (1) and (2) are equivalent by the
transformation (4).

In the case of € # 0, r = k = 0, we can simplify Eq. (10) as

( ;) = (i) et sin(pz). (13)
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In Eqs (12) and (13) we find only single wave at the instability (Re (o) = 0). Therefore,
four-mixing-wave eigenfunction exists only under the combined operations of both control
and gradient bias (or a background wave).
Inserting Eq. (10) into Eqs (9) we obtain a set of two algebraic equations

0gi = pigi + (r — 2kc1)pigi — 2(1 — k?)gi — caphi — 2kpihs,

ahi = p2hi + (r — 2key)pihi + c1pigs + 2kpigi — 2¢5(1 — k)g; (14)
leading to the coefficient relations
PP+ (r—2kea)pi —2(1—k?) -0

h; =
clp? + Qkp,'

gi, 1=1,2,3,4, (15)
and the eigenvalue equations

1 ; . 1 - ; P T
= S(FD + D) + 5\ (D + FYy - «(FQFY - FOFD),

F{D = p? + (r ~ 2kes)pi — 2(1 - &7), F“) = —cip? - 2kp;
F{) = ¢)p? + 2kp; —2c2(1 = K?), F& =p*+(r—2ke))ps, i=1,2,3,4 (16)
In Eqgs (14) and (16) there are 12 complex unknown variables (with an arbitrary variable,
say hi, being excluded) for 8 complex equations. Then, the remained four free variables can

be fixed by the boundary conditions at £ = 0 and z = L, which are assumed to be pinned as
in Eq. (5) (We consider a single pinning, the extension to multiple pinnings is direct),

gz =0,t) = glz = L,¢t), h(z =0,t) = h(z = L, t),

9z(z = 0,1) — go(z = L, 1) — c1hiz(z = 0,8) + c1he (z = L, t) = eg9(z = 0, 1),

he(z =0,t) — he(z = L,t) + ¢19:(z = 0,t) — ¢c19-(z = L, t) = eh(z = 0,1), (17)
which yield

4 4 4 4
Zgi=2giepi14’ Zhizzhiep;L
i=1 i=1 1=1 i=

4

Z(gzpz gzp1 ep. —crhipi + c1hip; ePily=¢ Z i,
i=1

4 4
> (hipi — hipi €™ + crgipi — crgipie™ ) =€y hi. (18)
i=1 i=1

Inserting Eq. (15) into Eq. (18) we obtain four homogeneous linear algebraic complex equa-

tions for four variables g;,7 = 1,2,3,4. In order that the equations have nonzero solution the

corresponding determinant of coefficient matrix must vanish, this leads to

S(pi,o) =0. (19)

Combining Eqs (16) and (19) we have five complex equations for five unknown quantities

o and p;,i = 1,2,3,4. Inserting the solutions of ¢ and p; into Egs (16) and (18) we can solve

all coefficients g;,i = 2,3,4 and h;,i = 1,2,3,4 with g; being arbitrarily given. Therefore,

the eigenvalue problem is solved completely and analytically. It is noticed that system (10)

has an infinite number of eigenvalues and the corresponding eigenvectors. We are interested

mostly in the eigenvalue and corresponding eigenfunction with the largest Re (¢), because this

eigenvector determines the controllability of turbulence and the system behavior at the onset
of instability.

IV. Comparison of Theoretical Predictions with Numerical Results
For having a general idea how the control can change the system stability, we plot the
eigenvalue o vs. the control strength ¢ in Fig. 1 for different 7 at ¢; =2.1,co = —-1.5, m =2
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and L = 100 where the system is deeply in turbulence region. Since all equations (16) and
(18) have real coefficients, if o and p; are the solutions of the equations, their conjugates o*
and p; must also be the solutions, which are not shown in Fig. 1. In Fig. 2 we do the same as
Fig. 1 with eigenvalue o replaced by the wave exponents p;. From Figs 1 and 2, the following
points are clear.
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Fig. 1. o(n) = A(n) +iQ(n). (a) A(n) vs. € with 7 = 1.0. (b) A(n) vs. € with » = 7.5. (c)
2(n) vs. € with r = 1.0. (d) Q(n) vs. € with r = 7.5.
(i) Without control € = 0, we always have a wave exponent (say p;) equal to
2
pi(n) = o+1—zl, n=0,+1,+2,--. (20)
[¢(n) in Fig. 1 are labeled in the same order as Egs (20)]. Then it is easy to verify the following
identities
hi,10 #0, hi=g;=0, 1=23,4. (21)
The solutions (20) and (21) recovér the known results (12), and the eigenfunction contains a
single wave only at € = 0. :
(ii) By increasing ¢ from zero, p; deviates from Eq. (20), and h;, g;,4 = 2, 3, 4 are no longer
vanishing, then all four waves together build up the eigenfunctions.
(ili) As € — o0, all eigenvalues saturate to certain values, which correspond to the solutlon
of fixed boundary conditions
a(z=0,t)=a(z=L,t) = ¢(z = 0,t) = ¢(z = L,t) = 0. (22)
(iv) Among all A(n) = Re(c(n)), there is a largest one, its turning point from positive
to negative indicates the stability of the target state under control.” For instance, for large
gradient force 7 = 7.5, the target state can be stabilized (and then the turbulence can be
controlled) after ¢ > €, = 432 (Fig. 1b); however, for small bias r = 1, the target state can
never be stabilized whatever ¢ is taken (Fig. 1a).
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Fig. 2. Pi(n) = pi(n) + ivi(n). r =7.5. (a) ~ (b) pi(n) vs. € for i = 1,2, 3, 4, respectively.
(e) ~ (h) vi(n) vs. € for i = 1,2, 3,4, respectively.
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For comparing with the numerical simulation of Eqs (7), we consider € — oo, and focus on
Egs (16) and (22). In Fig. 3 we plot o(n) vs. r for different L with other parameters being
the same as Fig. 1. All the labels n come from Egs (20) by continuously varying parameters.
It is clearly shown that increasing r can definitely reduce Re{o(n)), and then is favorable to
the stability of the target state, and then favorable to the turbulence control.
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Fig. 3. m =2, ¢ — 0o, and the fixed boundary conditions (7) are used. (a) ~ (d) Re (o(n))
vs. r for L =40, 60, 90 and 256, respectively.
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Fig. 4. 7. vs. L for different m. ‘Target state can be stabilized and turbulence can
be controlled in the regions above the curves. Solid lines are theoretical predictions
from Eqs (16) and (22). Circles are obtained by running Eqs (7) from the initial con- ’
dition A(z,t = 0) = A(z,t = 0) + 6(z), 8(z) being randomly chosen in the interval
—0.01 < 6(zx) < 0.01. Circles coincide with solid lines perfectly. ‘
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For having a more general point view on the controllability of the system, we plot 7, vs.
L for different m at ¢; = 2.1 and ¢; = —1.5 in Fig. 4, where 7, is the lowest 7 for the stability
of target state at the given L, and m is the wave number of the target travelling wave state
of Eq. (4). Solid lines represent the theoretical predictions from Eqs (16) and (22). Circles
indicate the results of numerical simulations of Eq. (7), starting from the vicinity A(z,t =
0) = A(z,t = 0) + §(z) with §(z) being random number in the interval —0.01 < é(z) < 0.01.
It is desirable that circles almost completely coincide with the solid lines.

V. Conclusion

In conclusion we would like to make the following remarks. We have performed successful
turbulence control for turbulent states by applying pinning control and boundary driving
approaches. Since any turbulent system is an extremely rich reservoir of infinitely many
spatiotemporal patterns, successful turbulence control is of great significance for applications.
The boundary control approach is convenient and practically realizable. The crucial condition
for the high efficiency of turbulence control is the existence of sufficiently large drift force.
It is emphasized that drift forces exist in nature very commonly. In certain cases turbulent
systems do not contain drift force. It may still be possible to intentionally apply such drifts
for realizing successful control. For instance, it is not difficult to apply uniform electrical or
magnetic fields to the system if it consists of a charged medium.
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