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Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by

a Non-Contact Probe Tip on the Shape of Liquid Surface
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Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in exper-

iments, we present an analytical representation of the shape of liquid surface under van der Waals interaction

induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding
numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly gov-

erned by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to

gravity. However, its horizontal extension is determined by the capillary length.

PACS: 68.03. Hj, 68.03.Cd

Since the invention of the first atomic force micro-
scope (AFM), AFM has been widely used in various
fields. Its main applications lie in the imaging of sam-
ple surface and the measurement of intermolecular in-
teractions such as van der Waals force. However, AFM
is often practically operated in ambient air, in which
a liquid film is very often presented on the surface of
substrate. 3] Due to the flowability of liquid, this
film will no longer remain to be flat under its inter-
action with the probe tip. Hence, the measurement
of the intermolecular interaction between the probe
tip and the substrate can be significantly affected by
the deformation of the intermediate liquid film, and
then the image of the substrate becomes distorted.!*
When an AFM is used to measure the interaction of a
solid particle with deformable liquid interface, i.e. the
relationship between the force and the distance from
the probe tip to the interface, it is necessary to un-
derstand the effects of various factors on the shape of
liquid surface.

Almost all the previous investigations on shapes
of liquid surface dealt with this problem by numeri-
cally solving the governing equation of deformed lig-
uid surface.[5=8] Although there are some fittings of
liquid surface shapes and the relationship of height of
liquid surface with the distance between the probe tip
and the undeformed surface, no analytical expressions
have been reported. Without such expressions, one
is unable to properly understand what physical fac-
tors and how they govern the deformation of liquid
surface. Moreover, one cannot know how and when
instability occurs, namely how and when stable liquid
domes can no longer exist. In this Letter, we report

an analytic expression of the shape of liquid surface,
which reveals the combined effect of van der Waals
force, surface tension, gravity and probe tip radius on
the shape of liquid surface. This representation fits
very well with the corresponding numerical results.
This analytical formulation also enables us to charac-
terize quantitatively the horizontal and vertical scales
of liquid surface.

Following some previous investigations,
model the probe tip as a sphere, as shown in Fig. 1,
hence with no need to use additional approximations

561 we

to the interactive force.[”:8] In our study, the total po-
tential energy of the system, composed of the liquid
surface energy W, (y), gravitational potential coming
from the mass of liquid raised above the undeformed
state W, (y) and the energy related to the interaction
between the probe tip and the liquid, Wyqw (y), is a
functional of the liquid surface shape y(r). The van
der Waals interaction considered here is nonretarded
and unscreened attractively. Therefore, the poten-
tial between two unit volume elements takes the form

U = —2i, where £ is the distance between the
m2£6

two elements and A is the Hamaker constant measur-
ing the strength of the intermolecular interaction. Al-
though the Hamaker constant is dependent on mate-
rials, its value is always in the range 10~2'-10='9 J,[°!
hence in the following calculations, A is taken to be
107197.

By minimizing the total energy functional W(y) =
W, (y) + Wy(y) + Woaw (y) with respect to the shape
function y(r), we can obtain the following governing
equation for the shape of liquid surface y(r):
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and the boundary conditions
y'(0) =0, (2)
lim y(r) =0, (3)

where p is the liquid density, g is the gravitational ac-
celeration, -y is the surface tension coefficient of the lig-
uid, R is the radius of probe tip, and D is the distance
between the centre of the sphere probe tip and the un-
deformed liquid surface, as shown in Fig. 1. This gov-
erning equation is consistent with the one proposed by
Forcada for a liquid film on a substrate.l®) The three
terms in Eq. (1) can be seen as the balance of the fol-
lowing forces: surface tension (the first term), van der
Waals force (the second term) and gravity (the third
term), specifically the van der Waals force can raise
the liquid surface while the other two counteract the
effect of the van der Waals force.

Y 4 Probe tip

/

Liquid surface y(r) |D

X »
T

Fig. 1. Shape of liquid surface under the van der Waals
interaction induced by a spherical probe tip.

For the liquid surface far from the probe tip,
roughly speaking r» > R, the van der Waals force can
be omitted due to its short effective range.
while, the slope of liquid surface is far smaller than
unit. Invoking these approximations, we can obtain
the following simplified governing equation for r > R:

Mean-
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According to the boundary condition of Eq.(3),
the shape of liquid surface far from the probe tip reads

r
y(r) = ~CKo(5), (5)
where K is the modified Bessel function of the second
class,'% C is an unknown constant, and A = l,
Py

about 2.7mm for water, is the capillary length rep-
resenting the relative strength of surface tension to

gravity. From the asymptotic behaviour of Eq. (5),[1]
we can find that A characterizes the horizontal scale
of the liquid surface.

To determine the vertical scale, we need to know
how to describe the liquid surface near the probe tip.
In this region, since the liquid surface is quite flat ac-
cording to Eq. (2), we take y(r) to be yo, i.e. the height
of the liquid surface at » = 0, as the first-order approx-
imation in the term related to the van der Waals force
as expressed in Eq. (1).
solutions, we know that gravity is not significant and
the slope of the liquid surface is also far smaller than
unit in the region near the probe. Thus the shape of
deformed liquid surface in this region is governed by

In addition, from numerical

gy Ly AR ! —0. (6
F e (0w BP

Actually, the relative importance of gravity over sur-
face tension can be estimated by pgy/(vy'/r) ~
p9Y0/(vyo/7?) ~ pgr?/y ~ r?2/A? < 1 in the near-
probe-tip region (r < A).

The integration of Eq. (6) under the axisymmet-
ric boundary condition (2) gives the profile of liquid
surface near the probe tip:

(r) AR3
r)=yy— —
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Employing the matching principle proposed by
Prandtl and described in Ref. [11] to solutions (7) and
(5) in the near and far regions, respectively, i.e. equat-
ing the inner limit of Eq.(5) with the outer limit
of Eq.(7), and manipulating tedious mathematics,
we obtain the maximum height of the liquid surface
Yo=y (r=0):

1 2\
12R3[§+ln D — 2_R2_Eu]
Yo = A ( yU) (8)
07 T3r [(D— )% — R?]? ’

and the whole representation of the shape of liquid
surface from the near region to the far region
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where F,, = 0.57721 is Euler’s constant. Clearly, the
effect of gravity on the height of liquid surface is in-
volved only in a logarithm function as expressed by
Eq. (8), hence it is relatively less significant. Notice-

A
ably, 4 =/ —, about 1.2nm for water, characterizes

the relative strength between the van der Waals force
and surface tension. Then, how does the vertical scale
of the surface profile depend on the two length scales
ly and R? Provided that the gap between the probe
tip and the liquid surface, D — yo — R, is of the or-
der of the maximum height yy but much less than the
probe tip radius R, we realize that yg should be of the
order {/I4R according to Eq.(8), namely {/I4R is
the vertical scale of the liquid surface. This is several
nanometres under the concerned condition.

We obtain the numerical results by the shoot-
ing methods, in which the Runge-Kutta—Fehlberg
method with an adaptive stepsize control(!?! is used
to integrate the governing equation. Besides the
Hamaker constant, other physical parameters used are
p=1x10kg/m? g =9.8m/s? v =0.0728 N/m and
R = 0.1 pm, and different values of distance D are
taken.

The comparisons of the above analytical and nu-
merical results are shown in Figs.2-4. It is obvious
that the asymptotic solutions and the numerical ones
are in very close consistency. Only the probe tip is
very close to the liquid surface (D = 1.066R in the
concerned case), i.e. the liquid surface will jump to
the probe tip, the maximum height of the surface yq
given by the asymptotic solution shows a 10% differ-
ence compared to the numerical one (see the left part
in Fig.4). However, as shown in Figs.3(a) and 3(b),
the dimensionless shapes of liquid surface, normalized
by its corresponding maximum height and obtained
numerically and asymptotically, show a good agree-
ment, even though the probe tip is close to the liquid
surface (D = 1.066R), as shown in Fig.3(b). This
implies that the dimensionless height y/yy does not
depend on the Hamaker constant, similarly to the pre-
vious numerical results.l®] However, according to the
above analysis, we can see that this can be strictly
valid only if the probe tip is far from the surface, i.e.
Yo is negligibly small on the right-hand side of Egs. (8)
and (9), which leads to the zeroth approximation,

L A
TR/ (10)
= T3r D% — R2]2

and
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Fig. 2. Comparison of the shape of liquid surface between
the numerical results and the asymptotic solutions.
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Fig. 3. Comparison of dimensionless shape of liquid sur-
face normalized by yo between the numerical results and
the asymptotic solutions.

From Fig.4, we can also find that the errors of
asymptotic solution become larger with the decreas-
ing distance D, and the relative error is always less
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than 10%. It is more important that the growth rate
of the maximum height with the decreasing distance
becomes larger, and eventually singular. This indi-
cates that the liquid surface approaches to a critical
state to instability, i.e. the liquid surface will jump up
to the probe tip.
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Fig.4. Comparison of dimensionless maximum height

yo/R versus dimensionless distance D/R between the nu-
merical results and the asymptotic solutions.

Finally, since the van der Waals force is omitted in
the region far from the probe tip, the above asymp-
totic analytical results are valid only when the radius
of the probe tip is far less than the capillary length.
Considering that the radius of the probe tip commonly
used in AFMs is often less than 1 um while the corre-
sponding capillary length is usually about millimeters,
the above analytical results are meaningful in nano-
technology. Moreover, although higher order approxi-
mations can be more accurate, simple expressions such
as the present ones are not available and then physical
implications become unclear.

In summary, van der Waals force can raise the lig-

uid surface while the surface tension and the gravity
can counteract the effect of the van der Waals force.
By using the perturbation theory, we have obtained
two asymptotic analytical expressions, which are in
good agreement with the corresponding numerical re-
sults and with the previous investigations. Based on
the obtained formulae, we have clearly shown that the
horizontal scale of the deformation of liquid surface is
governed by the surface tension and the gravity via

the capillary length A = 7 More importantly, the
rg

vertical scale is mainly characterized by a combination
of the van der Waals force, the surface tension and

the probe tip radius /I3 R = {/AR/~, while gravity
appears in logarithm and then is relatively less impor-
tant. We have clarified when the normalized shape of
liquid surface becomes independent of the Hamaker
constant.
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