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The longitudinal structure functioLSF) and the transverse structure functi@rSF in isotropic
turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and
Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex
radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of
isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF.
Also observed are differences between longitudinal and transverse structure functions caused by
intermittency. These differences are related to their scaling differences which have been previously
observed in experiments and numerical simulations.1999 American Institute of Physics.
[S1070-663(99)02512-X]

I. INTRODUCTION LSFs. (See the review by Sreenivasan and Antchi@nly
recently has it become feasible to calculate reliably other
One of the central challenges in fluid turbulence is tocomponents of velocity structure functions, due to the ad-
understand velocity structure functions. Velocity structurevances in experimental technology and computer capability.
functions are defined as moments of the velocity differenceSeveral experimental studies and DN have been carried
(or velocity incrementsbetween two points in a turbulent out to determine the TSFs. Most of these reséifts~1?
field. The longitudinal structure functioflcSF9 are the mo- agree that there exist significant differences between scaling
ments of the differences in the velocity components whichexponents of LSFs and those of TSFs for moment orders
are in the same direction as the separation vector between thégher than three. The TSFs exhibit more intense intermit-
two points. The transverse structure functi¢nSF9 are the  tency than the LSFs. However, there also exist some differ-
moments of the differences in the velocity componentsent conclusion$>®which argue that the differences of scal-
which are transverse to the separation vector between tHeg exponents in experiments and DNS violate the isotropic
two points. In Kolmogorov's 1941 paper on isotropic constraint and attribute to the effects to finite scaling rdﬁge.
turbulence’ the probability distribution functions of the ve- A minimal condition for isotropic turbulence is that the
locity differences between two points were assumed to bé&caling exponents for the second-order LSF and TSF must be
independent of coordinate translations and invariant with rethe same. It is known that inertial range isotropy can only be
spect to rotations and reflections of the coordinate system@btained for flows with high Reynolds numbers. The existing
Therefore, tensorial moments of velocity differences are hoDNS can only reach moderate Reynolds numbers, where the
mogeneous and isotropic_ Using dimensional ana|ysisl K0|minimal condition is hardly satisfied. Therefore, theoretical
mogorov argued that the velocity structure functions arec@lculations of LSFs and TSFs using various models of iso-
scale invariant in the inertial subrange and he obtained th&OPiC turbulence are of great interest.
linear scaling exponents of the LSFs. The purpose of this paper is to propose a vortex model
Since Kolmogorov's 1941 paper, much work has beerfNd use it to calculate velocity structure functions. In Sec. I,
done on the calculation of velocity structure functions. Dued Vortex model combining Burgers and Rankine vortices is
to experimental constraints, most of the work was focused ofonstructed for isotropic turbulence. Using this model, we
the LSFs by invoking Taylor's hypothesis. Experiments angderive the related LSFs and TSFs in Sec. lll and calculate
direct numerical simulatiofDNS) have revealed that the their scaling exponents in Sec. IV. Finally, we discuss the
scaling exponents of the LSFs deviate from Kolmogorov'srésults and briefly present our conclusions.

prediction of linear scaling. The deviations from the linear
scaling exponents are a measure of the intermittency of thd- A COMBINED VORTEX MODEL FOR ISOTROPIC

TURBULENCE
dAuthor to whom correspondence should be addressed. Telephone: 505- The baSiF i_dea in vortex models of fluid turbumnc? is
667-0174; Fax: 505-665-3003; electronic mail: ghe@t13.lanl.gov that the statistics of turbulence can be calculated using a
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stochastic distribution of various vortices, subject to the revortex lines, for example, along theaxis in a cylindrical
quired probability density distributions. If vortex solutions of coordinate system. The induced velocity fieldgg
the Navier—Stokes equations specify the essential physics 6f(0,vg 4,0) only have an azimuthal component
turbulence and if the vortex distributions resemble the statis-

tics of the observed vortices, the vortex models can reason- T

ably describe the statistics of turbulence. Using vortex mod- Fr I<rg,
els, one can calculate velocity structure functions by VR o= R (5)
ensemble-averaging various vortex solutions. In Synge and ' r F>r

_ R,

Lin’s pioneering work!* Hill's spherical vortex was used to 2r’
calculate the LSFs and TSFs of second order. Since Hill's

vortex is inviscid and steady, it is more appropriate for largeynerer is the circulation andg, is the core radius. Kambe
scale rather than small-scale statistics. A more appropriatg g Hosokawa were the first to use the Rankine vortex
vortex solution for small-scale statistics is the Burgersmodel to calculate the first and third LSFs and their results
vortex® It describes the properties of filaments which aréyere impressivé® It has been known that the Rankine vor-
the most intermittent structures at small scales iney is an exact solution of the Navier—Stokes equation in the
turbulence®*’ limit of vanishing viscosity. Therefore, it is an approxima-

The velocity field of the Burgers vortex is composed of ajon to the concentrated vortices in turbulence at very high
nonrotational strain background field and a field induced by &eynolds number. It is the tube-like concentrated vortex that
localized vortex filament. In cylindrical coordinates ¢,z),  dominates the most intermittent structures and contributes
the background straining velocity fieldg ,, has the follow-  greatly to the singular scaling exponents. This singular scal-
ing form: ings reflect nonsmooth or discontinuities of velocity in the

Ve b=(—ar,0,2az), (1) limit of vanishing viscosity. .

Turbulent flows consist of many different types of ed-

where the strain rate, is a positive constant. The localized dies. It is a belief that the statistics of small-scale structures
vortex filament is assumed to be aligned with thexis and  in fully developed turbulence might be modeled in terms of a

has the vorticity random distribution of different vortices. Instead of using a
r single type of vortex, we propose that isotropic turbulence be
0=(0,00,r)), w,(r)=—7exp—F?), (2) modeled by ensembles ofrious typesof vortices. In this
7Trb

paper, we suggest that the turbulent velocity fields might be
wherer,=(2v/a)¥? is the vortex radius] is the vortex described by a combination of random distribution of Bur-
circulation, v is the viscosity and=r/r,. The velocity as- 9ers vortices and Rankine vortices. Assuming a random dis-
sociated withw, Vg ¢, has only an azimuthal component  tribution of Burgers and Rankine vortices, we calculate the
' statistics of turbulence by using an ensemble average of
T 1—exp(—F?) 3) these vortices. LeQ(vg) andQ(vg) be the contributions to
2y, f ' the velocity from the Burgers and the Rankine vortices, re-
spectively. Then, the total velocity is a probability sum of
Q(vg) andQ(vg): u=Q(vg) +Q(Vvg). In the simplest case,
Mhe total velocity can be considered as a linear combination
of these two vortices in the sense of statistics

Vg, =(0Vv4,0), 0y

The total velocity for the Burgers vortex \g=Vg p+ Vg ¢ .
Each Burgers vortex can be characterized by two para
eters: the vortex radius, and the vortex strength'. The
latter defines the vortex Reynolds numb&;=I"/v. As-
suming thatRr andr, have uniform distributions, Saffman
and Pullin calculated the LSE8 Their results have a satis- U=Vvg+AVg, (6)
factory inertial range for even order LSFs and a limited in-
ertial range for odd order LSFs. An exponential probabilitywhere\ is a probability weighting factorx depends on the
density functionPDP for Ry has been proposed recently by ratio of the background field’s dissipation to the induced

Hatakeyma and Kamb& velocity field’s dissipation\ also depends on the ratio be-
3 tween the Rankine vortex core radius and the Burgers vortex
P(Rp)= 7R% exp — CRy), (4) radius. Therefore, the total velocity in the combined vortex

model of Burgers and Rankine vorticéBR) is

whereC= (3/47)RY? andR, is the Taylor—Reynolds num-

ber. The LSFs obtained from their calculation show good UY¢=VrsTAVgs, U=—ar, u,=2az (7)

agreement with experimental and DNS results. Following

Hatakeyma and Kambe’s assumption, we have further calcu- The statistics of isotropic turbulence can be calculated

lated TSFs, but the TSFs obtained do not demonstrate satissing an ensemble average of the velocities in [#j. The

factory inertial range scalings. reason for using this BR model is that neither the Burgers
A filament can be also modeled by a Rankine voffex. vortex model nor the Rankine vortex model exhibits accept-

The Rankine vortex is a uniform rectilinear filament in ideal able scalings for TSFs in the inertial ranges. Moreover, those

flows, which is composed of rotational and irrotational partstwo models separately do not satisfy the minimal condition

The vorticity is assumed to be aligned in parallel straightfor isotropic turbulence.
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IIl. FORMULATIONS OF VELOCITY STRUCTURE Ry

R Vo(f'
FUNCTIONS w,=—v2l cos¢ sin{— o)
V2w

57 (Fsing

In this section, we derive the LSFs and the TSFs for the
BR vortex model. Fixing a reference poipt(r, 6,z) in the
cylindrical coordinate system, the Cartesian coordinatgs of

+1singsing)—¥,(f)sing

are R (0,1 (13
N V(P
X=r cosf, y=rsin,z (8) w,=—V2l singsin+ 3 HA, (F coso
’ e AR S
The relative position of another poit’ to p can be ex- A
pressed using spherical coordinatés/(¢) centered afp, +1 cose¢ sing) —V,(f)cosh|,
where { is the polar angle and is the azimuthal angle.
Thus, the Cartesian coordinatespif are ws=2v2l cost,

X'=x+tlcos¢sing, p'= P2+ 1Zsing+ 271 sing cog d— ).

y'=y+lsingsing, ®  We note that the transverse velocity increment is not a com-
ponent but an absolute value in this paper.

[
z'=z+1 cos{. The ensemble averagés in this paper are defined as
The unit vector I=(I3,l,,ls) of pp’ is  spatial averages and probabilistic averages. The spatial aver-
(Cos$sing,singsing,cosd). ages are integrations over all possible orientations and loca-

Denoting the velocity differences between the two pointstions. The probabilistic averages are the integrals, over given
p andp’ asdu=u(p)—u(p’), we can calculate the longi- probability density functions of vortex Reynolds numbers
tudinal and transverse velocity incrementulf=(su,-1)l  and the vortex radii, see Eqa5)l$1nd (16). _
and 8u=6u,—(8u;-)I. Thus, their magnitudes aréuf In the DNS by Jimeneet al"" and the experiments by

—|sut| andsu = yaul- aul. For the purposes of numerical Belin et al,?? the PDF of vortex Reynolds numbeR(Ry),

i ; i ; ; d the PDF of vortex radiR(T,,), have been found to have
evaluation of the magnitudes, we nondimensionalize thé&" i "\lb/s
magnitudes usinge() 4 exponential forms. We assume that the vortex Reynolds

numbers have the exponential distributi¢f). Fitting the

. 2 -uy data from Belin’s experiments at higher Reynolds numbers,
dui=|352+3 v21(3cog(—1) we obtain:
- P(Ty)=ETg exp(—Tp ). (14
Rp _[Ve(F") V() | . S1 oo ~0.7 ; i ati
+ e |\ T 7 |singsing|, (100 HereE™'=[{T¢exp(-Tp")dT, is a normalization constant
an

andT,=r,/n where 5 is the Kolmogorov scale. Hereafter,
we will use the tilde to denote those quantities nondimen-
sionalized by the Kolmogorov length.

From Egs.(10), (13), (4), and(14), the nth order LSFs

s-(T) and TSFss!(T) can be written as follows:

where e=(v/2(du; /9x;+ du; 19x;)?) is the dissipation rate,
{=I/ry is the dimensionless separatidp=rg/r, is the di-
mensionless core radius, and

17 =\f2+12sir? £+ 2¢1 sin¢ cose, . . =
s;(l):fo P(’Fb)dTbJO P(RF)dero °d?f7 do
+Ng o), (12)

m Tsing
X | e (oug )" (15
0 27TRO b

si0= [Py, [ “proar [Tar [ ag [ Tac

R% —-1/4 RF
a=<—32772+ ) P (12 o
<[ a0 (e 1o
Similarly, the magnitudes of the transverse velocity incre- o 4772@(2)( uT/Fb '

ments can be written as follows:
-4 IV. NUMERICAL INTEGRATION OF THE LSF AND THE

VOWT+ SWs+ Sw3, TSF

In numerical evaluation of the BR model, there are three
undetermined parameters: The weight factpratio of radii
of two vorticesfr and the integration upper limR,. The

2

R
T_( °r
ou; = (—327T2 +3

3
Mi:;l w;(8i;—1ily),
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FIG. 1. The second-order transver&¢) and longitudinal(CJ) velocity FIG. 2. The third-order transver$e> ) and longitudinalJ) velocity struc-
structure functions as functions of the separatiorThe solid line is for  ture functions as functions of the separatibii;he solid line and dashed line
~1%72 and the dashed line is for %™ The inset shows the transverse are for~I.
velocity structure function vs the longitudinal velocity structure function.
The bullets indicate the inertial range.
and 10 are shown. It is observed that there exist two scaling

iaht fact d ratio of radii of t . b ranges. The first scaling range corresponds to the dissipation
weig bl "’;C 0; andra I'OS radi Oth wo vortlcgst Ca?, et rea- range and the second scaling range corresponds to the iner-
sonably Tixed uniquely by using the constraints of 1SOlropiCy;, range. To compare the scaling exponerﬁtandrl of the

turbulence. They are chosen so that the basic constraints f SEs and the TSFs in the inertial range, we [sipversuss:
isotropic turbulence are satisfied: The scaling exponents %brn=6, 8in Fig. 4. It is easy to see that their slopes arr:a less

the second-order_LSF and TS'.: are equal and the_ scahrman unity, which indicates different scaling exponents for

exponent of the~th|rd-order LSF is equal to one. The integrag o inertial ranges.

tion upper limitR, is determined by the constraint that en- The scaling exponenté; and TI can be evaluated using

semble averages of dissipatign and enstrophy must be equghegr regression of the LSFs and TSFs. In Figrﬁand TI

Therefore, A =0.15,7g=0.95, Ry=12.5. The radius of the are plotted and compared with the results from DNS. Quali-

Rankine vortex is assumed to be related to that of the Burtatively, they show that theh are larger than therl for n

gers vortex. This assumption leads to a more concentrated 2.

vortex distribution near the vortex core. Since the radii of

two types of yoruces are related, the rate Qf straining of thg/. DISCUSSIONS AND CONCLUSIONS

background field has an effect on the Rankine vortex as well.

The increase of Taylor—Reynolds number changes the length In this paper, we have discussed the velocity structure

of the inertial range but does not change the scalings. Ifunctions using a combined vortex modBR). The vorticity

practical calculationsR, is chosen to be 1290. field in the BR model is composed of Burgers and Rankine
A second-order trapezoidal numerical integration wasvortices. The second-order velocity structure functions of the

used to evaluate Eq€l5) and(16). We used 30 mesh points BR model can be shown to satisfy the minimal condition for

for each integration. Doubling the number of mesh points didsotropic turbulence. Their LSFs and TSFs exhibit satisfac-

not change the results reported here. tory scalings and demonstrate a transition from the dissipa-
In Fig. 1, we plot the second-order LSF and TSF as

functions of the separations in log—log coordinates. Both are

found to have nearly the same scaling exponefigg 0.72 10°
and 7{:0.71. Therefore, the proposed BR vortex model sat- 10° F
isfies the minimum requirement for isotropic turbulence. We , :
also calculate the second-order LSF and TSF of the Burgers 10°¢
and Ranking vortex model, respectively. For the Burgers 10k
vortex model, the scaling exponent of the second-order LSF Yo f
is larger than that of the second-order TSF, whereas, for the 10 ;
Rankine vortex model, the scaling exponent of LSF is less 10" E

than that of the TSF. The Rankine vortex has a smaller con-
tribution to the LSFs but a larger contribution to the TSFs. ;
This can be seen from Eggl5) and (16). 10°

In Fig. 2, we present the third-order LSF and TSF. Their [
scaling exponents are approximately equal to unity. There-

of : : : : FIG. 3. The transverse velocity structure functions as functions of the sepa-
fore, the BR model satisfies the basic constraint of ISOtrOpI(J;':ationl, for n=4,6,8,10 from bottom to top. The inertial range is within the

turbulence. two dotted lines. The inset shows similar relations for the longitudinal struc-

In Fig. 3, thenth-order LSFs and TSFs far=4, 6, 8,  ture functions.
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10°

tributions of the Burgers and Rankine vortices to the LSFs
differ significantly from their contributions to the TSFs. It is
this difference that produces the different scaling exponents
of the LSFs and the TSFs. This conclusion is supported by
recent result€?® The intermittent parameters in the hierarchy
models are different for velocity structure functions of lon-
gitudinal and transversal directions.
In principal, the present model is not only valid for finite
JPeY — Reynolds number, but also for infinite Reynolds number.
10" &, 108 However, only finite Reynolds numbers are accessible to nu-
ol ol ol o vl vl merical integrations. Calculations can only be done for large
10" 10' 10° 10° but finite Reynolds number. Therefore, our conclusions are

L

Ss valid for large enough Reynolds number but not for infinite

FIG. 4. The relative scaling of the sixth-order transverse structure functiorﬁeynOIdS number. In actual turbulence and turbulent simula-

vs the sixth-order longitudinal structure function. The inset shows the relalions, the observed vortex structures have a variety of forms.
tive scaling for the eighth-order quantities. The bullets indicate the inertialThe current model is an over-simplified model of turbulence.
range quantities and the slopes of dotted lines are unity. However, since the BR model captures the underlying phys-

ics of the intermittent structures, such as vortex filaments, it

. . . . rovi me understanding of differen ling exponen
tion range to the inertial range. However, neither the Burgerg ° des some u derstanding of different scaling exponents
of isotropic fields.
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