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Abstract—It has been shown in CA simulations and data analysis of earthquakes that declustered or

characteristic large earthquakes may occur with long-range stress redistribution. In order to understand

long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress

redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic

medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in

heterogeneous media may be a plausible mechanism governing main shocks.
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1. Introduction

Recently, the significance of long-range stress redistribution in understanding the

earthquake mechanism has drawn considerable attention (HILL et al., 1993; KLEIN

et al., 2000; WEATHERLEY et al., 2000; RUNDLE, J.B. 1995; KNOPOFF, 2000). Various

models of cellular automata (CA) with long-range stress redistribution for

earthquake faults were widely used in these studies. Nonetheless, determination of

the nature and significance of the long-range interaction is by no means an easy

problem. Different research groups have different understandings. For instance,

KLEIN et al. (2000) stated that ‘‘linear elasticity yields long-range stress tensors for a

variety of geological applications’’ and ‘‘for a two-dimensional dislocation in a three-

dimensional homogeneous elastic medium, the magnitude of the stress tensor goes

as �1/r3.’’ They noticed ‘‘while geophysicists do not know the actual stress tensors

for real faults, they expect that long-range stress tensors, which are similar to the

�1/r3 interaction, apply to faults.’’ Moreover, they stressed that ‘‘it is suspected that

microcracks in a fault, as well as other ‘‘defects’’ such as water, screen the
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�1/r3 interaction, leading to a proposed �e)ar/r3 interaction, where a << 1,

implying a slow decay to the long-range interaction over the fault’s extent.’’

On the contrary, WEATHERLEY et al. (2000) pointed out in their cellular

automaton model that ‘‘the interaction exponent (p in �1/rp) determines the effective

range for strain redistribution in the model. The effective range decreases rapidly as

the exponent (p) increases. The event-size distributions illustrate three different

populations of events in the dissipative healing models (two-dimensional models):

� Characteristic large events (p < 1.5),

� Power-law scaling events (1.5 < p £ 2.0),

� Overdamped, no large events (p > 2.0).

They concluded that the models display a smooth transition from characteristic

large events preceded by strain correlation evolution and accelerating energy release,

to a power-law distribution of events preceded by linear energy release, as the

effective range of interactions decreases. Given that the stress redistributions in three

and two-dimensional homogeneous linear elastic media are �1/r3 and �1/r2
respectively, the difficulty in understanding long-range stress redistribution is

obvious.

Physically, the existence of cracks and other ‘‘defects’’ like water may have two

opposite effects on stress redistribution. One is to screen stress and then lead to a

shorter-range redistribution, as claimed by KLEIN et al. (2000). On the other hand,

the stress balance requires a compensational increase of the stress beyond the

‘‘defects,’’ implying a longer-range redistribution of stress.

Recently, KNOPOFF (2000) investigated the magnitude distribution of declustered

earthquakes in Southern California. He concluded that the characteristic length of

3 km in the magnitude distribution is a crossover between two different mechanisms

in the physics of earthquake occurrence.

All of the results remind us that a declustered or characteristic large earthquake

may occur relevant to some intrinsic length scales and with a longer-range stress

redistribution. Then, instead of the commonly used homogeneous linear elastic

theory, can we find possible alternative models with longer-range stress redistribu-

tion? This is the aim of this paper.

2. Possible Long-range Stress Redistribution in Heterogeneous Media

It is well known that the main terms of stress in a homogeneous linear elastic medium

are �1/r3 in a three-dimension model with a spherical void and �1/r2 in a two-

dimensional model with a cylindrical hole. Now, let us examine the stress

redistribution owing to a void in a linear-elastic but heterogeneous-brittle medium

to determine the effect of microdamage resulting from the heterogeneity on stress

redistribution. In particular, we wish to determine whether microdamage is a
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‘‘screen’’ leading to a shorter-range redistribution or a compensation implying a

longer-range redistribution of stress.

It is assumed in the model that every mesoscopic element has the same elastic

moduli, like Young’s modulus E and Poisson ratio m, but various breaking strengths

rc or strain threshold ec. Moreover, the strain threshold of the element follows a

distribution function (Fig. 1),

hðecÞ ¼
0; when ec < e�c
q�1
e�c

ec
e�c

� ��q
; q > 1; when ec � e�c

(
ð1Þ

where e�c is the minimum of strain threshold, i.e., the strain thresholds of all elements

are larger than e�c , and the number of elements with strain threshold higher than e�c
decreases as a power law. Then, for strain less than e�c , all mesoscopic elements

remain solid, namely the system is elastic; however, as the strain is higher than e�c ,
some mesoscopic elements will break and damage occurs. Also, the parameter q in

the heterogeneous-brittle model should remain greater than unit and the greater the

parameter q is, the stronger the heterogeneity relevant damage is, see Figure 1.

We must confess that we do not know the actual distribution of strength in

geological media. However, the above simple distribution looks qualitatively

reasonable and makes it easy to perform some analysis to study stress redistribution

in heterogeneous media. In fact, the heterogeneity must imply some intrinsic length

scales relevant to structures of geological media. Nonetheless, as first-order

approximation, we use local mean field to deal with the problem. In this way, the

intrinsic length scales are eliminated in the approximation and the stress-strain

relation in uniaxial stress state is (Fig. 2),

Figure 1

The distribution function of strength of mesoscopically heterogeneous elements, h(ec). It shows that the
greater the value of q is, the smaller the mesoscopic strength scatter becomes.
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r ¼
Ee; when ec < e�c

Ee�c
e
e�c

� �2�q
when ec � e�c

(
ð2Þ

D ¼
Ze

0

h ecð Þ dec ¼
0; when ec < e�c

1� e
e�c

� �1�q
; when ec � e�c

(
ð3Þ

where D is damage. In accord with damage mechanics, the effect of damage can be

described by the reduced modulus, such as

E0 ¼ Eð1� DÞ ¼ E�e1�q; ð4Þ

where �e ¼ e
e�c

� �
:

In multi-axial stress state, it is presumed that the damage or the reduced moduli

are governed by maximum strain, i.e., the circumferential strain eh. We call this the

h-model. Then, when �eh > 1, the elastic-brittle constitutive relation in spherical

configuration (3-D) becomes

�rr ¼ ½ð1� mÞ�er þ 2m�eh��e1�q
h ð5Þ

�rh ¼ ½m�er þ �eh��e1�q
h ð6Þ

where m is Poisson ratio and �r ¼ ð1� 2mÞð1þ mÞr=Ee�c . In the following we will ignore

the bar above all dimensionless variables. The stress balance equation in spherical

configuration (3-D) is

Figure 2

The one-dimensional stress and strain relation of the linear-elastic but heterogeneous-brittle model with

different q values. It shows that the greater the mesoscopic strength scatter is, the softer the model becomes.
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dr
dr
þ 2

rr � rh

r
¼ 0: ð7Þ

The strains can be expressed by dimensionless displacement u and radius r (all are

nondimensionalized by the inner radius of the spherical void, Figure 3),

er ¼
du
dr
; ð8Þ

eh ¼
u
r
; ð9Þ

Substitution of the strain definition (8–9) and the elastic-brittle relation (5–6) into the

balance equation (7) leads to a nonlinear ordinary differential equation (Lambert

equation),

ð1� mÞu00 þ ð1� mÞð1� qÞ u
02

u
þ ð1þ qþ m� 3mqÞ u

0

r
þ 2ðmq� 1Þ u

r2
¼ 0: ð10Þ

Equation (10) works for the presumed h–model with constitutive relation (5 and 6). It

is worth noting that Eq. (10) reduces to the linear elastic version, when q ¼ 1.

However, when q is greater than unity, the nonlinear second term in Eq. (10) plays a

significant role. We use the following nonlinear transformation to simplify equation

(10). Let

Figure 3

The configuration for the discussion of stress redistribution in heterogeneous media. The central void

represents initial damage. The grayness indicates heterogeneity, and the big circle shows a two-dimensional

axisymmetric configuration of the model.
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u ¼ U a; ð11Þ

where a is an undetermined parameter. After substituting (11) into Eq. (10) and

taking a ¼ 1=ð2� qÞ, one can find that the equation for variable U becomes a linear

one,

ð1� mÞaU 00 þ ð1þ qþ m� 3mqÞa U 0

r
þ 2ðmq� 1ÞU

r2
¼ 0: ð12Þ

There is a power-law solution to Eq. (12) of the form,

U ¼ Ar�b; ð13Þ

where A is an arbitrary constant and b is an undetermined exponent. Substitution of

the solution (13) into equation (12) gives the following dependence of the exponent b
on q and m,

b1 ¼ q� 2 and b2 ¼
2ð1� mqÞ
1� m

: ð14Þ

Hence, the stresses, either circumferential or radial, will be in the form

r ¼ Oð1Þ þ O
er

eh

� �� �
e2�q
h ¼ Oð1Þ þ O

er

eh

� �� �
½A1 þ A2r�p�; ð15Þ

where A1 and A2 are two arbitrary constants, and

p ¼ bþ 2� q ¼ 2
2� m
1� m

� 1þ m
1� m

q: ð16Þ

One can verify that the ratio of strains in the expression of stress (15),

O
er

eh

� �
� Oð1Þ: ð17Þ

The reason is as follows. Generally speaking, the solution of the variable U can be

written as

U ¼ A1r�b1 þ A2r�b2 : ð18Þ

Then, the term

er

eh

� �
¼ �ab1

1þ A2b2

A1b1
r�b2þb1

1þ A2

A1
r�b2þb1

: ð19Þ

Provided b2 > b1,

O
er

eh

� �
� Oð1Þ þ Oðr�b2þb1Þ: ð20Þ

1846 Yilong Bai et al. Pure appl. geophys.,



So,

r � A01 þ A02r
�22�m

1�m�
1þm
1�mq: ð21Þ

Notably, the power-law exponent p in stress redistribution, see Eq. (16) or (21),

approaches 3 when q tends to 1, as linear homogeneous elasticity gives in textbook,

and p decreases with increasing q. That is to say, stress redistribution in a

heterogeneous elastic-brittle medium has longer interaction range with stronger

heterogeneity relevant damage.

Similarly, we have derived the stresses for the two-dimensional (cylindrical)

configuration under the same assumptions of heterogeneity and reduced modulus.

The corresponding versions in the two-dimensional plane stress case (2-D) are as

follows:

The elastic-brittle constitutive relation when �eh > 1 becomes

�rr ¼ ½�er þ m�eh��e1�q
h ; ð5aÞ

�rh ¼ ½m�er þ �eh��e1�q
h ; ð6aÞ

where �r ¼ ð1� m2Þr=Ee �c . Later we ignore the bar above dimensionless variables

again. The stress balance equation in cylindrical configuration (2-D) is

dr
dr
þ rr � rh

r
¼ 0: ð7aÞ

The non-linear ordinary differential equation of displacement u is.

u00 þ ð1� qÞ u0
2

u
þ ðqþ m� mqÞ u

0

r
þ ðmq� 1� mÞ u

r2
¼ 0: ð10aÞ

The corresponding power-law exponent p is

p ¼ bþ 2� q ¼ 0
3þ m� ð1þ mÞq

�
: ð22Þ

Similarly, the power-law exponent p in stress redistribution, see Eq. (22), approaches

2 when q tends to 1 and p decreases with increasing q also, although at a slower rate

than that in three-dimensions (Table 1).

3. Results, Finite Element Computation and Discussions

Before discussing concrete calculated results, certain remarks on the stress

redistribution in heterogeneous media obtained in the previous section should be

emphasized.

Noticeably, the obtained power distribution of stresses in the model should be

testified to be at least a proper approximation of real geological media. However,
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geophysicists do not know the actual stress tensors for real faults. Therefore we have

to consider all possible models and resort to numerical simulations. The two major

assumptions made in the h - model are: Poisson ratio m remains invariant and the

circumferential strain eh governs the reduced moduli. In order to check the

significance of the second assumption in the h-model, we also calculate an alternative

model—the mixed model, termed the M-model, which consists of elastic and

damaged deformations. In the three-dimensional configuration,

rr ¼ ½ð1� mÞer þ 2meh� ð23Þ

rh ¼ ½meh þ eh��1�q
h ; ð24Þ

and in the two-dimensional case,

rr ¼ ½er þ meh� ð23aÞ

rh ¼ ½mer þ eh�e1�q
h : ð24aÞ

Figures 4 and 5 show the comparisons of circumferential (Fig 4) and radial (Fig 5)

stresses with radial distance for q = 1.2 in the h-model, mixed model and the elastic

one, respectively. It is clear that the two damage models present slower attenuation

than that of the elastic one. As another comparison, Figure 6 gives circumferential

stress with radial distance for q = 1.5, in the three models, respectively. One can

notice that with increasing q value, i.e., in the more damaged medium, the stress

demonstrates even slower attenuation

In addition, finite element numerical simulations in two dimension were made.

The simulation is implemented by ABAQUS (a nonlinear Finite Element Analysis

package). We use an 8-node reduced-integration axisymmetric element to solve the

problem. The damage constitutive relation is based on the h-model. In this way we

cannot only check the calculations based on the obtained approximate analytic

solutions but also examine the transition from elastic to damage models with

increasing loading, see Figure 7.

The comparison of all these calculations shows a clear trend of longer range of

stress redistribution with increasing index q, although the M-model and the full

Table 1

The formula and values of power exponent p in approximate power law, r � r�p in three- and two-dimensional

configurations

q p (3-D) p (2-D)

p ¼ 2 2�m
1�nu� 1þm

1�m q p ¼ 3þ m� ð1þ mÞq
when m = ¼

1 3 2

1.2 2.66 1.75

1.5 2.16 1.37

1.75 1.75 1.06
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numerical simulations show considerably more complicated behavior than the simple

power law of stress redistribution in the h-model. Based on these results, the stress

redistribution in heterogeneous media with interaction range longer than in linear

Figure 5

The variations of radial stresses with radial distance for q = 1.2, in h-model (solid), mixed model (dotted)

and elastic (dashed), respectively.

Figure 4

The variations of circumferential stresses with radial distance for q = 1.2, in h-model (solid), mixed model

(dotted) and elastic (dashed), respectively. For easy comparison, all stresses are renormalized by the stress

value at the inner surface of the hole.
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homogeneous elastic medium (like p = 3 in three dimension) might be a reasonable

mechanism rather than a virtual assumption. In addition, we could apply these long-

range interactions to cellular automata to simulate earthquakes.

Figure 6

The variations of circumferential stresses with radial distance for q = 1.5, in h-model (solid), mixed model

(dotted) and elastic (dashed), respectively. For easy comparison, all stresses are renormalized by the stress

value at the inner surface of the hole.

Figure 7

The variations of circumferential stress with radial distance for the elastic-heterogeneous brittle medium

with parameters q = 1.5 and m = 0.25 for various loading steps. The points are the FE results. The two

solid lines are the analytical results of elastic and the damaged elastic-brittle models, respectively. The

agreements between FE and analytic solutions are very good. The dotted line in between is the FE result

for the state of partly elastic (outer part) and partly damaged (inner part).
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Then, what is the physical basis of the obtained results? As mentioned in the

introduction, long-range stress redistribution may imply some intrinsic length

scales. Physically, intrinsic length scales in heterogeneous media may be cataloged

into two groups: small ones d of mesoscopic heterogeneities or microcracks, and

large ones l of macroscopic faults, which follow d « D « l, where D is the length

scale of representative element volume (REV) in the calculation model and tends

to become infinitesimally small in the continuum approximation. All intrinsic

structures with length scales d are averaged into the distribution function of

heterogeneity and become hidden in the present mean field approximation of the

model. Their effect is to bring about the stress redistribution with longer range,

owing to less load-supporting ability in the damaged REV. This is what we

modeled in the present paper. However, large macroscopic faults with length

scales l »D should be the free interface in the concerned body. Clearly, these

macroscopic free internal boundaries would screen stress field. Therefore, we

assume that the long-range stress redistribution resulting from damage in

heterogeneous media with intrinsic length scales to quite possibly be a mechanism

governing main shocks.

4. Concluding Remarks

In order to understand why a declustered or characteristic large earthquake may

occur relevant to some intrinsic length scales observed in earthquake data and with a

longer-range stress redistribution observed in CA simulations, we propose a linear-

elastic but heterogeneous-brittle model. The stress redistribution owing to damage in

the heterogeneous-brittle medium has a power-law exponent in the h-model, of

p ¼ 2 2�m
1�m� 1�m

1�m q in three dimensions and p ¼ 3þ m� ð1þ mÞq in two dimensions,

respectively instead of 3 and 2 in elastic medium, hence implying longer-range

interactions. Other calculations, like finite element simulations, also show a clear

trend of longer range of stress redistribution with increasing index q, although more

complicated than simple power law. Therefore, it is thought that the long-range

stress redistribution resulting from damage in heterogeneous media may quite

possibly be a mechanism governing main shocks.
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