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The instability analysis of saturated soil under shear load
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Abstract

A theoretical description of shear instability is presented in a system of equations. It is shown that two types of
instability may exist. One of them is dominated by pore pressure softening while the other by strain softening. A criterion
combining pore pressure softening, strain hardening, and volume strain coe$cient is obtained and practical implications
are discussed. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Instability often leads to the failure of soil foun-
dation. Although lot of work has been done trying
to seek for the criterion of soil instability so as to
evaluate the safety of foundations under vibration
and to avoid instability and liquefaction, the mech-
anism of this problem has not been uncovered
because of the complexity. The instability criterion
of saturated soils has often adopted the Coulomb
criterion [1]. On the viewpoint of instability, the
criterion and factors of soil instability is discussed
in this paper.

2. The mathematical model

2.1. Some assumptions

In order to clarify the problem, some assump-
tions are presented here.
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1. The density of water and gains is constant,
which means o

4
"const., o

8
"const.

2. The moving acceleration can be neglected be-
cause it is smaller than the local acceleration.

3. The Darcy law is adopted.
4. The deformation can only occur in one direction

but may have a gradient in the other direction.
The geometrical con"guration and the defor-

mation can be expressed as follows:
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5. The constitutive equations can be expressed as
follows under shear load:
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The shear volume strain and the increment of
pore pressure are adopted as follows:
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where C
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is a parameter and C
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increment in pore pressure, E
3
is resilience module,
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are the volume strain caused by shear
and recovered by water, respectively. The soil tries
to shrink by shear but the pore water prevents the
deformation, which leads to the increase in pore
pressure.

2.2. The control equations

Since water cannot be compressed, e
87
"0. At

the same time, it is obvious that the volume caused
by shear is the sum of that caused by drainage and
resilience, which is
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in which p is the pore pressure and n is the pore
ratio. K is the obstraction coe$cient and K"k/K,
where k is the penetration ratio and k is the visco-
coe$cient [2,3].

Institute Eq. (5) of Eq. (4), we will get the "rst
control equation

Lp

Lt
!

Er

K

L2p
Lx2

"C
1
E

3
q
Lc
Lt

. (6)

The equations of motion implies
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where o"o
4
!o

8
. Consider the assumption (4),

Eq. (7) becomes
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Now, the control equations can be rewritten as
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where C
1
, E

3
are both functions of p. The solutions

of these equations are di$cult to seek for because of
their non-linearity. It has been shown by experi-
ments and computation that the soil deformation
develops from slowly to fast [4,5], that means, from
stable state to instability.

Now, three points should be emphasized: "rstly,
examining all the assumptions, Eq. (9) can deal with
large shear deformation, because no limitation of
the shear deformation has been introduced; second-
ly, the "rst part of Eq. (9) is a wave equation but the
right-hand side of the second is a typical di!usion
equation. In these two types di!erent phenomena
are coupled through the term C

1
E
3
qc5 . This is the

distinctive feature of the phenomenon under con-
sideration. Finally, Eq. (9) is obviously non-linear.

Since the aim of this paper is to seek for the
condition under which a smooth deformation pro-
cess changes into catastrophe. The perturbation
method, which is widely used in the analysis of #uid
dynamics, is adopted here. Hence, a smooth devel-
oping deformation state c

0
, q

0
, p

0
is taken as the

base stae, which is a solution of Eq. (9). When
perturbation has been acted on the control equa-
tions, we will be able to analyse the factors and
condition of instability.

3. Perturbation analysis [6,7]

To seek for the point deformation from smooth-
ness to catastrophe, we study the solutions in next
form:
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where c
0
, p

0
is a solution of Eq. (9), and

c@"cHeat`*bx,

p@"pHeat`*bx, (11)
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a,b are the frequency and the wave number, respec-
tively.

Di!erentiating the constitutive relations (2), we
get
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in which
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Therefore,
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Institute Eqs. (10), (11), (14) of (9), the homogeneous
system of equations is obtained as follows then:
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As we all know, the determinant of the coe$-
cients should be equal to zero if the system has
solutions, which leads to
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where A
1
"(R

0
!Q

0
C

1
E
3
q
0
)b2#

H
0
E
3

K
b4.

It is a spectral equation. If a has a positive real
root, instability is possible.

Now, we can give the dimensionless form of Eq.
(16), using the next dimensionless variables
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Then, the spectral Eq. (16) can be reduced to the
following form:

a6 3#[(A#B)bM 2#C]a6 2#[(1!D)bM 2

#ABbM 4]a6 #AbM 4"0. (18)

It is obvious that this equation has two extreme
situations.

(i) For long wavelength (bP0), Eq. (18) has two
solutions

bM "0, a6 "0 or a6 "!C (19)

It shows that the deformation is always stable.
(ii) For short wavelength (bPR), Eq. (18) has

only one solution, which is

bM PR, a6 "!

1

AB
. (20)

It is again always stable.
But there is a negative term 1!D which may

lead to instability. It must occur at spectral wave
numbers. Therefore, it is of interest to seek the wave
number bM

.
for which the corresponding a

.
'0 is

a maximum. In addition to the spectral equation
(18), a6

.
and bM

.
must satisfy the next equation
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Keeping bM 2
.
'0 in mind, we arrive at an impor-

tant inequality to determine the limit of the
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Combining both the spectral equation (18) and
the extreme condition (23), the equation to deter-
mine a6

.
can then be obtained
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Fig. 1. Plots of the functions f
1
, f

2
, de"ned in Eqs. (25) and (26).
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From Fig. 1 for the region a6
.
'0, it may be seen

that the left branch of function f
2

and the right
branch of f

1
must have an intersection between

0 and a6 H
.

as long as
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This is the criterion for the existence of a solution
a6
.

and therefore what we desired. At most condi-
tions AC+0, then the criterion can be simpli"ed
to:
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This means that the condition of instability refers
to pore pressure softening overcoming the strain
hardening. It is very interesting that occurrence of
instability is not related to the penetration ratio
K and the strain rate hardening H

0
. However, these

factors in#uence instability markedly in some other
aspects which will be discussed later.

The intersection a6
.

in Fig. 1 and the correspond-
ing value of bM

.
represent the most probable

unstable solution. The solution a6
.

has the same
order as a6 H

.
.

Hence, for qualitative discussion, the value of
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can be used to represent the point of intersection
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It is obvious that the characteristic time is
a!ected by resilence module, strain rate hardening,
penetration, strain hardening and pore pressure
softening.

The characteristic length l
#
is related to t
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Next, three interesting special cases: no penetra-
tion, no strain hardening and no pore pressure will
be discussed.

4. Some other conditions

4.1. No penetration, KPR

In this case, the spectral Eq. (16) becomes
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We can see, if R
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D'1, a will have a positive real root and instabil-
ity will occur. It is important to appreciate that the
same formal criterion (28) can be used whether the
instability is penetrational or not.

4.2. No strain hardening, R
0
"0

Now, the spectral equation (16) becomes
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The condition a has positive real root as given
below:
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In this criterion, penetration ratio K, strain rate
hardening H

0
and pore pressure softening play the

role.
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4.3. No pore pressure softening, Q
0
"0

Now, we turn to discuss the second mode of
instability which there is no pore pressure soften-
ing. In this case, we can formulate the spectral
equation
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Though H
0
, K must be positive, R

0
may be

negative. Therefore, R
0
(0 may be another pos-

sible cause of instability. Eq. (32) can be rewritten as
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It is easy to see that there must be a solution
a'0; therefore, deformation must be unstable. It is
very simple to show that no maximum exists in
a and a is a monotonically increasing function of b,
with
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This implies the shorter the wavelength, the
earlier the occurrence of instability. Nevertheless, it
is a totally di!erent instability mode. There is no
further criterion except R

0
(0, with which, as we

have seen, no characteristic length and time are
associated but there exists a minimum time t

.*/
.

4.4. Practical criterion

Now we concentrate on the instability mode
dominated by pore pressure softening, by turning
towards practical considerations.

It is especially useful that criterion (28)
implies a pore pressure criterion. Recalling
[Q

0
]"stress/(pore pressure), we can easily

deduce that the inequality (28) is equivalent
to a pore pressure criterion. It is desirable to
establish a criterion connecting state parameters
and material constants on each side of the
inequality.

If the constitutive relation of the soil concerned is
formulated explicitly, the critical pore pressure is
easy to obtain. Suppose, for instance,
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where G
0

is the initial shear module, and b is
a constant, p

%0
is initial e!ective stress and p is pore

pressure. Then, the criterion pore pressure is ob-
tained as follows by the inequality (28):
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5. Conclusions

It has been shown that two types of possible
instability of saturated soil under vibration
shear load may exist. One is dominated by
pore pressure softening while the other by strain
softening.

The criterion for the "rst mode of instability
combines pore pressure softening, strain hardening
and resilience module, which can be expressed
simply as Eq. (28). This mode of instability may
lead to failure of soils. The other one requests
R

0
(0.
The above criterion implies a practical critical

pore pressure. The critical pore pressure can be
obtained simply when the constitutive relation has
an explicit expression.
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