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Martensitic transformation under impact with high strain rate
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Abstract

This paper deals with the quantitative prediction of the volume fraction of martensitic transformation in
a austenitic steel that undergoes impact with high strain rate. The coupling relations between strain, stress,
strain rate, transformation rate and transformed fraction were derived from the OTC model and modified
Bodner–Partom equations, where the impact process was considered as an adiabatic and no entropy-
increased process (pressurep20GPa). The one-dimensional results were found to model and predict
various experimental results obtained on 304 stainless steel under impact with high strain rate. r 2001
Published by Elsevier Science Ltd.

1. Introduction

During the last two decades, it has been unequivocally established that stress or deformation-
induced martensitic transformation can significantly enhance the tensile ductility and the fracture
toughness of materials.
The common knowledge about the phenomenon of the deformation-induced martensitic

transformations is that the stable nucleation sites are initially promoted at the intersection of
localized dislocation bands or twins, and then these nuclei evolve into larger volumetric
martensites under the loading. Therefore, the constitutive equations of the material must be given
to describe the stress or strain-induced martensitic transformations. On the contrary, the
martensitic evolving process must affect to the relation between stress and strain.
A constitutive model which takes into account the deformation-induced martensitic

transformation in metastable steels has recently been proposed by Stringfellow et al. [1] and
the model was developed by Diani et al. [2] and Grujicic et al. [3], but these works which are based
on the static Von Mises yield criterion could not illustrate the effects of the deformation rate in
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impact. In this paper we dealt with the quantitative prediction of the volume fraction of
martensitic transformation in a austenitic steel that undergoes a impact loading. The coupling
relations between strain, stress, strain rate, transformation rate and transformed fraction were
derived from the OTC model and modified Bodner–Partom (B–P) equations, where the impact
process ð’eX102=sÞ was considered as an adiabatic and no entropy-increased process
(pressurep20GPa) because under this condition the adiabatic curve is very closed to the
isoentropic curve [4]. Finally, in this paper the one-dimensional results were found to model and
predict various experimental results obtained on 304 stainless steel under impact with high strain
rate.

2. Statistic of martensitic nucleation and evolution

A decade ago, Olson et al. [5] introduced a statistical model (OTC model) based on
phenomenology and experimental data of Cech and Turnbull to describe the distribution of
nucleation site potencies in Fe-30Ni. According to this model the transformed martensitic fraction
f in material is equal to the probability p in the following way:

f ¼ p ¼ 1@expð@NvVpÞ; ð2:1Þ

where Vp is a volumetric number and Nv represents the number density of the nucleation
sites randomly distributed throughout the material. From the available transformation
thermodynamics data, it was determined that the number density Nv was related to the Gibbs
free energy change, Dg, which accompanies the martensitic transformation. Next, the martensitic
evolving also relied on the elastic interaction of the nucleus with superdislocation-like linear
defects, i.e.:

Nv ¼ N0
v exp @a

2G=r
Dg@gel@wf

� �
; ð2:2Þ

where a is a constant distribution shape factor, and N0
v is the total number density of defects of all

potencies, G is the nucleus/matrix specific interfacial energy, r is the planar atomic density of the
close packed planes, gel is the elastic nucleus misfit strain energy, and wf the frictional work of
nucleus/matrix interfacial motion. The total Gibbs free energy change is the sum of the chemical
contribution Dgch and the mechanical contribution Dgs.
If the changes of 2G=r, Dgch, gel and wf remain small in the impact process, their values can be

represented by their mean values and from Eq. (2.2) it is yielded that:

’Nv ¼
D’gsN0

vf1

ðf2 þ DgsÞ2
exp @

f1

f2 þ Dgs

� �
; ð2:3Þ

where f1 ¼ 2aG=r
� �

, f2 ¼ Dgch@gel@wf

� �
. Therefore, the transformation rate of martensitic

fraction in the impact process can be expressed by

’f ¼
D’gsN0

vf1Vp

ðf2 þ DgsÞ2
exp @

f1

f2 þ Dgs

� �
exp ð@VpNvÞ: ð2:4Þ
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This equation illustrates the relations between martensitic fraction change per unit time ’f and
mechanical driving force, Dgs and its rate, D’gs. From this equation it is shown that ’f relies
on the product of two Boltzmann factors, which is consistent with the Becker recrystallized
theory [6].
Under the assumption that the process of impact-induced martensitic transformation is

Markov process, the transition probabilities for initial and ðnþ 1Þth step are expressed
respectively by

p0 ¼ 1@exp½@VpNvð0Þ�; ð2:5aÞ

pn ¼ pn@1 þ
Z tþDt

t

’f dt ð2:5bÞ

and the martensitic fraction for ðn þ 1Þth step can be given by

fnþ1 ¼ fn þ Dfn; ð2:6aÞ

Dfn ¼ ð1@fnÞpn: ð2:6bÞ

3. Impact mechanical driving force and plastic strain

As mentioned above, the mechanical driving force, Dgs, is the only variable versus time in
impact-induced transformation process. The Dgs is a nucleus orientation dependent quantity and
can be expressed in terms of the stress normal to the transformation habit plane, sn, and the shear
stress in this plane, t, i.e.:

Dgs ¼ sne0 þ tg0; ð3:1Þ

where e0 and g0 are the normal and shear transformation strain, respectively. If the stress
tensor in global coordinate system is denoted by T, the normal and shear stresses can be
written by

sn ¼ Nglob : T; ð3:2aÞ

t ¼ Rglob : T; ð3:2bÞ

where Nglob and Rglob are transformation tensor in global coordinate system and defined in terms
of the Euler angles (y,j,c):

Nglobðy;j;cÞ ¼ Pðy;j;cÞNlocalP
Tðy;j;cÞ; ð3:3aÞ

Rglobðy;j;cÞ ¼ Pðy;j;cÞRlocalP
Tðy;j;cÞ; ð3:3bÞ
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where Rlocal, the symmetric part of the Schmid tensor, and Nlocal are two tensors defined by the
habit plane normal n and shear direction b in local coordinate system:

Nlocal ¼ n#n; ð3:4aÞ

Rlocal ¼ 1
2½ðn#bÞ þ ðb#nÞ�: ð3:4bÞ

The local to global transformation matrix Pðy;j;cÞ is expressed by

P ¼

c1c2c3@s1s2 @c3s2@c1s3c2 s1c2

c1c3s2 þ s3c2 @s2c1s3 þ c2c3 s1s2

@c3s1 s1s3 c1

2
64

3
75; ð3:5Þ

where c1 ¼ cos y, c2 ¼ cosf, c3 ¼ cosc, s1 ¼ sin y, s2 ¼ sin f, s3 ¼ sin c.
In the same way, the plastic strain caused by the martensitic transformation of a nucleus with

some orientation can be written by:

epðy;f;cÞ ¼ g0Rglob þ e0Nglob: ð3:6Þ

Under the assumption of a random distribution of nucleation site, the increase in the macroscopic
plastic strain, Depn from nth to ðnþ 1Þth step in the impact process can be obtained by summing the
contribution of all transformed nucleus as follow:

Depn ¼ Dfn

R 2p
0

R 2p
0

R p
0 e

p
i;nþ1ðy;f;cÞpi;nþ1ðy;f;cÞsin y dy df dcR 2p

0

R 2p
0

R p
0 pi;nþ1ðy;f;cÞsin y dy df dc

; ð3:7Þ

where Dfn can be obtained from Eq. (2.6b), e
p
i;nþ1 is the plastic strain of the ith transformed

nucleation site at ðnþ 1Þth step in impact process and is defined by Euler angles ðy; f; cÞ, pi;nþ1 is
the probability that the ith nucleation site operates transformation at ðn þ 1Þth step and it is the
loading history dependent as

pi;nþ1ðy; f; cÞ ¼ %pn exp @
2aG=r

Dgch þ Dgsnþ1ðy; f; cÞ@gel@wf

� �
; ð3:8aÞ

%pn ¼
Yn
i¼0

1@exp @
2aG=r

Dgch þ Dgsnþ1ðy; f; cÞ@gel@wf

� �� �
: ð3:8bÞ

With the above relations the macroscopic plastic strain caused by transformed fraction at
ðn þ 1Þth step in impact process can be obtained as

e
p
nþ1 ¼ epn þ Depn ð3:9Þ

and the initial condition read:

e
p
0 ¼ f0

e0
3
I; ð3:10Þ
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where f0 is the initial fraction of martensitic nucleus, e0 is the dilatational plastic strain caused by
the complete martensitic transformation (i.e. f ¼ 1).
Furthermore the plastic strain tensor, e

p
nþ1, in Eq. (3.9) can be decomposed into its deviatoric

and hydrostatic parts as

e
p
nþ1 ¼

ffiffiffi
3

2

r
%epnþ1Nþ eh;nþ1I; ð3:11Þ

where %epnþ1 is the equivalent plastic strain. If T
0 represents the deviatoric part of the Kirchhoff

stress, the flow direction tensor N ¼ T0=8T08. In Eq. (3.11), eh;nþ1 is the dilatation plastic strain
and it reads:

eh ¼
e0
3
f : ð3:12Þ

4. Constitutive equations for impact-induced transformation

In order to describe the stress strain relationship in impact process, the equation in the rate
form is written by

T
r
¼ LeðD@DpÞ; ð4:1Þ

where T represents Kirchhoff stress tensor and T
r
is its Jaumann derivate. D and Dp represent the

total strain rate tensor and plastic part, respectively. Le is the fourth order elastic tensor written by

Le ¼ 2GðJ@1
3I#IÞ þ BðI#IÞ; ð4:2Þ

where J is the fourth order identity tensor, I is the second order identity tensor, G and B are elastic
shear modulus and bulk modulus, respectively and they are defined using a weighted average of
the corresponding quantities for two constituent phases. In general, G and B are functions of
transient temperature but in this paper they are considered as functions of plastic work under the
above assumption that the process of impact is adiabatic and no entropy increased process.
Using the Voigt upper bound model, the plastic strain rate for transforming phase (b phase) is

equal to matrix phase (g phase) i.e. Dp
b ¼ Dp

g ¼ Dp and the B–P equations are introduced as

1

2
Dp : Dp ¼ D2

0 exp @
Z2

J22

� �n� �
ð4:3Þ

where D0 is the limit of the plastic strain rate and J2 is the second invariable of stress deviatoric
tensor and Z is expressed by

Z ¼ Z1 þ ðZ0@Z1Þexpð@m0w
p=Z0Þ; ð4:4Þ

where Z1, Z0 and m0 are material parameters. w
p is specific plastic work expressed by

wp ¼ Dgs; ’wp ¼ T : Dp: ð4:5Þ

In Eq. (4.3), Bodner and Partom took n as that n ¼ ðymelt=yÞ þ b, where b is a material parameter,
y is the transient temperature, and ymelt is the melt temperature of material. As mentioned above,
the process of impact is adiabatic and no entropy increased process, so n can be expressed as a
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function of plastic work and reads:

n ¼
naEa

Dgs þ Ea
þ b; ð4:6Þ

where Ea is the material initial specific internal energy at ambient temperature, ya, and
na ¼ ymelt=ya.
From Eq. (4.3) and the plastic theory the plastic strain rate tensor is written by

Dp ¼ ½ð12D
p : DpÞ=J2�1=2T0: ð4:7Þ

In transforming phase the Dp
b can be decomposed as

D
p
b ¼

ffiffi
3
2

q
’%e
p

bNþ ’ehbI; ð4:8Þ

where N ¼ T0=8T08, I is the second order identity tensor, and ’%e
p

b and ’ehb are the
equivalent plastic strain rate and dilatational plastic strain rate, respectively in the
transforming phase. From the Eq. (4.8), the increment of the plastic strain in transforming
phase reads:

De
p
b ¼

ffiffi
3
2

q
’%e
p

bDtNþ ’ehb DtI: ð4:9Þ

In matrix phase (g phase) since the plastic deformation is caused by slip or twinning, there is no
accompanying volume change and Dp

g is written as

Dp
g ¼

ffiffi
3
2

q
’%e
p

g N; ð4:10aÞ

i.e.

Depg ¼
ffiffi
3
2

q
’%e
p

g DtN: ð4:10bÞ

Taking a weighted average of the expressions given by Eqs. (4.9) and (4.10b) and in terms of
Eq. (3.12) the plastic strain tensor in two phase material can be written as

Dep ¼ DpDt ¼
ffiffi
3
2

q
D%epNþ f

e0
3
Df I: ð4:11Þ

If the Kirchhoff stress tensor is T0 at time t in impact process, the updated stress tensor T at new
time t+Dt is given by

T ¼ T0 þ DT; ð4:12aÞ

DT ¼
Z tþDt

t

T
r
dt: ð4:12bÞ

The Eq. (4.12b) can be evaluated numerically using the generalized trapezoidal rule as

DT ¼ ZT
r
Dtþ ð1@ZÞT

r

0: ð4:13Þ

Using Eq. (4.1) and Euler backward difference method in which Z ¼ 1 the stress tensor T is
expressed by

T ¼ T0 þ DtLeD@DtLeDp; ð4:14aÞ
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i.e.

T ¼ T0 þ LeDe@LeDep: ð4:14bÞ

Substituting Eqs. (4.11) and (4.2) into the above equation and considering N : I ¼ 0, the stress
tensor T is recast as

T ¼ T0 þ LeDe@
ffiffiffi
6

p
G’%e

p
DtN@Bf e0 ’fDtI: ð4:15Þ

It is shown from the above derivations that the material constitutive equations for impact-induced
transformation are coupling equations of several variables such as f ; ’f ;Dp and T, etc., therefore
the numerical method must be used to obtain the fraction of martensitic transformation or the
strain stress relationship in an impact process.

5. One-dimensional calculations and comparison with experiments

In one-dimensional calculations, supposing the orientation of martensitic nuclei transforming
to be consistent with the global coordinates i.e. ðy; f; cÞ ¼ ð0; 0; 0Þ, the governing equations are
written by

vx1 ¼ v0; vx2 ¼ 0; ð5:1Þ

’ex ¼
@vx
@x

¼ eex þ epx; ð5:2Þ

’epx ¼
2D0sxffiffiffi
3

p
sxj j

exp½@1
2ð3Z

2=s2xÞ
n�; ð5:3Þ

n ¼
naEa

Dgs þ Ea
þ b; b ¼ 0; D’gs ¼ sx’epx; ð5:4Þ

Z ¼ Z1 þ ðZ0@Z1Þ exp ðm0DgsÞ; ð5:5Þ

’f ¼
D’gsN0

vf1Vp

ðf2 þ DgsÞ2
exp @

f1

f2 þ Dgs

� �
expð@Vp NvÞ; ð5:6Þ

f0 ¼ p0 ¼ 1@ exp ½@Vp Nvð0Þ�; ð5:7Þ

Nv ¼ N0
v exp

@f1

f2 þ Dgs

� �
; Nvð0Þ ¼ N0

v exp
@f1

f2

� �
; ð5:8Þ

pk ¼ pk@1 þ
Z tþDt

t

’fdt; ð5:9Þ

fkþ1 ¼ fk þ Dfk; Dfk ¼ ð1@fkÞpk; ð5:10Þ

Dsx ¼ 2ð1þ mÞG’exDt@G
2

ffiffiffi
6

p
sx ’epx
�� ��Dt

3 sxj j
@

2ð1þ mÞ
ð1@2mÞ

Gf e0 ’fDt; ð5:11Þ
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where m is Poisson’s ratio, vx is displacement velocity, and vx1 and vx2 represent dis-
placement velocity conditions at two ends of specimen. The other notations are same as above
statements.
It is noted that if the stress sx in Eqs. (5.3)–(5.5) is normalized by static yield stress, the

parameters Z1, Z0 and m0 become dimensionless. In this paper, for analysis of the impact
deformed behavior and martensitic transformations of 304-type stainless steel under impact with
high strain rate, the parameters Z1, Z0 and m0 are given as that Z1 ¼ 2:07, Z0 ¼ 0:53, m0 ¼ 3:45.
According to Refs. [3,5], the total number density of defects N0

v ¼ 5:0
1012=m3 and the
volumetric Vp, the mol density rm are given as that Vp ¼ 9:8
 10@16 m3, and
rm ¼ 3:2
106 mol=m3.
Though f1 and f2 have clearly physical essences, there is some difficulty for us to measure

them. Therefore, these parameters are determined by cycling numerical calculations in the light of
the experimental results of Staudhammer et al. [7]. The range of the parameters value is first
determined. It can be seen from Eq. (5.6) that the order of f2 should be about same as the order of
the plastic work Dgs. We can see from impact experiments that the order of plastic work is
108 J/m3 at strain rate 103/s. Considering the high strain rate 103–104/s, the order of f2 should be
108–109 J/m3 i.e. 102–103 J/mol. According to the fact that the martensite fraction is equal to zero
for Dgs ¼ 0, f1 is larger than f2.
After the value of parameters is chosen in the range of the parameter value, we can calculate the

martensite fraction for the given strain rate and impact time through Eqs. (5.1)–(5.11). So with
different strain rate but same impact time we can obtain a curve of martensite fraction versus
impact strain. In general the first calculations could not bear comparison with the experimental
results, f1 and f2 need to be adjusted until the calculated curve is close to the experimental curve.
Clearly, this is different to the simple data fitting though the technique is straightforward, because
the same parameters must fit various strain rates in the range 103–104/s.
Through cycling calculations, it is determined that j1 ¼ 5830 J/mol and j2 ¼ 925 J/mol in this

paper, and in so doing the computational results of the martensitic fraction versus the final impact
plastic strain could bear comparison with the experimental results as shown in Fig. 1. The
agreement between computational results and experimental results illustrates that the present

Fig. 1. The relation between the martensite fraction and final impact plastic strain.
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formulations could account for the basic statistics and thermodynamic aspects of impact-induced
martensites.
The deformed behavior experiments of 304-type stainless steel are performed with Hopkinson

bar instrument that has found a wide acceptance for strain rate testing (102–104/s). The results of
the computations with above parameters and the experiments for strain-stress relationship at
various strain rates and various ambient temperatures are shown in Figs. 2 and 3. It can be seen
from Fig. 2 that in the range of lower strain rate ð’ep2500=sÞ there is an obvious effect of strain
rate on dynamic yield stress, i.e. the yield stress rises with the increase of strain rate, but in the

Fig. 2. Strain-stress relationship for 304 steel at various strain rates.

Fig. 3. Strain-stress relationship for 304 steel at various temperatures.

S.-C. Song et al. / International Journal of Impact Engineering 25 (2001) 755–765 763



range of higher strain rate this is not always the case such as the yield stress at strain rate 5000/s is
slightly less than at strain rate 2500/s. It can be seen from Fig. 3 that the yield stress falls off
obviously with the rise in temperature.
The evolution of martensite in 304-type steel as a function of the plastic strain at

various impact strain rates and at the same strain rate ð’e ¼ 8000=sÞ but various temper-
atures is computed with presented formulations and parameters and the results are depicted
in Figs. 4 and 5, respectively. As expected it is shown in Figs. 4 and 5 that an increase of
strain rate or ambient temperature gives fall-off transformed fraction at each level of the plastic
strain. When the temperature rises to 573K, only a little martensitic fraction is transformed in
impact process.

Fig. 4. The evolution of martensite fraction at various strain rates.

Fig. 5. The evolution of martensite fraction at various temperatures.
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6. Conclusions

This paper presented the quantitative prediction of the volume fraction of martensitic
transformation in a austenitic steel that undergoes impact with high strain rate. The coupling
relationship between strain, stress, strain rate, transformation rate and transformed fraction was
derived from the OTC model and modified B–P equations, where the impact process was
considered as an adiabatic and no entropy-increased process. The one-dimensional results were
found to model and predict various experimental results obtained on 304 stainless steel under
impact.
From the computational and experimental results the following conclusions are obtained:

(1) In the range of lower strain rate there is an obvious effect of strain rate on dynamic yield
stress for 304-type steel, but in the range of higher strain rate this is not always the case. The
effect of temperature on dynamic yield stress is obvious.

(2) An increase of strain rate or ambient temperature in martensitic transforming gives fall-off
transformed fraction at each level of the plastic strain.

(3) The agreement between computational results and experimental results illustrates that the
present formulations could account for the basic statistics and thermodynamic aspects of
impact-induced martensites.
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