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Abstract: A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds
of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogenelty of material con-
stituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the
structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain re-
sponse of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation
induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-
reinforced aluminum matrix composites are favorably compared with FEM results.
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1. INTRODUCTION

The overall elasto-plastic behavior of metal-matrix
composites (MMCs) has been a topic of intense research
for several decades [1-3]. Many efforts have been made
to develop relationships between the microstructure and
macro performance of composites. On the basis of
Eshelby’s method, self-consistent scheme and equivalent
inclusion method were used as a basis for the mechanical
analysis of fiber or particle reinforced composites. Fibers
were also considered as long cylinders [4] or prolate el-
lipsoids and plates in the form of oblate ellipsoids [5]. As
an extension of Eshelby's equivalent inclusion method,
Mori-Tanaka method [6] has been widely adopted for
composites.

The need for numerical analyses arises because ana-
lytical formulations become intractable for composites in-
cluding the heterogeneity, anisotropy and plasticity behav-
ior under non-proportional loading. The relative experi-
ments are much more difficult and time-consuming.
Therefore, the finite element method (FEM) made a great
contribution for understanding of the effect of distributed
fibers on the elasto-plastic behavior of composites [7-8].
However, it is unable to form an explicit constitutive rela-
tion for engineering structural analysis. On the other hand,
the constituents of composites vary in size, shape, orienta-
tion, and volume-fraction, an opportunity to optimize their
properties and performances for specific application under
various circumstances [9] is provided. It is a challenge to
model whisker-reinforced MMCs for predicting the effect
of the heterogeneity, anisotropy and evolution of proper-
ties on the overall performance.

Based on the microscopic description of whisker rein-
forcing and crystal sliding mechanisms [10], mesoscopic
material models and constitutive relations for polycstalline
metals and whisker-reinforced composites have been es-
tablished [11-13]. The evolution of the yield surface and
deformation-induced anisotropy were predicted [12-15].
Recently, the damage mechanism has been taken into ac-
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count, so the meso-damage constitutive relation was de-
veloped to predict the damage-induced anisotropy, dam-
age-rate effect and failure surface of brittle fiber-
reinforced composite material [16-17].

Constituents, microstructure and interface between the
matrix and whiskers play a significant role in improving
the toughness of metal-matrix and ceramic-matrix com-
posites [18]. The study of various types of the fiber-

" matrix bonding [19,20] shows that the interface sliding
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between the matrix and fibers may take place [21]. It can
be taken as a pseudo-plastic behavior of fibers [22,23].
Therefore, consideration of the coupling of multiple
mechanisms becomes inevitable in a material model for
composites.

The present work is concerned with the effect of the
anisotropy and multiple mechanisms on the overall elasto-
plastic performance of whisker-reinforced MMCs. A ma-
terial model is constructed, and crystal and interface slid-
ing criteria are addressed. Based on the stress-strain re-
sponse of the model material, an elasto-plastic constitu-
tive relation is derived followed by discussion of the ini-
tial and deformation induced anisotropy as well as other
fundamental features. Predictions of the present theory
for unidirectional-fiber-reinforced aluminum matrix
composites will be compared with FEM results,

2. MATERIAL MODEL

Whisker-reinforced metal-matrix composites (MMCs)
are composed of metallic matrix and whiskers. The over-
all elasto-plastic behavior depends on multiple mecha-
nisms as well as the microstructure of composites. To de-
velop a material model that has characteristics consistent
with the composite material, it is assumed that:

® Deformation of the matrix is decomposed into an
elastic part Ece in the crystal grains and a plastic part Eus
caused by crystal sliding. The total strain rate of the ma-
trix is compatible with macro strain rate E , i.e.
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E=E +E ms ¢))

e Local stresses §g in a crystal grain and 7, in a slip
system are proportional to the average stress S, and re-
solved shear stress T, of the matrix, i.e.

S, =C;:Sn )
Ty =Cs Ts 3)
=P S, 4)

where Eg and ¢, are stress heterogeneity factors of the
crystal grain and slip system. Note that

——(m®n+n®m) )

is an orientation tensor of the slip system. In Eq.(5), m is
a unit vector in sliding direction and n, a unit normal vec-
tor of the sliding plane.

® Local strain rate £; of a whisker along direction [ is
proportional to the overall strain rate ¢, in the same di-
rection, i.e.

& =C; &

& =P :E

(6)
Q)

where ¢; is a heterogeneity factor of the strain rate of the
whisker. Here,

P =I®I 8)

is an orientation tensor of the whisker and [, _a unit vector.

The symbols with tilde refer to location. ¢, and ¢ may

vary with the stress of the matrix, and ¢; may vary with

overall strain. The crystal grains, slip systems, and whisk-
ers are incrementally linear, such that

E =C,:3, )
§. ==t 10
s I‘;‘s s ( )
.1 .

£r=E~_r0r (11)

where E, and C, are local strain rate and compliance ten-
sors of crystal grains, respectively. The local Shdmg rate
and hardening modulus of slip systems are given by 7
and ks, while 67 and E; are the local stress rate and
Young’s modulus of whiskers, respectively.
2.1. The Matrix

Polycrystalline metal matrix consists of many irregu-
lar crystal grains. Crystal sliding is the plastic deforma-
tion mechanism of the matrix.
2.1.1. Elasticity of the matrix

According to the assumptions, the power stored in
crystal grains can be expressed as
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:E AV (12)

-—f S,:E,av =S, —f

where V,, is volume fraction of the matrix. Being a
power conjugate with S, the elastic strain rate tensor in
crystal grains can be written as

. 1 >
E, = nym ¢,-EdV. (13)

The substitution of Eqs.(9) and (2) into Eq.(13) yields

Emc=Cmc:Sm
C -1 .= 14
Cmc=Z Vm[cg.Cg G (14)
1“'.6 (~ .JEE dc HV.
2% e On s s, SK

Thus, the elastic behavior of the heterogeneous matrix
described by Eq.(14) can be represented by one of a uni-
form elastic medium with the average compliance tensor
Cre. Sp and Eee represent the average stress and elastic
strain rate tensors of the elastic medium or matrix.

2.1.2. Plasticity of crystal sliding

Consider slip in the direction m on slip planes with
the unit normal vector n. The power dissipated by the lo-
cal slip systems can be expressed as

5 1 -~
W=— f y.dV = {—m fym cydv }rs @1s)
An average sliding strain rate conjugate with , is
oL aiav (16)
Y= Vm fVm sVs *

By use of Eqs.(3) and (10), the local sliding strain rate
can be derived as

. 1 . c
Foem(Ci, r )=+ r e . 7)
s h, dr,

Substituting Eq.(17) into Eq.(16), the local slip systems
can be represented by an equivalent slip system with an
average hardening modulus , 4 5 ,and

. 1.
Ys = =T,
LA (18)
—l—:if é(ES +&rs)dV
hy Vo Va kg dr

where €, and y, denote resoived shear siress and siiding
rates of the equivalent slip system.

An orientation distribution of equivalent slip systems
can be described with an orientation density p, . If there
is no preferred orientation, equivalent slip systems will be
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homogeneously distributed in the 3-D space, and p, =
1/4n*.

A slip system may be active when its resolved shear
stress reaches a critical value 7, in m direction or 7__
in the opposite direction. An activation criterion of the
slip system can be stated as [13]

Ifz, =t,., then y,>Q%,, =1, =hy,
and T =T, -2r4
19)

Ifr, =7, then y,<Q% =7, =hy,

and T, =T +2r

Otherwise 7s=07,.,=0
In Eq.(19), Prager's kinematics hardening rule is applied,
and 7, is an initially critical resolved shear stress.

2.2. Whiskers

Experimental results show that the interface siding be-
tween the matrix and whiskers may take place when the
fiber strain reaches its critical value [19]. The interface
debonding is mainly dependent on strain in the fiber [24].
Therefore, the interface sliding may be regarded as
pseudo-plasticity of whisker [22]. Hence, the whiskers are
regarded as elastic and pseudo-plastic components.
2.2.1. Elasticity of whiskers

In the case of whiskers distributed unidirectionally in
the matrix, the power required by the whiskers can be
expressed as

. 1 - 1 ~ ~ .
We =;;‘fVIOfEde = {sz[CfOde}Sf

(20)

where V; is the volume fraction of the whiskers. The
stress o, conjugating with £, should be

1
= - c.o.dV . 21
o fov[ Ci0; (21)
Thus, the stress rate can be derived as
1 . .
O¢ =— ;G +C;0¢)dV . 22
£ foyl(ff £0¢) (22)
Substitution of Eqs.(11) and (6) into Eq.(22) yields
o = Ecéy,
= 1 2~ dE (23)
E;=—{( (GPE;+6;,—Lyav -
f foV[(f f +Of ds)

So the whiskers can be represented by a fiber-bundle with
the average stiffness modulus E;. Note that &, and &,
denote the stress and strain rates of the fiber-bundle, re-
spectively.

Statistically, a probability density p, of whiskers can
be introduced to describe the orientation distribution of
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the fiber-bundles in multi-oriented composites. The ho-
mogeneous orientation distribution density, p, ,is 1/2 7 .
2.2.2. Pseudo-plasticity of interface sliding

Interface sliding may take place when the fiber strain
reaches its critical value £, in tension or £__ in com-
pression. Then, the behavior of the fiber-bundle becomes
pseudo-plastic that can be described as

o =Eg ¢ (24)

where E is an average interface sliding modulus. An in-
terface-sliding criterion can be stated as

Ife, =¢,, then €,_=¢ =0,/E,
and €__ =€, -2¢,
Ifr, =t then é_=¢ =0,/E, (25
and £, =E€_, +2€,
Otherwise E..=0

=c

where €, , are initial critical sliding strains of the fiber-
bundle in +I directions, and € = (€, .0 — €_c0)/2[12]-

3. CONSTITUTIVE RELATION

The whisker-reinforced metal-matrix composite can
be modeled with three types of essential elements: matrix,
equivalent slip systems and fiber-bundles, which are dis-
tributed according to their orientation density p, and p,.
The heterogeneity of constituents in position is averaged,
while the heterogeneity in orientation is kept in the mate-
rial model.The elasto-plasticity constitutive equations can
be derived as follows.

3.1. Elasticity

Consider a representative elementary volume (REV)
of composites with orientation distribution density p,
and p, . Before sliding takes place, two kinds of essential
elements: elastic medium and fiber-bundles influence on
the elastic behavior. Therefore, the total power in REV
equals to the summation required by the matrix and fiber-
bundles with the orientation distribution density p, , i.e.

S:E=V,S :E_+V fpfofé,dg (26)
Q

where d€2 is a solid angle in direction I, V, and V; are
volume fractions of the matrix and fiber-bundles such that
satisfy V;, +V¢ =1. Since deformation of elastic medium
and fiber-bundles is compatible with overall deformation,
the overall stress of the composite should be

S=V_S.+V.S,, 27
that is to say, the total stress is shared by the matrix and

fiber-bundles together, where the stress tensor carried by
fiber-bundles is written as

S, =fg p;o.PdQ . (28)
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By use of Eqgs.(7)and(23),the stress rate tensor carried by
the fiber-bundles satisfies

S, =K, E,
— — 29)
K, =LPrErPr®Prd-Q-

Equation (29) is the stress-strain relation of whisker-
network without consideration of the matrix.

The overall stress rate tensor shared by the matrix and
fiber-bundles is expressed as

S=V,_ S, +V,S,. (30)
Substituting Eqs.(14) and (29) into Eq.(30) yields
S={, K, +V,K|:E (1)

where K, =C> and K, are fourth rank elastic stiffness
tensors of the matrix and fiber-bundles.

3.2. Elasto-plasticity

After crystal sliding takes place, besides the power
stored in the elastic medium and fiber-bundles in Eq.(26),
all active slip systems will dissipate power which can be
obtained by superposition, i.e.

W= L J};,rsysd¢dm= L L Py PdDdY :S . (32)

According to the power conjugate principle, the strain
rate tensor produced by the crystal sliding can be ob-
tained by use of Eqs.(4), (18) and (32) as:

fﬁ =Lj;mng¢dw =cm:smkw)
Cow =1, /. :’_s P.®Pdodw

where C,, is an average compliance tensor of the slip
systems with p, . Substitution of Egs.(14) and (33) into
Eq.(1) yields
E=(C+C,_):S,_. (34)

Equation (34) describes the stress-strain relation of pure
matrix.

Thus, the total power of REV equals a sum of power
dissipated by the three types of elements, i.e.

S:E=V_S_:E_+V.,S_ .-fwff,y,adcpdw

(33
+V, {fé)[o,P,dQ} :E.
The first term on the right-hand side of Eq.(35) is the

power stored in the elastic medium; the second is that dis-
sipated by the active slip systems; and the third is the one
of fiber-bundles which include the powers stored in fiber-
bundles and dissipated by the interface sliding. The total
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power in Eq.(35) can be rewritten as
S:E=V,S, {E, +E,}+V, 5, E. (36)

By substituting Eq.(1) into Eq.(36), the overall stress in
REY can be obtained:

S=V, S, +V; S;. 37
The overall stress rate tensor is
S=V_S_+V,S,. (38)

Equations (34) and (29) can be substituted into Eq.(38) to
yield
S§={V(C,.+C )" +V.K}: E (39)

where C_, is an average compliance tensor of the slip
systems and

C.. =fwf0£—:Ps®Psdd>dlI/ (40)

where

B - T, <T,<T,

{co when

h, when t,sT_ o7, 2T7,.

K. is an average stiffness tensor related with fiber-bundles

K, =f£,E,P, ® P,dQ (41)

E,
{Efs

Equations (39), (40) and (41) describe the elasto-
plastic constitutive relation of whisker-reinforced metal-
matrix composite. The overall stiffness tensor of compos-
ites depends not only on basic constituent parameters Cp,,
hs, and E¢ but also on the parameters of microstructure
and sliding state of slip systems and fiber-bundles, i.e.
ps /hs and pE;, which can be determined in combination
with the crystal and interface sliding criteria in Eqs.(19)
and (25).

in which

when £ <& <E,,

E

when ¢ <¢e_org 2¢,,.

4. COMPARISON WITH FEM RESULTS

According to the crystal and interface sliding criteria,
the macro yielding of composites means that at least a slip

place. That is to say, the yield surface of the composite will
be the internal envelope hypersurface of hyperplanes de-
termined by P,: S , =7, and concomitant hyperplanes in
the stress space with those determined by P; : E,
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€, -The hypersurface includes the coupling of two sliding
mechanisms [12].

The following takes the unidirectional fiber-reinforced
B-Al composite with a perfect interface [7-8] as an exam-
ple. Thus, the macro yielding is dominated by crystal slid-
ing.Therefore, the yield surface is the internal envelope hy-
persurface of hyperplanes determined only by P, : S,
= T, - In numerical analysis, the REV of the present
model material is divided into 876 slip systems homogene-
ously distributed in the 3-D elastic matrix with a unidirec-
tional fiber-bundle. The elastic properties of constituents
are: for the aluminum matrix, E,=70GPa,v_ =0.33, and for
the boron fiber, E=420GPa. The tensile yield stress of the
aluminum matrix, o, =2 t_, , that are taken from ref.[8].

The global yield hypersurface of composites in the 6-
D stress space can provide an insight into the global
elasto-plastic properties of composites. Generally, it can
be illustrated by several yield surfaces in the 2-D stress
subspaces. For transverse isotropic composites, such as
unidirectional fiber-reinforced composites, the yield sur-
face in 6-D stress space can degenerate into one in the 4-
D space. The following four groups of yield surfaces can
illustrate the global yielding of transverse isotropic com-
posites in the stress space.

Figure 1 shows the predicted yield surfaces of unidi-
rectional fiber-reinforced composites with V¢ =0.3 in 4
subspaces: (a)in the {Sy;, S} subspace with a parameter S,3,
() in the { Sy, S»} subspace with a parameter Sy, (c) in the
{8z, Sz} subspace with a parameter, Sy, and (d) in the { Sy,
Sz} subspace with a parameter Sy. Figures 1 (a) and (b) re-
flect the yielding characteristics related to the preferred
orientation, while Figures 1 (c) and (d) describe these on
the transversely isotropic plane.

The predicted results show that the yielding of unidi-
rectional fiber-reinforced composites becomes more diffi-
cult in the fiber direction than in the transverse isotropic
plane. The predicted results are in qualitative agreement
with numerical results obtained by FEM in refs.[7-8]. The
present result is obtained by much less calculations than
that by FEM because we only analyzed a REV but not a
structure. The present constitutive relation can be applied
to FEM. The effect of constituents, whisker orientation,
and coupling of crystal and interface sliding mechanisms
on the yield surface was discussed in ref.[12]. The further
theoretical investigation and experimental verification
will be the subject of separate publication.

5. FUNDAMENTAL FEATURES OF MODEL

5.1. Assembling

The material model consists of three types of essential
elements. Each assembling of the elements may represent
a composite that has its respective constitutive equation.
The following are three typical examples:
(a) The assembling of the elastic medium, equivalent slip
systems and fiber-bundles can model whisker-reinforced
metal-matrix composites with meso-structures described
by p, and p, . The corresponding constitutive equation is
shown in Eqgs.(39) to (41), in which the fiber reinforcing,
interface sliding and crystal sliding mechanisms were
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taken into account [12].

(b) Fiber-reinforced polymer composites can be modeled
with the elastic matrix and fiber-bundles included the ef-
fect of orientation distribution of fiber-bundles p,
[11][16]. The corresponding constitutive equation is de-
scribed in Eqs.(31) and (41), which is based on the fiber

24 su/ 0.
14
s“/a-
-2 = 2
14 1.S,/0,=0.0
| | 28, /o015
24 | 3.5,/0,-03
1 | 4.5, J0=0.35

(@In(S

§,) spacevs S,

1’

1. S Jo,=0.0
2.8 /o=0.15
3.8, /0,=0.3
4.5 Jo=0.4

(b)In (S sn) spacevs S ..

"

S, /o,

(c)In (S,,, S, ) space vs S,

22’

1.8,,/0,=0.0
2.8,,/0,=0.15
3.8,,/0,=0.3

4.8,,/0,=0.35

(d)In(S,,, S,,) space vs st'

22?

Fig.1. The variations of yield surfaces in 4 subspaces.
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