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ABSTRACT

In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness
matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global plat-
form for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked
component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining
the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calcu-
lation of large scale cracked structures together with any finite element program. The theories developed are validated by
both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform
and a self-elevating drilling rig.
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1. Introduction

Offshore platforms are large scale steel or concrete structures. They experience various kinds of
damages such as dents, corrosion pits, cracks, deformation, etc. , after years of environmental impact
of winds, waves, currents, soil reactions, earthquakes and ice (Duan and Liu, 1995). The safety of
the structures has always been the most important issue concerned, and it depends on the assessment of
the integrity of the structures, or specifically on the assessment of the damages in the structures. Ricles
et al. (1994) experimentally investigated the residual strength of dent-damaged tubulars. The results
are compared with those from finite element modeling of dented bracing conducted by ABAQUS. Liu et
al., (2002) presented their recent advances on the evaluation on deformed legs of offshore platforms.
They developed a finite element method which was experimentally and numerically verified for such
analysis. Qian et al. (1990) studied a cantilever beam with an edge-crack and obtained the'eigenfre-
quencies for different crack lengths and locations. The results were applied to the detection of cracks
and to the investigation of dynamic behaviour of the structure. As indicated by Gudmundson (1982),
who used a first order perturbation method to predict the changes in resonance frequencies of a structure
resulting from cracks, notches or other geometrical changes, cracks will change the stiffness of the

cracked component, influencing the strength or safety of the structure. It is shown that finite element
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analysis is the most effective and successful method for such assessment. In general, one component is
simulated by one element in the FE model of the platform. However, in comparison with the compo-
nents of the platforms, the cracks in the components are very small. The cracks must be finely meshed
for accurate simulation, which can not match the large size of other elements for the components that do
not have any damages. To solve this problem, a finite element method is proposed in this paper to de-
termine the effective stiffness of the cracked component. The stiffness matrix of the cracked component
is integrated into the global stiffness matrix of the finite element model of the global structure for the FE
calculation in any environmental conditions. The stiffness matrix equation of the cracked component is
derived by use of the finite variation principle and fracture mechanics. The equivalent parameters de-
fining the element that simulates the cracked component are mathematically presented, and can be eas-
ily used for the FE calculation of the large scale cracked structures together with any finite element pro-
gram. As an application of this method, ABAQUS is used to integrate the stiffness matrix of the
cracked component into the global stiffness matrix of the finite element model of a dn]lmg rig to calcu-
late the stresses of the platform. The results show the effect of the cracks on the strength of the rig.

2. Assumption

A beam component with a surface semi-elliptical crack is considered, and the local coordinate
system as well as the basic force vectors, the position and dimension of the crack is shown in Fig. 1.
The component will be taken as one beam element if it does not have any damages. For the cracked
component, it is divided into three elements according to the Saint-Venant principle that the stress field
is affected only in the region adjacent to the crack and the element stiffness matrix, except for the
cracked element, can be regarded as unchanged under a certain limitation of element size. The middle
element acts as a linear spring that does not have length and is called the damaged one, as shown in
Fig. 2. The other two without any damages have a length of I, and I, respectively. The equivalent ele-
ment stiffness matrix of the cracked component is obtained by integrating the stiffness matrices of such
three elements by means of the static condensation method. It can be seen that the difficulty in solving
the problem is the derivation of the stiffness matrix of the damaged element.
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Fig. 1. Component with a surface semi-elliptical crack.
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Fig. 2. The damaged element and its sign convention.

3. FE Method for Cracked Component

3.1 Stiffness Matrix of the Damaged Element
As shown in Fig. 2, the forces at Node 1 and Node 2 present the relationship:

X, =-X,=X,Y,=-Y,=Y, M,=-M, =M. (1
Define the difference between the corresponding displacements at the two nodes:
w=u—u, v=v-v, 0 =60,-86,. (2)

The energy release rates G are related to the compliances A and stress intensity factor K as pre-
sented by Irwin and Kies (1954) and Lubahn (1959) : '

1-4 : _ X dA,
. =" (K =75 735
1— VZ Y2 '\w
16 ="F K =75 ®
L ey X di
(Gn = 5 (Kiw)” = 5 745
where the compliances A for extension, bending, and shear are defined by:
Aw = 07X
g = O/M (4)
Ap = w/Y

in which & is axial extension, @ is rotation, and w is deflection respectively by axial load X, moment
M, and shear force Y.
For Fig. 2, the correlation between the nodal forces and displacemnets is expressed as follows:
u = A,X + AgM,
0. = AuXy + AgM, (5)
v = A,Y,

where,

_2(1 -7 S(KIX)2 _ 231 - vZ)Js Kix Kiu
h = 22 L FE) ds, a, = B SR Sas,

VAW 2 2y rS 2
o = 2SO (B as, a, = 2522 (B s,

are derived from Eq.(3), E and v are Young’ s modulus and Poisson’ s ratio respectively, S is the
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area of the crack surface, and K|y, Kyy, and K stand for the stress intensity factors induced by
X, Y, and M, respectively. As we know, the stress intensity factors along the edge of the crack are
different. The maximum stress intensity factor at the deepest point of the crack is taken for calculating
Kix, Kgy, and K1y

The stress intensity factors are expressed as:

K, =—ML";"T(’—'I§Iﬂ/}‘b, Ky _EM(;)«/-_b (6)

where, b is the depth of the crack; My, My, and M, are tension, bending and shear stress correc-
tion factors defined by parameters a(length of the crack), b, ¢(wall thickness), and D (outer diam-

eter); oy, o5, and 7, are stresses respectively induced by X,, M,,, and Y, when no crack exists in

the element; E(k) is the elliptic integral:

X2 D st
=L o= pr T =T
165l
B = [1+1.464( 2) 7] b1

in which A, I, and S_ are the cross-sectional area, axial moment of 1nertia, and static moment about
the z axis, respectively. The stress correction factors My and M are expressed as:

My = f(&, B an(§)E(k);

My = f2(&, B as(§)E(k);

where 6:—5; ﬂ:f;
fv(&, B) = 0.9885 + 0.11368 + 0.93885° - 14.0508°
+ (= 0.0433 - 8.31713 + 31.6985" + 8.226983°)
+ £2(0.9488 — 5.92453 - 25.8873" + 4.15168°)
+ £(=2.4107 + 17.5183 - 13.68853 + 5.94393°);
£, (&, B) = 0.9730 + 0.10358 - 0.56428" - 7.91358°
+ £(0.0799 — 7.50013 + 38.2208° - 26.0945")
+ £2(0.710 - 12.9248 - 24.2328 + 55.528)
+ £(=2.381 + 24.608 - 22.086% - 17.2627);
gn(&) = 1.1216 + 6.520&" — 12.388&" + 89.055¢°
— 188.608£% + 207.387£" - 32.052§";
gs(&) = 1.1202 - 1.8872¢ — 18.014¢" - 87.385¢°
+241.912¢& - 319.940€° + 168.011£°.
Eq. (5) can be rewriiten as

X = gt = 28] (g = A2)

M= (= 2u+ ,\mo,)/(awaw - 2%) (7

Y = v/A,
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From the theory of elasticity, the strain energy U of the element is expressed as:
TR AL L (8)
which, after combination with Eq. (7), becomes
U - wlg — 2u219§1uo + A . ZDTW (9)

where A=A,y — 1%,

Substituting Eq. (2) into Eq.(9) and minimizing the strain energy U by partial differentiation
method, we obtain the stiffness equation of the damaged element with a surface semi-elliptical crack:

Aw Ao Ay Aw . .
A O -2 -2 O 2 |(m (i
1 1
0 X; 0 0 E O . ’l)l Y]
Ay Au Ay A
-2 9 A 3 0 =7 ||0a] |Ma
A A A R (10)
A Ao g ) X
A 9 A A 0 A" 2
0 - Ai 0 Ai 0 || Y,
e s A |lo lag,)
[ 2 0 A ~a 9 Al ?

In consideration of the fact that the crack makes little contribution to the stresses or displacements
of the element when the element is in torsion or bending on the xz plane, the discontinuation of the
torsion displacements in the x and y directions as well as the displacement in the z direction on the

crack surface can be ignored, i.e., 6,, =6,,, w, = w,, and 0,,=0,.

3.2 Equivalent Stiffness Matrix of the Damaged Element

The static condensation method is used to integrate the stiffness matrices of the three elements as
mentioned above into the equivalent element stiffness matrix of the cracked component . :

As shown in Fig. 1, the boundary nodal displacement vector can be represented by { U, } = {u,,
Vir Wis Ous Oy 0y w5 v, wy, 0, 0, 6,17 and the boundary nodal load vector by | F, } =
X, Yo, Z,, My, M, M., X, Y, Z;, M;, M, M;}". The nodal displacement vector of the
damaged element, i.e., the intemnal nodal displacement vector of the cracked component, is taken as
{U,}, then, the stiffness equation for the cracked component can be expressed as:

K. K U, F,
Lo ll]-10) (1
K., K,'lUu 0
Eliminating the internal nodal displacement vector { U, | gives
[K1{u.} = .1, (12)

where [ K] is the equivalent stiffness matrix of the cracked component in the local coordinate system as
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shown in Fig. 1:
[K] = [Ku] - [Ks (K] [Ki ] (13)
3.3 Equivalent Parameters of the Cracked Component
The equivalent parameters such as the equivalent cross-sectional area A, the moment of inertia
77 , 1., and the polar moment of inertia 'J, defining the element that simulates the cracked component,
are obtained through comparison of the equivalent stiffness matrix [ K] with the stiffness matrix of the

element with parameters A, 7y , I, and J:

- KL - K13 KL
A= —, I, = min{K""”L i }
E 12E° 4E
- K12 KoL - _ _ KL
I = min{%, :z%j }, and J = min{ I +1, ﬁxGex }

where _IZ,,,, , T(W R T(,,,w , T(g 6 T(gyg , and T(gg are the diagonal elements of matrix [K] corresponding
xx ¥ 7z .
respectively to the nodal displacements u;, v, wy, 0., Oy, and 6, ; L is the length of the cracked

component .
4. Experimental and Numerical Validation

To verify the above theory, both lab tests and numerical calculations are conducted. The verifica-
tion of the theory is to confimm the stiffness of the cracked beam as shown in Fig. 3, i.e., to compare
the P ~ V curve, where P is the load on the beam, and V is the corresponding displacement. The
load P and deflection V are recorded simultaneously. The meshing of the cracked beam by FEM is
demonstrated in Fig. 4. The results are summarized in Table 1, and presented in Fig. 5. Tt can be
seen that the results from the derived theory are in good agreement with both the test data and numeri-
cal calculations.

Fig. 3. Validation test on a cracked beam.
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Fig. 4. Numerical validation by meshing the cracked beam (I, = 14 cm).
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Table 1 Deflection at the central point of the cracked beam, mm (4, =14 cm)
P (kg) 40 80 120 160 200
Theory a=8 mm -0.0179 ~0.0358 -0.0537 -0.0716 -0.0895
FEM meshing a=8 mm ~0.0195 ~0.039% -0.0585 -0.0780 ~0.0975
Test a=8 mm -0.019 -0.038 ~0.058 -0.077 -0.09
P 7
(kg) 1 A Test
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Fig. 5. P~ V curve for the cracked beam (/, = 14 cm).
S. Application to Assessment of Safety of Cracked Platforms

A subroutine program named DASA is written for the application of the above theory to the FE
calculation of steel structures with ABAQUS. A fixed platform and a self-elevating jack-up drilling rig
are simulated for the analysis.

5.1 TFixed Platform

The fixed platform operating in the Bohai Gulf is simplified as shown in Fig. 6 for the application
of the derived theory. The diameter and thickness of the jacket leg are 0.99 m and 0.025 m respec-
tively; the brace’s diameter and thickness are 0.529 m and 0.007 m. For simplicity, it is supposed
that only a horizontal force of 1000 kN and a vertical load of 500 kN are acting on the platform. A
crack of 16 cm in length occurs in element 35 with node number 33 and 44. The effective parameters
of the cracked element are calculated according to the present theory, as presented in Table 2. The
displacements of the fixed platform with or without cracks are presented in Table 3. The maximum axial
stresses in the structure are summarized in Table 4. It can be seen that the effect of the crack on the

fixed platform is quite prominent.



184 LIU Li-ming et al ./ China Ocean Engineering , 17(2), 2003, 177 - 187

Table 2 Parameters of element 35
A(n?) I,(m*) L (m*) J,(m*)
Without crack 0.75791E-1 0.88282E -2 0.88282E -2 0.17656E - 1
Cracked 0.75773E-1 0.88282E -2 0.84336E -2 0.17262E-1

Fig. 6. Structure of a simplified fixed platform.

Table 3 Effect of crack on the displacement of the fixed platform
Node No. % ¥ z 6. o, 0.
15 -24.77 70.72 -1.706 -0.0947 -3.358E-2 -0.0782
24 -25.79 75.60 -0.7272 0.0122 ,~1.175E-4 -0.1008
Without crack
33 -25.42 81.33 -0.1682 -0.0207 -2.320E-3 -0.1152
42 -23.80 90.01 -0.2035 -0.0147 4.774E -5 -0.1364
15 -27.63 78.46 -1.862 -0.1078 -3.741E-2 -0.0866
24 -28.76 83.77 -0.7474 0.0179 -7.205E-5 -0.1126
Cracked
33 -28.33 90.76 -0.1279 -0.0142 -2.528E-3 -0.1242
42 -26.45 99.44 -0.189% -0.0099 2.096E - 4 -0.1423

5.2 Self-Elevating Drilling Rig
Cracks are discovered in self-elevating drilling rigs whenever MT inspection is conducted. The fo-

cus of this part is on the strength of the legs having cracks, and the hull structure is simulated as sim-
ply as possible. Fig. 7 shows the FE model of the rig.
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Table 4 Maximum axial stresses in the structure o,,,, , MPa

Element No. Without crack Cracked
32 136.05 141.91
33 43.82 45.50
34 20.91 20.82
35 17.74 19.15
37 27.55 28.35
44 -29.52 -29.32
49 15.21 16.06
56 24.94 28.17

185

Fig. 7. FE model of the drilling rig.

It is assumed that a crack occurs in the interaction between the pile of the leg and the spud-can.
The parameters of the crack as illustrated in Fig. 8 are as follows: A =0.109 n’, jy =12.59%x 10
m', 1,=2.71x10 m*, and J =2.78 x 10 >m*. The results are presented in Table 5 where the el-
ements numbered are located in' the interaction between the pile of the leg and the spud-can. It can be
seen that for such kind of rigs, one crack has little effect on the stress state of the structure, not en-
dangering the safety of the rig. It can be explained that the three legs have very strong support to the
strength of the rig which is hyperstatic, and even a loss of a brace will not affect the safety of the rig.
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The compressive stress state as shown in Table 5 is also a contribution to the inaction of the crack on

the strength of the rig.

Table 5 Effect of the crack on the stresses of the drilling rig, Pa

Element No. Without crack Cracked
102 - 0.684560E + 08 - 0.684590E + 08
103 - 0.648460E + 08 - 0.649160E + 08
104 -0.612630E + 08 - 0.612650E + 08
105 - 0.565280E + 08 —0.565380E + 08
106 - 0.634020E + 08 —-0.634710E + 08
107 -0.573050E + 08 -0.573100E + 08
174 —0.585300E + 08 -0.585380E + 08
176 —0.584040E + 08 - 0.584090E + 08
177 ~0.483320E + 08 - 0.483250E + 08
180 -0.439320E + 08 - 0.439450E + 08

SECTION ID 6

Q = ShearCenter DATA SUMMARY

X = Centroid

20.474 Section Name
Area
///’,’1—— _—j‘\\\\ = 169.697
\ Iyy
0,237 A N = 30257
Iyz
= ,001387
Izz
= 6513

Warping Constant

L = .102E+07
0

Torsion Constant
\= 6679
Centroid Y

= -_,837133
Centroid 2
= -,412E-06
Shear Center Y
\,_ / = -8.004
\_ —_lé Shear Center 2

= .005142

-10. 237 Q

-20. 474

-15 -7.785 -0. 57087 6. 644 13. 858

Fig. 8. Cracking of the pile of the rig leg.



LIU Li-ming et al ./ China Ocean Engineering , 17(2), 2003, 177 - 187 187

6. Conclusions

(1) On the basis of the finite variation principle, static condensation method and fracture me-
chanics, a finite element method is developed to calculate the stiffness matrix of the cracked compo-
nent. The equivalent parameters such as the equivalent cross-sectional area A, the moment of inertia
L , 1., and the polar moment of inertia J, which define the element simulating the cracked component
for the FE model of the structure, are mathematically expressed. The theories proposed in this paper
are validated by means of both laboratory tests and numerical calculations. They can be a basis for the
application of the FE structural analysis software to the calculation of large scale steel structures con-
taining cracks.

(2) As an application of the theory, a subroutine program named DASA is written and incorporat-
ed into ABAQUS. A fixed production platform is simplified and a self-elevating jack-up drilling rig is
modeled for evaluation of the effect of cracks on the strength of the structures, and the results indicate
that one crack has little effect on the stress state of such structures as rigs due to their hyperstaticity

while the effect of cracks on the fixed platform is prominent.
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