e Mechanics R h Cc ations, Vol 28, No 1, pp 71-78, 2001
Copynght © 2001 Elsevier Science Ltd
Pergamon Prnted 1n the USA All rights reserved

0093-6413/01/3~see front matter
PII: S0093-6413(01)00146-X

Large Strain Field Near a Crack Tip
in 2 Rubber Sheet

Y C Gao' S H Chen”
* Northem Jiaotong Umversity, 100044, Beying, China

** LNM, Institute of Mechanics, Chinese Academy of Sciences, 100080, Beyng, China
(Received 10 June 2000, accepted for print 1 November 2000)
Abstract

The distribution of stress-strain near a crack tip n a rubber sheet 1s investigated by employing
the constitutive relation given by Gao (1997) It 1s shown that the crack up field 1s composed of two

b cmadnns and ane av aanding sector The stress state near the crack fip1s n umaxial tension
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The analytical solutions are obtained for both expanding and shrinking sectors
Key words. large strain, rubber sheet, crack

1. Introduction

The large strain elastic field near a crack tip 1s a difficult but very typical problem that can
examine various elastic laws and analytical methods The feature of the field depends on the elastic
law Knowles and Sternberg (1973) proposed an elastic law for rubber materials, and analyzed the
mode [ crack tip field under plane strain condition Gao (1990, 1997) proposed two elastic laws and
gave a sector division method, those are used to analyze the mode I plane strain crack tip field The
teresting fact 1s that according to the three different elastic laws mentioned above, the very similar
stress fields near a crack tip are obtained, but Knowles and Sternberg (1973, 1974) did not consider
the expanding sector Gao and Gao (1999) analyzed the large strain notch tip (crack 1s a special case)
field and compared the three elastic laws It 1s found that for notch tip field, the three elastic laws
can becoric equivalem 1f the consmutive parameters are related by some conditions It 1s also found
that when the expanding sector 1s taken mto account the restriction on parameter 1 (given by
Knowles and Sternberg) ts not needed

Comparing with plane strain problem, the plane stress crack tip field 1s more comphcated
because of the thickness shrinkage An asymptotic analysis of the plane stress crack was given by
Gao and Durban (1995) where the thickness shrinkage can be expressed by strain invariants For the
elastic law given by Gao (1997), the thickness shrinkage can only be given by a differential equation
that must be solved numerically The purpose of this paper 1s to reveal the crack tip feature in a sheet
that obeys the elastic law given by Gao (1997)

2. Basic Equations

Consider a three-dimensional elastic body Let P and Q denote the position vectots of a

point before and after deformation, respectively x' (2 =1,2,3) denote Lagrangian coordinates Two
sets of triads are defined as

s

oY

Q
P = Ql = 1
PV Py M
The displacement gradient 1s
F=Q,®p' (2)

Note that P’ 1s the conjugate of P,, while ® 1s the dyadic symbol and summation rule 1s implied
The Green and Cauchy deformation tensors are

p=FT F d=F FT 3)
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where the superscript T denotes the trang
invariants will be used,
h=D E=d E, I,=D" E=d™\ E, J=Vy/Vp '0))
where Vg =(01,02.03), Vp =(8,P,,P3), and the brackets denote the mixed product
A kind of strain energy per undeformed unit volume was proposed in Gao (1997),
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stand for the unit tensor, then the following

1) 1 Lty T 180T 1© 102

Us=a(i] +17) {5)
where a and » are material constants Then the Kirchhoff stress 1s
0=2% _ 2na(1"E - imp-2) ©®
D -

From Eq (6), the Cauchy stress can be obtained
r=J-lFp g BT —9n.7-l¢rn-l1g_ rn-1a-1y (N
J! I 2pa P -1 T @)
The equilibrium equation 1s
Vg Q")
&,

=0 ®
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Fig 1 The sector division near the crack tip, (a) before loading, (b) after loading

3. Shrinking Sector SH

Fig 1 (a) and (b) show the cracked rubber sheet before and after loading respectively Since the
stramn near the crack tip 1s very large, as analyzed in Gao (1990), the deformation cannot be
described by an uniformed mapping function for the whole region According to the sector division
method, the whole crack tip field 1s divided into one expanding sector EX and two shrinking sectors
SH and SH’ Before loading EX 1s very narrow while SH and SH’ occupy almost the whole crack
tip field After loading EX occupies the whole crack tip field while SH and SH’ become very narrow
Two Lagrangian coordinates are ntroduced, (R,0,Z) 1s the cylindrical coordinate before
deformation and (r,8, z) 15 the cylindncal coordinate after loading

QYY 4l PP

™oL L oo e I - 3 o D DN 4 LN
ror ine snrmeg SeClors o>ri, ue mapplng uncuon irom (R,U,2) W 7,0
follows,

SYic mada oo
» 2) 13 Hlauc ad>

mwhich 8,y,6>0, 0<@<z >0 indicates that the thickness of the sheet shrinks tremendously
From Eq (9), the local triads are

j Qr = R9pl(1-8)e, - 1R yeg]+ R\ iZ7e,

Qo =R""%(p'e, ~R” py'eg) +R'Zn'e, (10)
|@z = R'ne.
where
1 1
er=Qr=%’ e9=;Q¢9=’r‘%: ez=Q2=% an
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It 1s assumed that the thickness of the sheet 1s much smaller than the size of considered doman,
therefore the terms with Z 1 Eq (10) can be neglected
Substituting Eqs (10) and (2) into (3) and noting that

PR pR=1, PO PO =R72,
PZ pZ-1, P P/=0, (1,7j=R,6,Z and 1+)) 12)
we obtain the dominant terms of d and 47!,
d=R¥[Te e, — R S(e,eg +ege, )+ RY Vegegl+ R¥n2e e,
d~! = R26-2 g-2(Tegeg + RY S(e,€p +ege, )+ R¥ Ve, e,] (13)
+RUp e,

mn which
{q=¢[7¢’w—(l—5)¢w'] T=¢2+(1-5)%p? 14)
S=gly(-8)py +¢'y'] V=pl(r2y?+y'?)
The strain invariants are
{11 =R2T, I = Rza-zyq-2T+R—2z,7-2 as)
J= Rr+r—26,lq
n the coordinate R,®,Z, we have
VQ = Rl+y+l-26,’q (16)

We assume that the shrinkage 1n the thickness direction and in @ direction 1s the same order,
then the two terms in the expression of 7_; must be the same order, so

tey-6 (amn
For the plane stress problem, since 7,, =0, according to Eqs (13)-(15), (17) and (7) we obtain
(=nls , y= 2n s (18)
n+l n+l1
and
T"_lﬂ4 =(q—2T+77—2)n—1 19)
then

t=2nan~lq 1T 1R-*[Te, ® e, - R” S(e, Qeg +eg Pe, )
+R¥” (¥ -Tnq2)eg ®eg]
where A=2n6+2y-38 2n

Eq (20) indicates that the dominant component of stress 1s 7,
Substituting (20) and (16) into (8), noting that

&r &r

(20

Pr o Ry, =—R7y'e
;R (& yeg ;9 yeg 2
K?=YR7_1!W” —3;—=R7w'e,
and
QR =-RO7g  (RT py'e, +¢'ep) 23)
Q° =RV g7Ip[RY yye, +(1-8)eg]
{WT-W' =—(1-8)py, Try-U-0)S=9'glp
=Syy +(1-8) =-qy’, —oyS+oV =rpyq
After extensive manipulation of these equations we obtain
2(n-1) , "
0+ 22D 521197+ (1-6)2 01~ (1-8)1 -26)p =0 (25)

and
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lp+3(1-8)2Te3n%q ™ " +[2(n-Npp'y T"!

+2n(1-8)pp'nq™3 ~3(1-SyTolyntq—lp"
+2(1-8)2ppln Doy T™! +(1-S)npn*q 3] 26)
+r(+ 7)oy - (26 +y -Ng 3T + 20"y’

+4(1-8)Ton3q 3y’

-3(1-8)Tpn'q~ 19’y -(2-25 - 7)pe'y1=0
For the calculation of 7, Eq (19) can be rewnitten as

(n-1Mg 72T +772)"2[-2973¢'T +q72T"' - 27737’

(27)
~(n=DT 2Ty 4T3y =0
in which
g =rpe"v-(1-0)p%y" +yp'ty - (2-26-Y)pp'y' 28)
T'=20'0"+2(1-6) pp'

In order to match the displacements in sectors SH and EX, Eqs (25)-(27) should meet the
natural boundary condrtions

9(0)=0, y(0) = (29)
At @ =, the traction free conditions can be reduced to
9'(x)=0 v'(m)= 22D 30)
o(r)

Eq (19) gives,

1-6)2p2, "
)= 2 an
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The detailed solution of Eq (25) subjected to the conditions (29) and (30) was given in Gao
and Gao (1999) The eigenvalue & 1s

1

=— 32)
2n
The analytical solution of ¢ 1s
11 11
¢=72¢,,n2 2n (n—cos@)llz[n+(1-l)cos@p 2n (33)
n
where
n=[1—(1—l)2 sm? @)1/2 (34
n

where ¢, =g(x) 15 a parameter to indicate the amphtude of the field The value of ¢, depends on
the load at far field When ¢, 1s gtven, the function y and 7 can be solved numencally from Eqs
(26)-(30) The functions ¢, ¢', v, ¥', 7, T, R* are showninFig 2 ~5 for the case n=20,
p(r)=1, y(x)=-50

Eq (32) 1s consistent with an analysis based on energy considerations Actually, at the crack tip,

the energy density must be of the order R~!, then from Eqs (5), (15) we have
2né =1 (33)

4. Expanding Sector

The deformation pattern (9) 1s not valid when @ -»> 0 because @ —0 and w — o Therefore,
the problem must be considered 1in EX sector (@ ~ R ), where the mapping functions are assumed
to be

— pI+B I
r=R"Fp(o), 9 5 a(5) 36)

z=RYZg(8), E=GR™®
where a, 8, b are positive constants to be determined From Eq (1) and (36), we obtamn
Qr = RP{[(1+ B)p-alp'le, +atpa'eg} + RY (bs ks )Ze,
Qo =RF*(ple, - po'eg)+ R Zg e, )
0z = Rbgez

Since the thickness of the sheet 1s assumed to be small, the terms with Z 1n Eq (37) can be
neglected

Combining Eqs (37), (2), (3), (12), we can obtain the dominant terms of 4 and 47!,
d=R2020(p'2e ¢, + plo'2legey

(38)
- pp'w'(e,eq +ege, )]+ R%¢ e e,
d' =Ry 2[p2p'2e,e, + p'legey + (39)
pp'w'(ereq +ege, )+ RPg2e e,
i which
v=—(+p)pe (40)

The invariants are
Iy =Ry [ =R 2Puy2 4 R2s2 g = R+ban  (4))

where

u=p+ ple? (42)
in the coordinate (R, O, Z)

VQ - RZ;9+17—¢1+1gv (43)

Assuming the shrinkage along the thickness direction and @ =0 direction are the same order
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then the two terms in  7_j should be the same order, so

b=p (44)
Substituting Eqs (38)-(41) into (7) and noting (44) and that 7,, =0, 1t follows
2
a=2p 5)
n-1
un-ng _(W-Z +g—2)n—lg—2 =0 (46)
Noting the following relations
% _ - R b -
—~=R7%, —=0, —=-wR™* 4
26 50 o “7)
74 , e, e
L =—R%w'ey, —5—@9-= %w'e, (48)
QF =Ryl (pw'e, + peg) 49
09 = R* "By lagpo'e, ~[(1+ B)p-atp'les}
then 1 QR «< 1 Q® (50)
Eq (8) can be reduced to
Vo 7 0%)
—= = -0 51
) 51
finally, 1t 1s obtained that,
0" +2p'w' =0
{p v (52)
p'=po'=0
The boundary conditions for (52) at £ =0 are
p'0=0, P©0) = po (53)
@(0) = -’zi , @'(0)=—c (54)
po and ¢ are constants to be determined The solution of (52) 1s
p=po(c2E? +)112, a)=%—arctg(c§) (55)
It 1s easy to prove that
2
_P /
P, o'=-5p (56)
P P
u=c2p}, v=(1+f)pd 57
then according to (7) and (38) we have
7~ p'ece, + p2w'legeg - po'w'(e,eq +ege,) (58)
= czpé[sm2 e, e, +cos’ Begeg +sn B cosble,eqg +ege,))

From Eq (58) we conclude that the expanding sector is in umaxial tension state Now we
analyze the parameter pg and ¢ From the mechamcal pomnt of view, the solution can only contain
one free parameter, so there must be a relation between py and ¢ We consider the ratios of the
shrinkage in thickness direction and in R directionat @=0 Since 7, =7,9=7,=0at ©=0,
1t 1s required that g—; = g;— at @ =0, then according to §36), we have

1+ Bpo =5(0) (59)
Since u, v are constants as given in (57), ¢ 1s also a constant determined by the algebraic equation
(46), Eq (59) and (46) give
2n 2-4n
c=v2(1+ p20r D D (60)
therefore pq becomes the umque parameter for the expanding sector
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5. Matching conditions

The solution for the shninking sector SH when © — 0 must match with the solution for the
expanding sector EX when & —

We know that when ¢ — o Eq (55) has the asymptotic expression,
1

p=cpoé o=— (61)
c§
From (36) and (62), we obtain
r=R¥A=% pycO 9% R (62)
B po 2 c@
In the shrinking sector, when ® — 0, we have
p=C,0 (63)

m which C, 15 an arbitrary coefficient that 1s permitted since (25) 1 homogeneous
Similarly, when @ — 0, we have
1

= C _— 64
v=Cy3 (64)
where C,, 1s an arbitrary constant
Using (9), (63) and (64) we have
1
:Rl—b'c @, 0=£_R7’C —_ 65
r ® ) ) (65)
Comparing (62) - (65) we find that if
S=a-4, a=y (66)
1
Cp =cpo, Cy == (67

c
then functions r,@ are matched at the boundary between sectors EX and SH

From (66) and (17) we also find

B=t=b (68)

Eq (68) shows that for sectors EX and SH, the shrinking ratio 1n the thickness direction has the
same order

Now, we check the stress singularities for both kinds of sectors From Eq (21) we know that
the singularity of the dominant stress ( 7., ) in shrinking sector 1s

T R35—27—2n5 (69)
In expanding sector, the singularity of the stress 1s
e Ra—Zﬁ—b—Zn(a—ﬁ) (70)

Comparing the order of (69) with (70) we find that the stresses have the same order n sector EX and
SH

6. Conclusions

<% The mode I crack tip in a rubber like material obeying the elastic law of Gao (1997) under
plane stress condition 1s composed of two shrinking sectors and one expanding sector When
the crack tip 1s approached, the dominant stress possesses the singularity of order R7%,

2 3

(A=1+ T o )

< The thickness shrinkage near the crack tip 1s tremendous After deformation the thickness

n-1

becomes the order of R27("*1) both 1n expanding and shrinking sectors

< Although the elastic law used 1n this paper 1s different from that in Gao and Durban (1995), the
crack tip is still in unmaxial tension state, but the equations for minor quantities are different

< Both elastic law, Gao (1990) and Gao (1997) are vahid to analyze the crack tip in rubber sheet,
but Gao (1997) 1s simpler than Gao (1990)
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